blob: 8b9bd3675e2a86932efac0bf8f4cad6ce2d40dd7 [file] [log] [blame]
/*
* s2mu005_fuelgauge.c - S2MU005 Fuel Gauge Driver
*
* Copyright (C) 2017 Samsung Electronics, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#define DEBUG
#define SINGLE_BYTE 1
#define TABLE_SIZE 22
#include "include/fuelgauge/s2mu005_fuelgauge.h"
#include <linux/of_gpio.h>
#include <linux/sec_batt.h>
static enum power_supply_property s2mu005_fuelgauge_props[] = {
};
static int s2mu005_get_vbat(struct s2mu005_fuelgauge_data *fuelgauge);
static int s2mu005_get_ocv(struct s2mu005_fuelgauge_data *fuelgauge);
static int s2mu005_get_current(struct s2mu005_fuelgauge_data *fuelgauge);
static int s2mu005_get_avgcurrent(struct s2mu005_fuelgauge_data *fuelgauge);
static int s2mu005_get_avgvbat(struct s2mu005_fuelgauge_data *fuelgauge);
static int s2mu005_get_monout_avgvbat(struct s2mu005_fuelgauge_data *fuelgauge);
static int s2mu005_read_reg_byte(struct i2c_client *client, int reg, void *data)
{
int ret = 0;
int cnt = 0;
ret = i2c_smbus_read_byte_data(client, reg);
if (ret < 0) {
while (ret < 0 && cnt < 5) {
ret = i2c_smbus_read_byte_data(client, reg);
cnt++;
dev_err(&client->dev,
"%s: I2C read Incorrect! reg:0x%x, data:0x%x, cnt:%d\n",
__func__, reg, *(u8 *)data, cnt);
}
if (cnt == 5)
dev_err(&client->dev,
"%s: I2C read Failed reg:0x%x, data:0x%x\n",
__func__, reg, *(u8 *)data);
}
*(u8 *)data = (u8)ret;
return ret;
}
/*
static int s2mu005_write_reg_byte(struct i2c_client *client, int reg, u8 data)
{
int ret, i = 0;
ret = i2c_smbus_write_byte_data(client, reg, data);
if (ret < 0) {
for (i = 0; i < 3; i++) {
ret = i2c_smbus_write_byte_data(client, reg, data);
if (ret >= 0)
break;
}
if (i >= 3)
dev_err(&client->dev, "%s: Error(%d)\n", __func__, ret);
}
return ret;
}
*/
static int s2mu005_write_and_verify_reg_byte(struct i2c_client *client, int reg, u8 data)
{
int ret, i = 0;
int i2c_corrupted_cnt = 0;
u8 temp = 0;
/* pr_info("[SKB]%s: write addr:0x%x, data:0x%x\n", __func__, reg, data); */
ret = i2c_smbus_write_byte_data(client, reg, data);
if (ret < 0) {
for (i = 0; i < 3; i++) {
ret = i2c_smbus_write_byte_data(client, reg, data);
if (ret >= 0)
break;
}
if (i >= 3)
dev_err(&client->dev, "%s: Error(%d)\n", __func__, ret);
}
/* Skip non-writable registers */
if ((reg == 0xee) || (reg == 0xef) || (reg == 0xf2) || (reg == 0xf3) ||
(reg == 0x1e) || (reg == 0x1f) || (reg == 0x44) || (reg == 0x45) ||
(reg == 0x54) || (reg == 0x55) || (reg == 0x56) || (reg == 0x57)) {
return ret;
}
s2mu005_read_reg_byte(client, reg, &temp);
while ((temp != data) && (i2c_corrupted_cnt < 5)) {
dev_err(&client->dev,
"%s: I2C write Incorrect! REG: 0x%x Expected: 0x%x Real-Value: 0x%x\n",
__func__, reg, data, temp);
ret = i2c_smbus_write_byte_data(client, reg, data);
s2mu005_read_reg_byte(client, reg, &temp);
i2c_corrupted_cnt++;
}
if (i2c_corrupted_cnt == 5)
dev_err(&client->dev,
"%s: I2C write failed REG: 0x%x Expected: 0x%x\n",
__func__, reg, data);
return ret;
}
static int s2mu005_write_reg(struct i2c_client *client, int reg, u8 *buf)
{
#if SINGLE_BYTE
int ret = 0;
s2mu005_write_and_verify_reg_byte(client, reg, buf[0]);
s2mu005_write_and_verify_reg_byte(client, reg+1, buf[1]);
#else
int ret, i = 0;
ret = i2c_smbus_write_i2c_block_data(client, reg, 2, buf);
if (ret < 0) {
for (i = 0; i < 3; i++) {
ret = i2c_smbus_write_i2c_block_data(client, reg, 2, buf);
if (ret >= 0)
break;
}
if (i >= 3)
dev_err(&client->dev, "%s: Error(%d)\n", __func__, ret);
}
#endif
return ret;
}
static int s2mu005_read_reg(struct i2c_client *client, int reg, u8 *buf)
{
#if SINGLE_BYTE
int ret =0;
u8 data1 = 0, data2 = 0;
s2mu005_read_reg_byte(client, reg, &data1);
s2mu005_read_reg_byte(client, reg+1, &data2);
buf[0] = data1;
buf[1] = data2;
#else
int ret = 0, i = 0;
ret = i2c_smbus_read_i2c_block_data(client, reg, 2, buf);
if (ret < 0) {
for (i = 0; i < 3; i++) {
ret = i2c_smbus_read_i2c_block_data(client, reg, 2, buf);
if (ret >= 0)
break;
}
if (i >= 3)
dev_err(&client->dev, "%s: Error(%d)\n", __func__, ret);
}
#endif
return ret;
}
static void s2mu005_fg_test_read(struct i2c_client *client)
{
static int reg_list[] = {
0x03, 0x0E, 0x0F, 0x10, 0x11, 0x1E, 0x1F, 0x21, 0x24, 0x25,
0x26, 0x27, 0x44, 0x45, 0x48, 0x4A, 0x4B, 0x50, 0x51, 0x52,
0x53, 0x58, 0x59, 0x5A, 0x5B
};
u8 data = 0;
char str[1016] = {0,};
int i = 0, reg_list_size = 0;
reg_list_size = ARRAY_SIZE(reg_list);
for (i = 0; i < reg_list_size; i++) {
s2mu005_read_reg_byte(client, reg_list[i], &data);
sprintf(str+strlen(str), "0x%02x:0x%02x, ", reg_list[i], data);
}
/* print buffer */
pr_info("[FG]%s: %s\n", __func__, str);
}
#if defined(CONFIG_S2MU005_VOLT_MODE_TUNING)
int check_current_level(struct s2mu005_fuelgauge_data *fuelgauge)
{
int ret_val = 500;
int temp = 0;
if (fuelgauge->cable_type == SEC_BATTERY_CABLE_USB) {
return ret_val;
}
/* topoff current * 1.6 except USB */
temp = fuelgauge->topoff_current * 16;
ret_val = temp / 10;
return ret_val;
}
#endif
static void WA_0_issue_at_init(struct s2mu005_fuelgauge_data *fuelgauge)
{
int a = 0;
u8 v_52 = 0, v_53 =0, temp1, temp2;
int FG_volt, UI_volt, offset;
u8 v_40 = 0;
u8 temp_REG26 = 0, temp_REG27 = 0, temp = 0;
/* Step 1: [Surge test] get UI voltage (0.1mV)*/
UI_volt = s2mu005_get_ocv(fuelgauge);
/* current fix for soc */
s2mu005_read_reg_byte(fuelgauge->i2c, 0x27, &temp_REG27);
temp = temp_REG27;
temp |= 0x0F;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x27, temp);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x26, &temp_REG26);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x26, 0xF7);
/* avgvbat factor value set to 0xFF */
s2mu005_read_reg_byte(fuelgauge->i2c, 0x40, &v_40);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x40, 0xFF);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x1E, 0x0F);
msleep(50);
/* Step 2: [Surge test] get FG voltage (0.1mV) */
FG_volt = s2mu005_get_vbat(fuelgauge) * 10;
/* Step 3: [Surge test] get offset */
offset = UI_volt - FG_volt;
pr_info("%s: UI_volt(%d), FG_volt(%d), offset(%d)\n",
__func__, UI_volt, FG_volt, offset);
/* Step 4: [Surge test] */
s2mu005_read_reg_byte(fuelgauge->i2c, 0x53, &v_53);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x52, &v_52);
pr_info("%s: v_53(0x%x), v_52(0x%x)\n", __func__, v_53, v_52);
a = (v_53 & 0x0F) << 8;
a += v_52;
pr_info("%s: a before add offset (0x%x)\n", __func__, a);
/* 2`s complement */
if (a & (0x01 << 11))
a = (-10000 * ((a^0xFFF) + 1)) >> 13;
else
a = (10000 * a) >> 13;
a = a + offset;
pr_err("%s: a after add offset (0x%x)\n", __func__, a);
/* limit upper/lower offset */
if (a > 2490)
a = 2490;
if (a < (-2490))
a = -2490;
a = (a << 13) / 10000;
if (a < 0)
a = -1*((a^0xFFF)+1);
pr_info("%s: a after add offset (0x%x)\n", __func__, a);
a &= 0xfff;
pr_info("%s: (a)&0xFFF (0x%x)\n", __func__, a);
/* modify 0x53[3:0] */
temp1 = v_53 & 0xF0;
temp2 = (u8)((a&0xF00) >> 8);
temp1 |= temp2;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x53, temp1);
/* modify 0x52[7:0] */
temp2 = (u8)(a & 0xFF);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x52, temp2);
/* restart and dumpdone */
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x1E, 0x0F);
msleep(300);
/* restore current register */
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x27, temp_REG27);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x26, 0xF6);
/* recovery 0x52 and 0x53 */
s2mu005_read_reg_byte(fuelgauge->i2c, 0x53, &temp1);
temp1 &= 0xF0;
temp1 |= (v_53 & 0x0F);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x53, temp1);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x52, v_52);
/* restore monout avgvbat factor value */
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x40, v_40);
}
#if defined(CONFIG_BATTERY_AGE_FORECAST)
static void WA_force_rawsoc_100(struct s2mu005_fuelgauge_data *fuelgauge)
{
u8 temp1 = 0, v_40 = 0;
/* Set discharging current*/
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x26, 0xF6);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x27, &temp1);
temp1 |= 0x0F;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x27, temp1);
/* Set average voltage coefficient (addr 0x40 = 0xFF) */
s2mu005_read_reg_byte(fuelgauge->i2c, 0x40, &v_40);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x40, 0xFF);
/* Fix discharging current (addr 0x26[0] = 0x1) */
s2mu005_read_reg_byte(fuelgauge->i2c, 0x26, &temp1);
temp1 |= 0x01;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x26, temp1);
/* Set voltage fix for 100% rawsoc & enable */
s2mu005_read_reg_byte(fuelgauge->i2c, 0x25, &temp1);
temp1 &= 0xF0;
temp1 |= 0x05;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x25, temp1);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x24, 0xB7);
/* restart and dumpdone */
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x1E, 0x0F);
msleep(300);
/* Disable voltage fix */
s2mu005_read_reg_byte(fuelgauge->i2c, 0x24, &temp1);
temp1 &= 0xFE;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x24, temp1);
/* Disable discharging current fix */
s2mu005_read_reg_byte(fuelgauge->i2c, 0x26, &temp1);
temp1 &= 0xFE;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x26, temp1);
/* Recover Reg 0x40 */
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x40, v_40);
}
#endif
static int s2mu005_get_soc_from_ocv(struct s2mu005_fuelgauge_data *fuelgauge, int target_ocv)
{
/* 22 values of mapping table for EVT1*/
int *soc_arr;
int *ocv_arr;
int soc = 0;
int ocv = target_ocv * 10;
int high_index = TABLE_SIZE - 1;
int low_index = 0;
int mid_index = 0;
#if defined(CONFIG_BATTERY_AGE_FORECAST)
soc_arr = fuelgauge->age_data_info[fuelgauge->fg_age_step].soc_arr_val;
ocv_arr = fuelgauge->age_data_info[fuelgauge->fg_age_step].ocv_arr_val;
#else
if (fuelgauge->revision >= 2) {
soc_arr = fuelgauge->info.soc_arr_evt2;
ocv_arr = fuelgauge->info.ocv_arr_evt2;
} else {
soc_arr = fuelgauge->info.soc_arr_evt1;
ocv_arr = fuelgauge->info.ocv_arr_evt1;
}
#endif
pr_err("%s: soc_arr(%d) ocv_arr(%d)\n", __func__,*soc_arr, *ocv_arr);
if (ocv <= ocv_arr[TABLE_SIZE - 1]) {
soc = soc_arr[TABLE_SIZE - 1];
goto soc_ocv_mapping;
} else if (ocv >= ocv_arr[0]) {
soc = soc_arr[0];
goto soc_ocv_mapping;
}
while (low_index <= high_index) {
mid_index = (low_index + high_index) >> 1;
if (ocv_arr[mid_index] > ocv)
low_index = mid_index + 1;
else if (ocv_arr[mid_index] < ocv)
high_index = mid_index - 1;
else {
soc = soc_arr[mid_index];
goto soc_ocv_mapping;
}
}
soc = soc_arr[high_index];
soc += ((soc_arr[low_index] - soc_arr[high_index]) *
(ocv - ocv_arr[high_index])) /
(ocv_arr[low_index] - ocv_arr[high_index]);
soc_ocv_mapping:
dev_info(&fuelgauge->i2c->dev, "%s: ocv (%d), soc (%d)\n", __func__, ocv, soc);
return soc;
}
static void WA_0_issue_at_init1(struct s2mu005_fuelgauge_data *fuelgauge, int target_ocv)
{
int a = 0;
u8 v_52 = 0, v_53 =0, temp1, temp2;
int FG_volt, UI_volt, offset;
u8 v_40 = 0;
u8 temp_REG26 = 0, temp_REG27 = 0, temp = 0;
if ((fuelgauge->temperature <= (int)fuelgauge->low_temp_limit) && (!(fuelgauge->info.soc <= 500))) {
union power_supply_propval value = {0, };
pr_info("%s : Skip F/G reset in low temperatures\n", __func__);
psy_do_property("battery", get, POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT, value);
pr_info("%s: swelling_mode = %d\n", __func__, value.intval);
if (value.intval == 0)
fuelgauge->vbatl_mode = VBATL_MODE_SW_VALERT;
return;
}
mutex_lock(&fuelgauge->fg_lock);
/* Step 1: [Surge test] get UI voltage (0.1mV)*/
UI_volt = target_ocv * 10;
/* avgvbat factor value set to 0xFF */
s2mu005_read_reg_byte(fuelgauge->i2c, 0x40, &v_40);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x40, 0xFF);
/* current fix for soc */
s2mu005_read_reg_byte(fuelgauge->i2c, 0x27, &temp_REG27);
temp = temp_REG27;
temp |= 0x0F;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x27, temp);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x26, &temp_REG26);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x26, 0xF7);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x1E, 0x0F);
msleep(50);
/* Step 2: [Surge test] get FG voltage (0.1mV) */
FG_volt = s2mu005_get_vbat(fuelgauge) * 10;
/* Step 3: [Surge test] get offset */
offset = UI_volt - FG_volt;
pr_info("%s: UI_volt(%d), FG_volt(%d), offset(%d)\n",
__func__, UI_volt, FG_volt, offset);
/* Step 4: [Surge test] */
s2mu005_read_reg_byte(fuelgauge->i2c, 0x53, &v_53);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x52, &v_52);
pr_info("%s: Read v_53(0x%x), v_52(0x%x)\n", __func__, v_53, v_52);
a = (v_53 & 0x0F) << 8;
a += v_52;
pr_info("%s: a before add offset (0x%x)\n", __func__, a);
/* 2`s complement */
if (a & (0x01 << 11))
a = (-10000 * ((a^0xFFF) +1)) >> 13;
else
a = (10000 * a) >> 13;
a = a + offset;
pr_err("%s: a after add offset (0x%x)\n", __func__, a);
/* limit upper/lower offset */
if (a > 2490)
a = 2490;
if (a < (-2490))
a = -2490;
a = (a << 13) / 10000;
if (a < 0)
a = -1*((a^0xFFF)+1);
pr_info("%s: a after add offset (0x%x)\n", __func__, a);
a &= 0xfff;
pr_info("%s: (a)&0xFFF (0x%x)\n", __func__, a);
/* modify 0x53[3:0] */
temp1 = v_53 & 0xF0;
temp2 = (u8)((a&0xF00) >> 8);
temp1 |= temp2;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x53, temp1);
/* modify 0x52[7:0] */
temp2 = (u8)(a & 0xFF);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x52, temp2);
/* restart and dumpdone */
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x1E, 0x0F);
msleep(300);
/* restore current register */
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x27, temp_REG27);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x26, 0xF6);
pr_info("%s: S2MU005 VBAT : %d\n", __func__, s2mu005_get_vbat(fuelgauge) * 10);
/* recovery 0x52 and 0x53 */
s2mu005_read_reg_byte(fuelgauge->i2c, 0x53, &temp1);
temp1 &= 0xF0;
temp1 |= (v_53 & 0x0F);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x53, temp1);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x52, v_52);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x53, &v_53);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x52, &v_52);
pr_info("%s: Restored v_53(0x%x), v_52(0x%x)\n", __func__, v_53, v_52);
/* restore monout avgvbat factor value */
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x40, v_40);
s2mu005_fg_test_read(fuelgauge->i2c);
mutex_unlock(&fuelgauge->fg_lock);
}
static void s2mu005_reset_fg(struct s2mu005_fuelgauge_data *fuelgauge)
{
int i;
u8 temp = 0;
mutex_lock(&fuelgauge->fg_lock);
/* step 0: [Surge test] initialize register of FG */
/* Reset IC */
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x1F, 0x40);
msleep(50);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x1F, 0x01);
msleep(50);
#if defined(CONFIG_BATTERY_AGE_FORECAST)
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x0F, fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[0]);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x0E, fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[1]);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x11, fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[2]);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x10, fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[3]);
#if defined(CONFIG_S2MU005_VOLT_MODE_TUNING)
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x13, fuelgauge->age_data_info[fuelgauge->fg_age_step].volt_mode_tunning);
#endif
#else
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x0F, fuelgauge->info.batcap[0]);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x0E, fuelgauge->info.batcap[1]);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x11, fuelgauge->info.batcap[2]);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x10, fuelgauge->info.batcap[3]);
#endif
/* After battery capacity update, set BATCAP_OCV_EN(0x0C[6]=1) */
if (fuelgauge->revision >= 0x0A) {
s2mu005_read_reg_byte(fuelgauge->i2c, 0x0C, &temp);
temp |= 0x40;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x0C, temp);
}
#if defined(CONFIG_BATTERY_AGE_FORECAST)
for (i = 0x92; i <= 0xe9; i++) {
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, i, fuelgauge->age_data_info[fuelgauge->fg_age_step].battery_table3[i - 0x92]);
}
for (i = 0xea; i <= 0xff; i++) {
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, i, fuelgauge->age_data_info[fuelgauge->fg_age_step].battery_table4[i - 0xea]);
}
#else
if (fuelgauge->revision >= 2) {
for (i = 0x92; i <= 0xe9; i++) {
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, i, fuelgauge->info.battery_table3[i - 0x92]);
}
for (i = 0xea; i <= 0xff; i++) {
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, i, fuelgauge->info.battery_table4[i - 0xea]);
}
} else {
for (i = 0x92; i <= 0xe9; i++) {
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, i, fuelgauge->info.battery_table1[i - 0x92]);
}
for (i = 0xea; i <= 0xff; i++) {
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, i, fuelgauge->info.battery_table2[i - 0xea]);
}
}
#endif
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x21, 0x13);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x14, 0x40);
#if defined(CONFIG_BATTERY_AGE_FORECAST)
s2mu005_read_reg_byte(fuelgauge->i2c, 0x45, &temp);
temp &= 0xF0;
temp |= fuelgauge->age_data_info[fuelgauge->fg_age_step].accum[1];
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x45, temp);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x44, fuelgauge->age_data_info[fuelgauge->fg_age_step].accum[0]);
#else
if (fuelgauge->revision >= 2) {
s2mu005_read_reg_byte(fuelgauge->i2c, 0x45, &temp);
temp &= 0xF0;
temp |= fuelgauge->info.fg_accumulative_rate_evt2[1];
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x45, temp);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x44,
fuelgauge->info.fg_accumulative_rate_evt2[0]);
} else {
s2mu005_read_reg_byte(fuelgauge->i2c, 0x45, &temp);
temp &= 0xF0;
temp |= 0x07;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x45, temp);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x44, 0xCC);
}
#endif
s2mu005_read_reg_byte(fuelgauge->i2c, 0x27, &temp);
temp |= 0x10;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x27, temp);
if (fuelgauge->revision >= 2) {
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x4B, 0x0B);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x4A, 0x10);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x03, &temp);
temp |= 0x40;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x03, temp);
}
else {
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x4B, 0x09);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x27, &temp);
temp |= 0x0F;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x27, temp);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x26, &temp);
temp |= 0xFE;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x26, temp);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x4A, 0xFF);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x26, &temp);
temp &= 0xFE;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x26, temp);
}
/* Set average voltage coefficient ( addr 0x40 = 0x08 ) */
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x40, 0x08);
/* Set average current coefficient ( addr 0x41 = 0x04 ) */
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x41, 0x04);
#if defined(CONFIG_BATTERY_AGE_FORECAST)
if (fuelgauge->age_reset_status == 1)
WA_force_rawsoc_100(fuelgauge);
else
WA_0_issue_at_init(fuelgauge);
#else
WA_0_issue_at_init(fuelgauge);
#endif
/* If it was voltage mode, recover it */
if ((fuelgauge->revision >= 2) &&
((fuelgauge->mode == HIGH_SOC_VOLTAGE_MODE) ||
(fuelgauge->mode == LOW_SOC_VOLTAGE_MODE)))
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x4A, 0xFF);
/*
* After FG reset current battery data version gets reset to default value 1.
* This is causing mismatch in bootloader and kernel FG data version.
* The code below restores the FG data version in 0x48 register to its initalized value.
*/
pr_info("%s: FG data version %02x\n", __func__, fuelgauge->info.data_ver);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x48, &temp);
temp &= 0xF1;
temp |= (fuelgauge->info.data_ver << 1);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x48, temp);
mutex_unlock(&fuelgauge->fg_lock);
pr_info("%s: Reset FG completed\n", __func__);
}
static void s2mu005_restart_gauging(struct s2mu005_fuelgauge_data *fuelgauge)
{
u8 temp = 0, temp_REG26 = 0, temp_REG27 = 0;
u8 v_40 = 0;
pr_info("%s: Re-calculate SOC and voltage\n", __func__);
mutex_lock(&fuelgauge->fg_lock);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x27, &temp_REG27);
temp=temp_REG27;
temp |= 0x0F;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x27, temp);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x26, &temp_REG26);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x26, 0xF7);
/* avgvbat factor value set to 0xFF */
s2mu005_read_reg_byte(fuelgauge->i2c, 0x40, &v_40);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x40, 0xFF);
//s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x1f, 0x01);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x21, 0x13);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x1E, 0x0F);
msleep(300);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x27, temp_REG27);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x26, 0xF6);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x27, &temp);
pr_info("%s: 0x27 : %02x\n", __func__,temp);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x26, &temp);
pr_info("%s: 0x26 : %02x\n", __func__,temp);
/* restore monout avgvbat factor value */
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x40, v_40);
mutex_unlock(&fuelgauge->fg_lock);
}
static void s2mu005_init_regs(struct s2mu005_fuelgauge_data *fuelgauge)
{
u8 temp = 0;
pr_info("%s: s2mu005 fuelgauge initialize\n", __func__);
/* From A01 IFPMIC revision 0x27[3:0] only is writable
* so 0x27[6:4] cannot be written and it will return I2C verification fail issue */
if (fuelgauge->revision < 0x0A) {
/* Reduce top-off current difference between
* Power on charging and Power off charging
*/
s2mu005_read_reg_byte(fuelgauge->i2c, 0x27, &temp);
temp |= 0x10;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x27, temp);
}
if (fuelgauge->revision < 2) {
/* Sampling time set 500ms */
s2mu005_read_reg_byte(fuelgauge->i2c, 0x45, &temp);
temp &= 0x3F;
temp |= 0x0;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x45, temp);
}
if (fuelgauge->revision >= 3) {
s2mu005_read_reg_byte(fuelgauge->i2c, 0x26, &temp);
temp &= 0xFE;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x26, temp);
}
s2mu005_read_reg_byte(fuelgauge->i2c, 0x53, &temp);
fuelgauge->reg_OTP_53 = temp;
s2mu005_read_reg_byte(fuelgauge->i2c, 0x52, &temp);
fuelgauge->reg_OTP_52 = temp;
}
static void s2mu005_alert_init(struct s2mu005_fuelgauge_data *fuelgauge)
{
u8 data[2];
/* VBAT Threshold setting: 3.55V */
data[0] = 0x00 & 0x0f;
/* SOC Threshold setting */
data[0] = data[0] | (fuelgauge->pdata->fuel_alert_soc << 4);
data[1] = 0x00;
s2mu005_write_reg(fuelgauge->i2c, S2MU005_REG_IRQ_LVL, data);
}
static bool s2mu005_check_status(struct i2c_client *client)
{
u8 data[2];
bool ret = false;
/* check if Smn was generated */
if (s2mu005_read_reg(client, S2MU005_REG_STATUS, data) < 0)
return ret;
dev_dbg(&client->dev, "%s: status to (%02x%02x)\n",
__func__, data[1], data[0]);
if (data[1] & (0x1 << 1))
return true;
else
return false;
}
static int s2mu005_set_temperature(struct s2mu005_fuelgauge_data *fuelgauge,
int temperature)
{
/*
* s5mu005 include temperature sensor so,
* do not need to set temperature value.
*/
return temperature;
}
static int s2mu005_get_temperature(struct s2mu005_fuelgauge_data *fuelgauge)
{
u8 data[2];
u16 compliment;
int temperature = 0;
/*
* use monitor regiser.
* monitor register default setting is temperature
*/
mutex_lock(&fuelgauge->fg_lock);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, S2MU005_REG_MONOUT_SEL, 0x10);
if (s2mu005_read_reg(fuelgauge->i2c, S2MU005_REG_MONOUT, data) < 0)
goto err;
pr_info("%s temp data = 0x%x 0x%x\n", __func__, data[0], data[1]);
mutex_unlock(&fuelgauge->fg_lock);
compliment = (data[1] << 8) | (data[0]);
/* data[] store 2's compliment format number */
if (compliment & (0x1 << 15)) {
/* Negative */
temperature = -1 * ((~compliment & 0xFFFF) + 1);
} else {
temperature = compliment & 0x7FFF;
}
temperature = ((temperature * 100) >> 8)/10;
dev_dbg(&fuelgauge->i2c->dev, "%s: temperature (%d)\n",
__func__, temperature);
return temperature;
err:
mutex_unlock(&fuelgauge->fg_lock);
return -ERANGE;
}
static int s2mu005_get_rawsoc(struct s2mu005_fuelgauge_data *fuelgauge)
{
u8 data[2], check_data[2];
u16 compliment;
int rsoc, i;
u8 por_state = 0;
u8 temp = 0;
u8 reg = S2MU005_REG_RSOC;
u8 reg_OTP_52 = 0, reg_OTP_53 = 0;
int fg_reset = 0;
bool charging_enabled = false;
union power_supply_propval value;
int force_power_off_voltage = 0;
int rbat = 0;
int float_voltage = 0;
int avg_current = 0, avg_vbat = 0, vbat = 0, curr = 0, avg_monout_vbat = 0;
int ocv_pwroff = 0, ocv_100 = 0, ocv_pwr_voltagemode = 0;
int target_soc = 0, soc_100 = 0;
//bkj - rempcap logging
int rsoc1;
u8 fg_mode_reg = 0;
s2mu005_read_reg_byte(fuelgauge->i2c, 0x1F, &por_state);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x53, &reg_OTP_53);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x52, &reg_OTP_52);
dev_err(&fuelgauge->i2c->dev, "%s: OTP 52(%02x) 53(%02x), current 52(%02x) 53(%02x), 0x1F(%02x)\n",
__func__, fuelgauge->reg_OTP_52, fuelgauge->reg_OTP_53, reg_OTP_52, reg_OTP_53, por_state);
#if defined(CONFIG_BATTERY_AGE_FORECAST)
if (((por_state != 0x00) && (fuelgauge->age_reset_status == 0)) ||
(fuelgauge->probe_done == true &&
(fuelgauge->reg_OTP_52 != reg_OTP_52 || fuelgauge->reg_OTP_53 != reg_OTP_53)))
#else
if ((por_state != 0x00) ||
(fuelgauge->probe_done == true &&
(fuelgauge->reg_OTP_52 != reg_OTP_52 || fuelgauge->reg_OTP_53 != reg_OTP_53)))
#endif
{
psy_do_property("s2mu005-charger", get, POWER_SUPPLY_PROP_CHARGING_ENABLED, value);
charging_enabled = value.intval;
value.intval = SEC_BAT_CHG_MODE_CHARGING_OFF;
psy_do_property("s2mu005-charger", set, POWER_SUPPLY_PROP_CHARGING_ENABLED, value);
if (fuelgauge->reg_OTP_52 != reg_OTP_52 || fuelgauge->reg_OTP_53 != reg_OTP_53) {
psy_do_property("s2mu005-charger", set, POWER_SUPPLY_EXT_PROP_FUELGAUGE_RESET, value);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x1F, 0x40);
msleep(50);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x1F, 0x01);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x53, &reg_OTP_53);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x52, &reg_OTP_52);
dev_err(&fuelgauge->i2c->dev, "1st reset after %s: OTP 52(%02x) 53(%02x) current 52(%02x) 53(%02x)\n",
__func__, fuelgauge->reg_OTP_52, fuelgauge->reg_OTP_53, reg_OTP_52, reg_OTP_53);
if (fuelgauge->reg_OTP_52 != reg_OTP_52 || fuelgauge->reg_OTP_53 != reg_OTP_53) {
psy_do_property("s2mu005-charger", set, POWER_SUPPLY_EXT_PROP_FUELGAUGE_RESET, value);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x1F, 0x40);
msleep(50);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x1F, 0x01);
dev_err(&fuelgauge->i2c->dev, "%s : 2nd reset\n", __func__);
}
}
dev_info(&fuelgauge->i2c->dev, "%s: FG reset\n", __func__);
s2mu005_reset_fg(fuelgauge);
por_state = 0x00;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x1F, por_state);
fg_reset = 1;
}
mutex_lock(&fuelgauge->fg_lock);
if (fuelgauge->revision >= 3) {
s2mu005_read_reg_byte(fuelgauge->i2c, 0x26, &temp);
if ((temp & 0x01) == 0x01) {
temp &= 0xFE;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x26, temp);
}
}
if (fuelgauge->revision >= 2)
reg = S2MU005_REG_RSOC;
else {
if (fuelgauge->mode == CURRENT_MODE)
reg = S2MU005_REG_RSOC;
else {
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x0C, 0x03);
reg = S2MU005_REG_MONOUT;
}
}
for (i = 0; i < 50; i++) {
if (s2mu005_read_reg(fuelgauge->i2c, reg, data) < 0)
goto err;
if (s2mu005_read_reg(fuelgauge->i2c, reg, check_data) < 0)
goto err;
dev_dbg(&fuelgauge->i2c->dev, "[DEBUG]%s: data0 (%d) data1 (%d)\n", __func__, data[0], data[1]);
if ((data[0] == check_data[0]) && (data[1] == check_data[1]))
break;
}
mutex_unlock(&fuelgauge->fg_lock);
if (fg_reset) {
psy_do_property("s2mu005-charger", set, POWER_SUPPLY_PROP_CHARGE_ENABLED, value);
if (charging_enabled) {
value.intval = SEC_BAT_CHG_MODE_CHARGING;
psy_do_property("s2mu005-charger", set, POWER_SUPPLY_PROP_CHARGING_ENABLED, value);
}
}
compliment = (data[1] << 8) | (data[0]);
/* data[] store 2's compliment format number */
if (compliment & (0x1 << 15)) {
/* Negative */
rsoc = ((~compliment) & 0xFFFF) + 1;
rsoc = (rsoc * (-10000)) / (0x1 << 14);
} else {
rsoc = compliment & 0x7FFF;
rsoc = ((rsoc * 10000) / (0x1 << 14));
}
if (fg_reset)
fuelgauge->diff_soc = fuelgauge->info.soc - rsoc;
dev_info(&fuelgauge->i2c->dev, "%s: current_soc (%d), previous soc (%d), diff (%d), FG_mode(%d)\n",
__func__, rsoc, fuelgauge->info.soc, fuelgauge->diff_soc, fuelgauge->mode);
fuelgauge->info.soc = rsoc + fuelgauge->diff_soc;
avg_current = s2mu005_get_avgcurrent(fuelgauge);
avg_vbat = s2mu005_get_avgvbat(fuelgauge);
vbat = s2mu005_get_vbat(fuelgauge);
curr = s2mu005_get_current(fuelgauge);
avg_monout_vbat = s2mu005_get_monout_avgvbat(fuelgauge);
ocv_pwr_voltagemode = avg_monout_vbat - avg_current * 30 / 100;
if (avg_current < (-500)) {
rbat = 10;
} else {
rbat = 30;
}
ocv_pwr_voltagemode = avg_monout_vbat - avg_current * rbat / 100;
if (fuelgauge->revision >= 2) {
if ((fuelgauge->info.soc <= 300) ||
((ocv_pwr_voltagemode <= 3600) && (avg_current < 10))) {
if (fuelgauge->mode == CURRENT_MODE) { /* switch to VOLTAGE_MODE */
fuelgauge->mode = LOW_SOC_VOLTAGE_MODE;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x4A, 0xFF);
dev_info(&fuelgauge->i2c->dev, "%s: FG is in low soc voltage mode\n", __func__);
}
} else if ((fuelgauge->info.soc > 325) && ((ocv_pwr_voltagemode > 3650) ||
(avg_current >= 10))) {
if (fuelgauge->mode == LOW_SOC_VOLTAGE_MODE) {
fuelgauge->mode = CURRENT_MODE;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x4A, 0x10);
dev_info(&fuelgauge->i2c->dev, "%s: FG is in current mode\n", __func__);
}
}
psy_do_property("s2mu005-charger", get, POWER_SUPPLY_PROP_VOLTAGE_MAX, value);
float_voltage = value.intval;
float_voltage = (float_voltage * 996) / 1000;
psy_do_property("battery", get, POWER_SUPPLY_PROP_CAPACITY, value);
dev_info(&fuelgauge->i2c->dev, "%s: UI SOC = %d\n", __func__, value.intval);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x4A, &fg_mode_reg);
dev_info(&fuelgauge->i2c->dev,
"%s: fuelgauge->is_charging = %d, avg_vbat = %d, float_voltage = %d, avg_current = %d, 0x4A = 0x%02x\n",
__func__, fuelgauge->is_charging, avg_vbat, float_voltage, avg_current, fg_mode_reg);
#if defined(CONFIG_S2MU005_VOLT_MODE_TUNING)
if(fuelgauge->is_charging == true) {
if ((value.intval >= 98) ||
((fuelgauge->is_charging == true) &&
(avg_vbat > float_voltage) && (avg_current < check_current_level(fuelgauge)))) {
if (fuelgauge->mode == CURRENT_MODE) { /* switch to VOLTAGE_MODE */
fuelgauge->mode = HIGH_SOC_VOLTAGE_MODE;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x4A, 0xFF);
dev_info(&fuelgauge->i2c->dev, "%s: FG is in high soc voltage mode\n", __func__);
}
}
} else if (avg_current < -50 || (avg_current >= check_current_level(fuelgauge) + 50)) {
#else
if ((value.intval >= 98) ||
((fuelgauge->is_charging == true) &&
(avg_vbat > float_voltage) && (avg_current < 500))) {
if (fuelgauge->mode == CURRENT_MODE) { /* switch to VOLTAGE_MODE */
fuelgauge->mode = HIGH_SOC_VOLTAGE_MODE;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x4A, 0xFF);
dev_info(&fuelgauge->i2c->dev, "%s: FG is in high soc voltage mode\n", __func__);
}
}
else if (((avg_current > 550) && (value.intval < 97)) ||
((avg_current < 10) && (value.intval < 97))) {
#endif
if (fuelgauge->mode == HIGH_SOC_VOLTAGE_MODE) {
fuelgauge->mode = CURRENT_MODE;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x4A, 0x10);
dev_info(&fuelgauge->i2c->dev, "%s: FG is in current mode\n", __func__);
}
}
}
else {
if (!fuelgauge->is_charging && fuelgauge->info.soc <= 300) {
if (fuelgauge->mode == CURRENT_MODE) { /* switch to VOLTAGE_MODE */
fuelgauge->mode = LOW_SOC_VOLTAGE_MODE;
value.intval = fuelgauge->mode;
psy_do_property("s2mu005-charger", set, POWER_SUPPLY_PROP_SCOPE, value);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x26, &temp);
temp |= 0x01;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x26, temp);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x4B, &temp);
temp |= 0x02;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x4B, temp);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x45, &temp);
temp &= 0xF0;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x45, temp);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x44, 0x00);
fuelgauge->vm_soc = fuelgauge->info.soc;
dev_info(&fuelgauge->i2c->dev, "%s: FG is in low soc voltage mode: %d\n",
__func__, fuelgauge->vm_soc);
}
} else if (fuelgauge->is_charging && fuelgauge->info.soc >= fuelgauge->vm_soc) {
if (fuelgauge->mode == LOW_SOC_VOLTAGE_MODE) {
fuelgauge->mode = CURRENT_MODE;
value.intval = fuelgauge->mode;
psy_do_property("s2mu005-charger", set, POWER_SUPPLY_PROP_SCOPE, value);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x4B, &temp);
temp &= ~0x02;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x4B, temp);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x26, &temp);
temp &= ~0x01;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x26, temp);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x45, &temp);
temp &= 0xF0;
temp |= 0x07;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x45, temp);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x44, 0xCC);
dev_info(&fuelgauge->i2c->dev, "%s: FG is in current mode\n", __func__);
}
}
}
psy_do_property("battery", get, POWER_SUPPLY_PROP_TEMP, value);
fuelgauge->temperature = value.intval;
if (fuelgauge->temperature <= (-150)) {
force_power_off_voltage = 3550;
} else {
force_power_off_voltage = 3300;
}
dev_info(&fuelgauge->i2c->dev,
"%s: Fuelgauge Mode: %d, Force power-off voltage: %d\n",
__func__, fuelgauge->mode, force_power_off_voltage);
if (((avg_current < (-17)) && (curr < (-17))) &&
((avg_monout_vbat - avg_current * rbat / 100) <= 3500) && (fuelgauge->info.soc > 100)) {
ocv_pwroff = 3300;
target_soc = s2mu005_get_soc_from_ocv(fuelgauge, ocv_pwroff);
pr_info("%s : F/G reset Start - current flunctuation\n", __func__);
WA_0_issue_at_init1(fuelgauge, ocv_pwroff);
} else if (avg_current < (-60) && avg_vbat <= force_power_off_voltage) {
if (fuelgauge->mode == CURRENT_MODE) {
if (abs(avg_vbat - vbat) <= 20 && abs(avg_current - curr) <= 30) {
ocv_pwroff = avg_vbat - avg_current * 15 / 100;
target_soc = s2mu005_get_soc_from_ocv(fuelgauge, ocv_pwroff);
if (abs(target_soc - fuelgauge->info.soc) > 300) {
pr_info("%s : F/G reset Start - current mode: %d\n",
__func__, target_soc);
WA_0_issue_at_init1(fuelgauge, ocv_pwroff);
}
}
} else {
if (abs(avg_vbat - vbat) <= 20) {
ocv_pwroff = avg_vbat;
target_soc = s2mu005_get_soc_from_ocv(fuelgauge, ocv_pwroff);
if (abs(target_soc - fuelgauge->info.soc) > 300) {
pr_info("%s : F/G reset Start\n", __func__);
WA_0_issue_at_init1(fuelgauge, ocv_pwroff);
}
}
}
}
if (fuelgauge->revision < 2) {
/* -------------- for enable/disable Current Sensing -------------- */
if (fuelgauge->mode == CURRENT_MODE) {
ocv_100 = avg_vbat - avg_current * 15 / 100;
soc_100 = s2mu005_get_soc_from_ocv(fuelgauge, ocv_100);
if (fuelgauge->is_charging && avg_current > 0 && fuelgauge->info.soc >= 10000 && fuelgauge->cc_on == true) {
fuelgauge->cc_on = false;
s2mu005_read_reg_byte(fuelgauge->i2c, 0x45, &temp);
temp &= 0xF0;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x45, temp);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x44, 0x00);
dev_dbg(&fuelgauge->i2c->dev, "[DEBUG]%s: stop CC, ocv_100: (%d), soc_100: (%d)\n", __func__, ocv_100, soc_100);
} else if ((!fuelgauge->is_charging || (fuelgauge->is_charging && avg_current < 0))
&& (soc_100 < 10000) && fuelgauge->cc_on == false) {
fuelgauge->cc_on = true;
s2mu005_read_reg_byte(fuelgauge->i2c, 0x45, &temp);
temp &= 0xF0;
temp |= 0x07;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x45, temp);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x44, 0xCC);
dev_dbg(&fuelgauge->i2c->dev, "[DEBUG]%s: start CC, ocv_100: (%d), soc_100: (%d)\n", __func__, ocv_100, soc_100);
}
}
/* -------------- for enable/disable Current Sensing -------------- */
/* For debugging */
s2mu005_read_reg_byte(fuelgauge->i2c, 0x44, &temp);
pr_info("%s: Reg 0x44 : 0x%x\n", __func__, temp);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x45, &temp);
pr_info("%s: Reg 0x45 : 0x%x\n", __func__, temp);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x26, &temp);
pr_info("%s: Reg 0x26 : 0x%x\n", __func__, temp);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x4B, &temp);
pr_info("%s: Reg 0x4B : 0x%x\n", __func__, temp);
//bkj - rempcap logging
/* ------ read remaining capacity -------- */
if (fuelgauge->mode == CURRENT_MODE)
{
mutex_lock(&fuelgauge->fg_lock);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x0C, &temp);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x0C, 0x2A);
for (i = 0; i < 50; i++) {
if (s2mu005_read_reg(fuelgauge->i2c, S2MU005_REG_MONOUT, data) < 0)
goto err;
if (s2mu005_read_reg(fuelgauge->i2c, S2MU005_REG_MONOUT, check_data) < 0)
goto err;
dev_dbg(&fuelgauge->i2c->dev, "[DEBUG]%s: remaining capacity data0 (%d) data1 (%d)\n", __func__, data[0], data[1]);
if ((data[0] == check_data[0]) && (data[1] == check_data[1]))
break;
}
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x0C, temp);
mutex_unlock(&fuelgauge->fg_lock);
compliment = (data[1] << 8) | (data[0]);
/* data[] store 2's compliment format number */
if (compliment & (0x1 << 15)) {
/* Negative */
rsoc1 = ((~compliment) & 0xFFFF) + 1;
rsoc1 = (rsoc1 * (-1)) / (0x1 << 1);
} else {
rsoc1 = compliment & 0x7FFF;
rsoc1 = ((rsoc1 * 1) / (0x1 << 1));
}
pr_info("%s: remcap (%d)\n", __func__, rsoc1);
}
/* ------ read remaining capacity -------- */
}
/* S2MU005 FG debug */
if (fuelgauge->pdata->fg_log_enable)
s2mu005_fg_test_read(fuelgauge->i2c);
return min(fuelgauge->info.soc, 10000);
err:
mutex_unlock(&fuelgauge->fg_lock);
return -EINVAL;
}
static int s2mu005_get_current(struct s2mu005_fuelgauge_data *fuelgauge)
{
u8 data[2];
u16 compliment;
int curr = 0;
if (s2mu005_read_reg(fuelgauge->i2c, S2MU005_REG_RCUR_CC, data) < 0)
return -EINVAL;
compliment = (data[1] << 8) | (data[0]);
dev_dbg(&fuelgauge->i2c->dev, "%s: rCUR_CC(0x%4x)\n", __func__, compliment);
if (compliment & (0x1 << 15)) { /* Charging */
curr = ((~compliment) & 0xFFFF) + 1;
curr = (curr * 1000) >> 12;
} else { /* dischaging */
curr = compliment & 0x7FFF;
curr = (curr * (-1000)) >> 12;
}
dev_info(&fuelgauge->i2c->dev, "%s: current (%d)mA\n", __func__, curr);
return curr;
}
#define TABLE_SIZE 22
static int s2mu005_get_ocv(struct s2mu005_fuelgauge_data *fuelgauge)
{
/* 22 values of mapping table for EVT1*/
int *soc_arr;
int *ocv_arr;
int soc = fuelgauge->info.soc;
int ocv = 0;
int high_index = TABLE_SIZE - 1;
int low_index = 0;
int mid_index = 0;
#if defined(CONFIG_BATTERY_AGE_FORECAST)
soc_arr = fuelgauge->age_data_info[fuelgauge->fg_age_step].soc_arr_val;
ocv_arr = fuelgauge->age_data_info[fuelgauge->fg_age_step].ocv_arr_val;
#else
if (fuelgauge->revision >= 2) {
soc_arr = fuelgauge->info.soc_arr_evt2;
ocv_arr = fuelgauge->info.ocv_arr_evt2;
} else {
soc_arr = fuelgauge->info.soc_arr_evt1;
ocv_arr = fuelgauge->info.ocv_arr_evt1;
}
#endif
dev_err(&fuelgauge->i2c->dev,
"%s: soc (%d) soc_arr[TABLE_SIZE-1] (%d) ocv_arr[TABLE_SIZE-1) (%d)\n",
__func__, soc, soc_arr[TABLE_SIZE-1], ocv_arr[TABLE_SIZE-1]);
if (soc <= soc_arr[TABLE_SIZE - 1]) {
ocv = ocv_arr[TABLE_SIZE - 1];
goto ocv_soc_mapping;
} else if (soc >= soc_arr[0]) {
ocv = ocv_arr[0];
goto ocv_soc_mapping;
}
while (low_index <= high_index) {
mid_index = (low_index + high_index) >> 1;
if (soc_arr[mid_index] > soc)
low_index = mid_index + 1;
else if (soc_arr[mid_index] < soc)
high_index = mid_index - 1;
else {
ocv = ocv_arr[mid_index];
goto ocv_soc_mapping;
}
}
ocv = ocv_arr[high_index];
ocv += ((ocv_arr[low_index] - ocv_arr[high_index]) *
(soc - soc_arr[high_index])) /
(soc_arr[low_index] - soc_arr[high_index]);
ocv_soc_mapping:
dev_info(&fuelgauge->i2c->dev, "%s: soc (%d), ocv (%d)\n", __func__, soc, ocv);
return ocv;
}
static int s2mu005_get_avgcurrent(struct s2mu005_fuelgauge_data *fuelgauge)
{
u8 data[2];
u16 compliment;
int curr = 0;
mutex_lock(&fuelgauge->fg_lock);
if (fuelgauge->revision >= 0x0A) {
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, S2MU005_REG_MONOUT_SEL, 0x17);
} else {
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, S2MU005_REG_MONOUT_SEL, 0x26);
}
if (s2mu005_read_reg(fuelgauge->i2c, S2MU005_REG_MONOUT, data) < 0)
goto err;
compliment = (data[1] << 8) | (data[0]);
dev_dbg(&fuelgauge->i2c->dev, "%s: MONOUT(0x%4x)\n", __func__, compliment);
if (compliment & (0x1 << 15)) { /* Charging */
curr = ((~compliment) & 0xFFFF) + 1;
curr = (curr * 1000) >> 12;
} else { /* dischaging */
curr = compliment & 0x7FFF;
curr = (curr * (-1000)) >> 12;
}
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, S2MU005_REG_MONOUT_SEL, 0x10);
mutex_unlock(&fuelgauge->fg_lock);
dev_info(&fuelgauge->i2c->dev, "%s: avg current (%d)mA\n", __func__, curr);
dev_info(&fuelgauge->i2c->dev, "%s: SOC(%d)%%\n", __func__, fuelgauge->info.soc);
return curr;
err:
mutex_unlock(&fuelgauge->fg_lock);
return -EINVAL;
}
static int s2mu005_maintain_avgcurrent(
struct s2mu005_fuelgauge_data *fuelgauge)
{
static int cnt;
int vcell = 0;
int curr = 0;
curr = s2mu005_get_avgcurrent(fuelgauge);
vcell = s2mu005_get_vbat(fuelgauge);
if ((cnt < 10) && (curr < 0) && (fuelgauge->is_charging) &&
(vcell < 3500)) {
curr = 1;
cnt++;
dev_info(&fuelgauge->i2c->dev, "%s: vcell (%d)mV, modified avg current (%d)mA\n",
__func__, vcell, curr);
}
return curr;
}
static int s2mu005_get_vbat(struct s2mu005_fuelgauge_data *fuelgauge)
{
u8 data[2];
u32 vbat = 0;
if (s2mu005_read_reg(fuelgauge->i2c, S2MU005_REG_RVBAT, data) < 0)
return -EINVAL;
dev_dbg(&fuelgauge->i2c->dev, "%s: data0 (%d) data1 (%d)\n", __func__, data[0], data[1]);
vbat = ((data[0] + (data[1] << 8)) * 1000) >> 13;
dev_info(&fuelgauge->i2c->dev, "%s: vbat (%d)\n", __func__, vbat);
return vbat;
}
static int s2mu005_get_monout_avgvbat(struct s2mu005_fuelgauge_data *fuelgauge)
{
u8 data[2];
u16 compliment, avg_vbat;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x40, 0x08);
mutex_lock(&fuelgauge->fg_lock);
if (fuelgauge->revision >= 0x0A) {
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, S2MU005_REG_MONOUT_SEL, 0x16);
} else {
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, S2MU005_REG_MONOUT_SEL, 0x27);
}
msleep(50);
if (s2mu005_read_reg(fuelgauge->i2c, S2MU005_REG_MONOUT, data) < 0)
goto err;
compliment = (data[1] << 8) | (data[0]);
avg_vbat = (compliment * 1000) >> 12;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, S2MU005_REG_MONOUT_SEL, 0x10);
mutex_unlock(&fuelgauge->fg_lock);
dev_info(&fuelgauge->i2c->dev, "%s: avgvbat (%d)\n", __func__, avg_vbat);
return avg_vbat;
err:
mutex_unlock(&fuelgauge->fg_lock);
return -EINVAL;
}
static int s2mu005_get_avgvbat(struct s2mu005_fuelgauge_data *fuelgauge)
{
u8 data[2];
u32 new_vbat, old_vbat = 0;
int cnt;
for (cnt = 0; cnt < 5; cnt++) {
if (s2mu005_read_reg(fuelgauge->i2c, S2MU005_REG_RVBAT, data) < 0)
return -EINVAL;
new_vbat = ((data[0] + (data[1] << 8)) * 1000) >> 13;
if (cnt == 0)
old_vbat = new_vbat;
else
old_vbat = new_vbat / 2 + old_vbat / 2;
}
dev_info(&fuelgauge->i2c->dev, "%s: avgvbat (%d)\n", __func__, old_vbat);
if (fuelgauge->vbatl_mode == VBATL_MODE_SW_VALERT) {
union power_supply_propval value = {0, };
psy_do_property("battery", get, POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT, value);
pr_info("%s: swelling_mode = %d\n", __func__, value.intval);
if (((fuelgauge->temperature > (int)fuelgauge->low_temp_limit) &&
(old_vbat >= fuelgauge->sw_vbat_l_recovery_vol)) || value.intval != 0) {
fuelgauge->vbatl_mode = VBATL_MODE_SW_RECOVERY;
pr_info("%s : Recover from VBAT_L Activation\n", __func__);
}
}
return old_vbat;
}
int static s2mu005_set_adc_curroffset_In(struct s2mu005_fuelgauge_data *fuelgauge)
{
u8 data[2];
s32 coffset_old, coffset_new, coffset_old1, coffset_new1;
if (s2mu005_read_reg(fuelgauge->i2c, S2MU005_REG_COFFSET, data) < 0)
return -EINVAL;
coffset_old = data[0] + ((data[1] & 0xF) << 8);
fuelgauge->coffset_old = data[0] + (data[1] << 8);
if (coffset_old & (0x1 << 11)) {
if (coffset_old > 0x852)
coffset_new = coffset_old - 82;
else
coffset_new = 0x800;
} else {
if (coffset_old > 82)
coffset_new = coffset_old - 82;
else
coffset_new = ((~(82 - coffset_old))&0xFFF) + 1;
}
data[0] = (coffset_new & 0x0FF);
data[1] = ((coffset_new & 0xF00) >> 8) | (data[1] & 0xF0);
s2mu005_write_reg(fuelgauge->i2c, S2MU005_REG_COFFSET, data);
if (coffset_new & (0x1 << 11))
coffset_new1 = -1 * ((((~coffset_new&0xFFF)+1) * 1000) >> 13);
else
coffset_new1 = (coffset_new * 1000) >> 13;
if (coffset_old & (0x1 << 11))
coffset_old1 = -1 * ((((~coffset_old&0xFFF)+1) * 1000) >> 13);
else
coffset_old1 = (coffset_old * 1000) >> 13;
dev_info(&fuelgauge->i2c->dev,
"%s: 0x48[2]=1 -10mA :coffset_old:0x%x, coffset_new:0x%x, coffset_old1:(%d)mA, coffset_new1:(%d)mA\n",
__func__, fuelgauge->coffset_old, coffset_new,coffset_old1, coffset_new1);
return 0;
}
int static s2mu005_set_adc_curroffset_out(struct s2mu005_fuelgauge_data *fuelgauge)
{
u8 data[2];
s32 coffset_old, coffset_new, coffset_old1, coffset_new1;
if (s2mu005_read_reg(fuelgauge->i2c, S2MU005_REG_COFFSET, data) < 0)
return -EINVAL;
coffset_old = data[0] + ((data[1] & 0xF) << 8);
fuelgauge->coffset_old = data[0] + (data[1] << 8);
coffset_new = coffset_old + 82;
coffset_new = coffset_new & 0xFFF;
data[0] = (coffset_new & 0x0FF);
data[1] = ((coffset_new & 0xF00) >> 8) | (data[1] & 0xF0);
s2mu005_write_reg(fuelgauge->i2c, S2MU005_REG_COFFSET, data);
if (coffset_new & (0x1 << 11))
coffset_new1 = -1 * ((((~coffset_new&0xFFF)+1) * 1000) >> 13);
else
coffset_new1 = (coffset_new * 1000) >> 13;
if (coffset_old & (0x1 << 11))
coffset_old1 = -1 * ((((~coffset_old&0xFFF)+1) * 1000) >> 13);
else
coffset_old1 = (coffset_old * 1000) >> 13;
dev_info(&fuelgauge->i2c->dev,
"%s: 0x48[2]=0 +10mA :coffset_old:0x%x, coffset_new:0x%x, coffset_old1:(%d)mA, coffset_new1:(%d)mA\n",
__func__, fuelgauge->coffset_old, coffset_new,coffset_old1, coffset_new1);
return 0;
}
/* capacity is 0.1% unit */
static void s2mu005_fg_get_scaled_capacity(
struct s2mu005_fuelgauge_data *fuelgauge,
union power_supply_propval *val)
{
int rawsoc = val->intval;
val->intval = (val->intval < fuelgauge->pdata->capacity_min) ?
0 : ((val->intval - fuelgauge->pdata->capacity_min) * 1000 /
(fuelgauge->capacity_max - fuelgauge->pdata->capacity_min));
dev_info(&fuelgauge->i2c->dev,
"%s: capacity_max(%d) scaled capacity(%d.%d), raw_soc(%d.%d)\n",
__func__, fuelgauge->capacity_max,
val->intval/10, val->intval%10, rawsoc/10, rawsoc%10);
}
/* capacity is integer */
static void s2mu005_fg_get_atomic_capacity(
struct s2mu005_fuelgauge_data *fuelgauge,
union power_supply_propval *val)
{
if (fuelgauge->pdata->capacity_calculation_type &
SEC_FUELGAUGE_CAPACITY_TYPE_ATOMIC) {
if (fuelgauge->capacity_old < val->intval)
val->intval = fuelgauge->capacity_old + 1;
else if (fuelgauge->capacity_old > val->intval)
val->intval = fuelgauge->capacity_old - 1;
}
/* keep SOC stable in abnormal status */
if (fuelgauge->pdata->capacity_calculation_type &
SEC_FUELGAUGE_CAPACITY_TYPE_SKIP_ABNORMAL) {
if (!fuelgauge->is_charging &&
fuelgauge->capacity_old < val->intval) {
dev_err(&fuelgauge->i2c->dev,
"%s: capacity (old %d : new %d)\n",
__func__, fuelgauge->capacity_old, val->intval);
val->intval = fuelgauge->capacity_old;
}
}
/* updated old capacity */
fuelgauge->capacity_old = val->intval;
}
static int s2mu005_fg_check_capacity_max(
struct s2mu005_fuelgauge_data *fuelgauge, int capacity_max)
{
int new_capacity_max = capacity_max;
if (new_capacity_max < (fuelgauge->pdata->capacity_max -
fuelgauge->pdata->capacity_max_margin - 10)) {
new_capacity_max =
(fuelgauge->pdata->capacity_max -
fuelgauge->pdata->capacity_max_margin);
dev_info(&fuelgauge->i2c->dev, "%s: set capacity max(%d --> %d)\n",
__func__, capacity_max, new_capacity_max);
} else if (new_capacity_max > (fuelgauge->pdata->capacity_max +
fuelgauge->pdata->capacity_max_margin)) {
new_capacity_max =
(fuelgauge->pdata->capacity_max +
fuelgauge->pdata->capacity_max_margin);
dev_info(&fuelgauge->i2c->dev, "%s: set capacity max(%d --> %d)\n",
__func__, capacity_max, new_capacity_max);
}
return new_capacity_max;
}
static int s2mu005_fg_calculate_dynamic_scale(
struct s2mu005_fuelgauge_data *fuelgauge, int capacity)
{
union power_supply_propval raw_soc_val;
raw_soc_val.intval = s2mu005_get_rawsoc(fuelgauge) / 10;
if (raw_soc_val.intval <
fuelgauge->pdata->capacity_max -
fuelgauge->pdata->capacity_max_margin) {
fuelgauge->capacity_max =
fuelgauge->pdata->capacity_max -
fuelgauge->pdata->capacity_max_margin;
dev_dbg(&fuelgauge->i2c->dev, "%s: capacity_max (%d)",
__func__, fuelgauge->capacity_max);
} else {
fuelgauge->capacity_max =
(raw_soc_val.intval >
fuelgauge->pdata->capacity_max +
fuelgauge->pdata->capacity_max_margin) ?
(fuelgauge->pdata->capacity_max +
fuelgauge->pdata->capacity_max_margin) :
raw_soc_val.intval;
dev_dbg(&fuelgauge->i2c->dev, "%s: raw soc (%d)",
__func__, fuelgauge->capacity_max);
}
if (capacity != 100) {
fuelgauge->capacity_max = s2mu005_fg_check_capacity_max(
fuelgauge, (fuelgauge->capacity_max * 100 / (capacity + 1)));
} else {
fuelgauge->capacity_max =
(fuelgauge->capacity_max * 99 / 100);
}
/* update capacity_old for sec_fg_get_atomic_capacity algorithm */
fuelgauge->capacity_old = capacity;
dev_info(&fuelgauge->i2c->dev, "%s: %d is used for capacity_max\n",
__func__, fuelgauge->capacity_max);
return fuelgauge->capacity_max;
}
bool s2mu005_fuelgauge_fuelalert_init(struct i2c_client *client, int soc)
{
struct s2mu005_fuelgauge_data *fuelgauge = i2c_get_clientdata(client);
u8 data[2];
fuelgauge->is_fuel_alerted = false;
/* 1. Set s2mu005 alert configuration. */
s2mu005_alert_init(fuelgauge);
if (s2mu005_read_reg(client, S2MU005_REG_IRQ, data) < 0)
return -1;
/*Enable VBAT, SOC */
data[1] &= 0xfc;
/*Disable IDLE_ST, INIT)ST */
data[1] |= 0x0c;
s2mu005_write_reg(client, S2MU005_REG_IRQ, data);
dev_dbg(&client->dev, "%s: irq_reg(%02x%02x) irq(%d)\n",
__func__, data[1], data[0], fuelgauge->pdata->fg_irq);
return true;
}
bool s2mu005_fuelgauge_is_fuelalerted(struct s2mu005_fuelgauge_data *fuelgauge)
{
return s2mu005_check_status(fuelgauge->i2c);
}
bool s2mu005_hal_fg_fuelalert_process(void *irq_data, bool is_fuel_alerted)
{
struct s2mu005_fuelgauge_data *fuelgauge = irq_data;
int ret;
ret = i2c_smbus_write_byte_data(fuelgauge->i2c, S2MU005_REG_IRQ, 0x00);
if (ret < 0)
dev_err(&fuelgauge->i2c->dev, "%s: Error(%d)\n", __func__, ret);
return ret;
}
bool s2mu005_hal_fg_full_charged(struct i2c_client *client)
{
return true;
}
static void s2mu005_fg_reset_capacity_by_jig_connection(struct s2mu005_fuelgauge_data *fuelgauge)
{
u8 data = 0;
s2mu005_read_reg_byte(fuelgauge->i2c, 0x48, &data);
data |= 0x01; //set 0x48[0]=1 for next boot up initializing fuelgague
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x48, data);
pr_info("%s: set 0x48[0] (0x%x)\n", __func__, data);
}
#if defined(CONFIG_BATTERY_AGE_FORECAST)
static int s2mu005_fg_aging_check(
struct s2mu005_fuelgauge_data *fuelgauge, int step)
{
u8 batcap0 = 0, batcap1 = 0, batcap2 = 0, batcap3 = 0;
u8 por_state = 0;
union power_supply_propval value;
int charging_enabled = false;
fuelgauge->fg_age_step = step;
s2mu005_read_reg_byte(fuelgauge->i2c, 0x0F, &batcap0);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x0E, &batcap1);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x11, &batcap2);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x10, &batcap3);
pr_info("%s: [Long life] orig. batcap : %02x, %02x, %02x, %02x, fg_age_step data : %02x, %02x, %02x, %02x\n",
__func__, batcap0, batcap1, batcap2, batcap3,
fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[0],
fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[1],
fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[2],
fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[3]);
if ((batcap0 != fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[0]) ||
(batcap1 != fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[1]) ||
(batcap2 != fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[2]) ||
(batcap3 != fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[3])) {
pr_info("%s: [Long life] reset gauge for age forcast, step[%d]\n", __func__, fuelgauge->fg_age_step);
fuelgauge->age_reset_status = 1;
por_state |= 0x10;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x1F, por_state);
/* check charging enable */
psy_do_property("s2mu005-charger", get, POWER_SUPPLY_PROP_CHARGING_ENABLED, value);
charging_enabled = value.intval;
if (charging_enabled == true) {
pr_info("%s: [Long life] disable charger for reset gauge age forcast\n", __func__);
value.intval = SEC_BAT_CHG_MODE_CHARGING_OFF;
psy_do_property("s2mu005-charger", set, POWER_SUPPLY_PROP_CHARGING_ENABLED, value);
}
s2mu005_reset_fg(fuelgauge);
if (charging_enabled == true) {
psy_do_property("battery", get, POWER_SUPPLY_PROP_STATUS, value);
charging_enabled = value.intval;
if (charging_enabled == 1) { /* POWER_SUPPLY_STATUS_CHARGING 1 */
pr_info("%s: [Long life] enable charger for reset gauge age forcast\n", __func__);
value.intval = SEC_BAT_CHG_MODE_CHARGING;
psy_do_property("s2mu005-charger", set, POWER_SUPPLY_PROP_CHARGING_ENABLED, value);
}
}
por_state &= ~0x10;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x1F, por_state);
fuelgauge->age_reset_status = 0;
return 1;
}
return 0;
}
#endif
static int s2mu005_fg_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
struct s2mu005_fuelgauge_data *fuelgauge = power_supply_get_drvdata(psy);
u8 temp = 0;
union power_supply_propval ui_soc_val;
union power_supply_propval cable_type_val;
switch (psp) {
case POWER_SUPPLY_PROP_STATUS:
case POWER_SUPPLY_PROP_CHARGE_FULL:
return -ENODATA;
case POWER_SUPPLY_PROP_CHARGE_COUNTER:
val->intval = fuelgauge->pdata->capacity_full * fuelgauge->raw_capacity;
break;
case POWER_SUPPLY_PROP_ENERGY_NOW:
switch (val->intval) {
case SEC_BATTERY_CAPACITY_DESIGNED:
val->intval = fuelgauge->pdata->capacity_full;
break;
case SEC_BATTERY_CAPACITY_ABSOLUTE:
val->intval = 0;
break;
case SEC_BATTERY_CAPACITY_TEMPERARY:
val->intval = 0;
break;
case SEC_BATTERY_CAPACITY_CURRENT:
val->intval = 0;
break;
case SEC_BATTERY_CAPACITY_AGEDCELL:
val->intval = 0;
break;
case SEC_BATTERY_CAPACITY_CYCLE:
val->intval = 0;
break;
case SEC_BATTERY_CAPACITY_FULL:
val->intval = fuelgauge->pdata->capacity_full;
break;
}
break;
/* Cell voltage (VCELL, mV) */
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
val->intval = s2mu005_get_vbat(fuelgauge);
break;
/* Additional Voltage Information (mV) */
case POWER_SUPPLY_PROP_VOLTAGE_AVG:
switch (val->intval) {
case SEC_BATTERY_VOLTAGE_AVERAGE:
val->intval = s2mu005_get_avgvbat(fuelgauge);
break;
case SEC_BATTERY_VOLTAGE_OCV:
val->intval = s2mu005_get_ocv(fuelgauge);
break;
}
break;
/* Current (mA) */
case POWER_SUPPLY_PROP_CURRENT_NOW:
if (val->intval == SEC_BATTERY_CURRENT_UA)
val->intval = s2mu005_get_current(fuelgauge) * 1000;
else
val->intval = s2mu005_get_current(fuelgauge);
break;
/* Average Current (mA) */
case POWER_SUPPLY_PROP_CURRENT_AVG:
if (val->intval == SEC_BATTERY_CURRENT_UA) {
val->intval = s2mu005_maintain_avgcurrent(fuelgauge) * 1000;
} else {
val->intval = s2mu005_maintain_avgcurrent(fuelgauge);
}
break;
case POWER_SUPPLY_PROP_CAPACITY:
if (val->intval == SEC_FUELGAUGE_CAPACITY_TYPE_RAW) {
val->intval = s2mu005_get_rawsoc(fuelgauge);
} else if (val->intval == SEC_FUELGAUGE_CAPACITY_TYPE_DYNAMIC_SCALE) {
val->intval = fuelgauge->raw_capacity;
} else {
val->intval = s2mu005_get_rawsoc(fuelgauge) / 10;
if (fuelgauge->pdata->capacity_calculation_type &
(SEC_FUELGAUGE_CAPACITY_TYPE_SCALE |
SEC_FUELGAUGE_CAPACITY_TYPE_DYNAMIC_SCALE))
s2mu005_fg_get_scaled_capacity(fuelgauge, val);
/* capacity should be between 0% and 100%
* (0.1% degree)
*/
if (val->intval > 1000)
val->intval = 1000;
if (val->intval < 0)
val->intval = 0;
fuelgauge->raw_capacity = val->intval;
/* get only integer part */
val->intval /= 10;
if (!fuelgauge->is_charging &&
fuelgauge->vbatl_mode == VBATL_MODE_SW_VALERT && !lpcharge) {
pr_info("%s : VBAT_L (low voltage). Decrease SOC\n", __func__);
val->intval = 0;
} else if ((fuelgauge->vbatl_mode == VBATL_MODE_SW_RECOVERY) &&
(val->intval == fuelgauge->capacity_old)) {
fuelgauge->vbatl_mode = VBATL_MODE_NORMAL;
}
/* change adc current offset when 100% for EVT1 */
if (fuelgauge->revision < 2) {
psy_do_property("battery", get, POWER_SUPPLY_PROP_CAPACITY, ui_soc_val);
psy_do_property("battery", get, POWER_SUPPLY_PROP_ONLINE, cable_type_val);
dev_info(&fuelgauge->i2c->dev, "%s: UI SOC = %d, cable_type = %d\n",
__func__, ui_soc_val.intval, cable_type_val.intval);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x48, &temp);
if ((fuelgauge->is_charging == true) && (ui_soc_val.intval >= 100) && !(temp & 0x04)) {
if (s2mu005_set_adc_curroffset_In(fuelgauge) < 0)
return -EINVAL;
temp |= 0x04;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x48, temp); /* 0x48[2]=1 : adc_offset_on */
dev_info(&fuelgauge->i2c->dev, "%s: change coffset to -10mA. 0x48:0x%x\n", __func__, temp);
} else if (((cable_type_val.intval == SEC_BATTERY_CABLE_NONE) ||
(cable_type_val.intval == POWER_SUPPLY_TYPE_UNKNOWN) ||
(cable_type_val.intval == POWER_SUPPLY_TYPE_OTG)) &&
(temp & 0x04)) {
if (s2mu005_set_adc_curroffset_out(fuelgauge) < 0)
return -EINVAL;
temp &= ~0x04;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x48, temp); /* 0x48[2]=0 : adc_offset_off */
dev_info(&fuelgauge->i2c->dev, "%s: change coffset to +10mA. 0x48:0x%x\n", __func__, temp);
}
}
/* check whether doing the wake_unlock */
if ((val->intval > fuelgauge->pdata->fuel_alert_soc) &&
fuelgauge->is_fuel_alerted) {
wake_unlock(&fuelgauge->fuel_alert_wake_lock);
s2mu005_fuelgauge_fuelalert_init(fuelgauge->i2c,
fuelgauge->pdata->fuel_alert_soc);
}
/* (Only for atomic capacity)
* In initial time, capacity_old is 0.
* and in resume from sleep,
* capacity_old is too different from actual soc.
* should update capacity_old
* by val->intval in booting or resume.
*/
if ((fuelgauge->initial_update_of_soc) &&
(fuelgauge->vbatl_mode != VBATL_MODE_SW_VALERT)) {
/* updated old capacity */
fuelgauge->capacity_old = val->intval;
fuelgauge->initial_update_of_soc = false;
break;
}
if (fuelgauge->sleep_initial_update_of_soc) {
/* updated old capacity in case of resume */
if (fuelgauge->is_charging) {
fuelgauge->capacity_old = val->intval;
fuelgauge->sleep_initial_update_of_soc = false;
break;
} else if ((fuelgauge->vbatl_mode != VBATL_MODE_SW_VALERT) &&
((!fuelgauge->is_charging) && (fuelgauge->capacity_old >= val->intval))) {
fuelgauge->capacity_old = val->intval;
fuelgauge->sleep_initial_update_of_soc = false;
break;
}
}
if (fuelgauge->pdata->capacity_calculation_type &
(SEC_FUELGAUGE_CAPACITY_TYPE_ATOMIC |
SEC_FUELGAUGE_CAPACITY_TYPE_SKIP_ABNORMAL))
s2mu005_fg_get_atomic_capacity(fuelgauge, val);
}
break;
/* Battery Temperature */
case POWER_SUPPLY_PROP_TEMP:
/* Target Temperature */
case POWER_SUPPLY_PROP_TEMP_AMBIENT:
val->intval = s2mu005_get_temperature(fuelgauge);
break;
case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
val->intval = fuelgauge->capacity_max;
break;
case POWER_SUPPLY_PROP_SCOPE:
val->intval = fuelgauge->mode;
break;
default:
return -EINVAL;
}
return 0;
}
static int s2mu005_fg_set_property(struct power_supply *psy,
enum power_supply_property psp,
const union power_supply_propval *val)
{
struct s2mu005_fuelgauge_data *fuelgauge = power_supply_get_drvdata(psy);
switch (psp) {
case POWER_SUPPLY_PROP_STATUS:
#if defined(CONFIG_BATTERY_AGE_FORECAST)
if (val->intval == POWER_SUPPLY_STATUS_FULL)
s2mu005_fg_aging_check(fuelgauge, fuelgauge->change_step);
#endif
break;
case POWER_SUPPLY_PROP_CHARGE_FULL:
if (fuelgauge->pdata->capacity_calculation_type &
SEC_FUELGAUGE_CAPACITY_TYPE_DYNAMIC_SCALE) {
s2mu005_fg_calculate_dynamic_scale(fuelgauge, val->intval);
}
break;
case POWER_SUPPLY_PROP_ONLINE:
fuelgauge->cable_type = val->intval;
if (!(val->intval == POWER_SUPPLY_TYPE_BATTERY)) {
if (fuelgauge->vbatl_mode >= VBATL_MODE_SW_VALERT) {
fuelgauge->vbatl_mode = VBATL_MODE_NORMAL;
fuelgauge->initial_update_of_soc = true;
}
}
break;
case POWER_SUPPLY_PROP_CHARGING_ENABLED:
if (val->intval) {
if (fuelgauge->revision >= 3) {
u8 reg_0x41 = 0, reg_0x27 = 0, reg_0x26 = 0, temp = 0;
pr_info("%s, swelling SOC jump issue W/A\n", __func__);
msleep(250);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x41, &reg_0x41);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x27, &reg_0x27);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x26, &reg_0x26);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x41, 0xFF);
temp = reg_0x27;
temp &= 0xF0;
temp |= 0x0F;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x27, temp);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x26, 0xFD);
msleep(260);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x26, reg_0x26);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x27, reg_0x27);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x41, reg_0x41);
}
fuelgauge->is_charging = true;
} else
fuelgauge->is_charging = false;
break;
case POWER_SUPPLY_PROP_CAPACITY:
if (val->intval == SEC_FUELGAUGE_CAPACITY_TYPE_RESET) {
s2mu005_restart_gauging(fuelgauge);
fuelgauge->initial_update_of_soc = true;
}
break;
case POWER_SUPPLY_PROP_TEMP:
case POWER_SUPPLY_PROP_TEMP_AMBIENT:
s2mu005_set_temperature(fuelgauge, val->intval);
break;
case POWER_SUPPLY_PROP_ENERGY_NOW:
s2mu005_fg_reset_capacity_by_jig_connection(fuelgauge);
break;
case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
dev_info(&fuelgauge->i2c->dev,
"%s: capacity_max changed, %d -> %d\n",
__func__, fuelgauge->capacity_max, val->intval);
fuelgauge->capacity_max = s2mu005_fg_check_capacity_max(fuelgauge, val->intval);
fuelgauge->initial_update_of_soc = true;
break;
case POWER_SUPPLY_PROP_CHARGE_TYPE:
/* rt5033_fg_reset_capacity_by_jig_connection(fuelgauge->i2c); */
break;
case POWER_SUPPLY_PROP_CHARGE_EMPTY:
pr_info("%s: WA for battery 0 percent\n", __func__);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x1F, 0x01);
break;
case POWER_SUPPLY_PROP_ENERGY_AVG:
pr_info("%s: WA for power off issue: val(%d)\n", __func__, val->intval);
if (val->intval)
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x41, 0x10); /* charger start */
else
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x41, 0x04); /* charger end */
break;
#if defined(CONFIG_S2MU005_VOLT_MODE_TUNING)
case POWER_SUPPLY_PROP_CURRENT_FULL:
fuelgauge->topoff_current = val->intval;
break;
#endif
case POWER_SUPPLY_PROP_MAX ... POWER_SUPPLY_EXT_PROP_MAX:
{
enum power_supply_ext_property ext_psp = psp;
u8 temp = 0;
switch (ext_psp) {
case POWER_SUPPLY_EXT_PROP_INBAT_VOLTAGE_FGSRC_SWITCHING:
if (val->intval == SEC_BAT_INBAT_FGSRC_SWITCHING_ON) {
/* Get Battery voltage (by I2C control) */
s2mu005_read_reg_byte(fuelgauge->i2c, 0x25, &temp);
temp &= 0xCF;
temp |= 0x10;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x25, temp);
msleep(1000);
s2mu005_restart_gauging(fuelgauge);
s2mu005_fg_reset_capacity_by_jig_connection(fuelgauge);
s2mu005_fg_test_read(fuelgauge->i2c);
pr_info("%s: SEC_BAT_INBAT_FGSRC_SWITCHING_ON : 0x25 = %x\n",
__func__, temp);
} else if (val->intval == SEC_BAT_INBAT_FGSRC_SWITCHING_OFF) {
s2mu005_read_reg_byte(fuelgauge->i2c, 0x25, &temp);
temp &= 0xCF;
temp |= 0x30;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x25, temp);
msleep(1000);
s2mu005_restart_gauging(fuelgauge);
s2mu005_fg_test_read(fuelgauge->i2c);
pr_info("%s: SEC_BAT_INBAT_FGSRC_SWITCHING_OFF : 0x25 = %x\n",
__func__, temp);
}
s2mu005_read_reg_byte(fuelgauge->i2c, 0x25, &temp);
pr_info("%s: [%d] Internal switch 0x%x\n", __func__, val->intval, (temp & 0x30) >> 4);
break;
case POWER_SUPPLY_EXT_PROP_FUELGAUGE_FACTORY:
pr_info("%s: [DEBUG_FAC] fuelgauge\n", __func__);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x25, &temp);
temp &= 0xCF;
temp |= 0x30;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x25, temp);
s2mu005_fg_reset_capacity_by_jig_connection(fuelgauge);
break;
#if defined(CONFIG_BATTERY_AGE_FORECAST)
case POWER_SUPPLY_EXT_PROP_UPDATE_BATTERY_DATA:
fuelgauge->change_step = val->intval;
break;
#endif
default:
return -EINVAL;
}
break;
}
default:
return -EINVAL;
}
return 0;
}
static void s2mu005_fg_isr_work(struct work_struct *work)
{
struct s2mu005_fuelgauge_data *fuelgauge =
container_of(work, struct s2mu005_fuelgauge_data, isr_work.work);
u8 fg_alert_status = 0;
s2mu005_read_reg_byte(fuelgauge->i2c, S2MU005_REG_STATUS, &fg_alert_status);
dev_info(&fuelgauge->i2c->dev, "%s : fg_alert_status(0x%x)\n",
__func__, fg_alert_status);
fg_alert_status &= 0x03;
if (fg_alert_status & 0x01) {
pr_info("%s : Battery Level(SOC) is very Low!\n", __func__);
}
if (fg_alert_status & 0x02) {
pr_info("%s : Battery Voltage is Very Low!\n", __func__);
}
if (!fg_alert_status) {
fuelgauge->is_fuel_alerted = false;
pr_info("%s : SOC or Voltage is Good!\n", __func__);
wake_unlock(&fuelgauge->fuel_alert_wake_lock);
}
}
static irqreturn_t s2mu005_fg_irq_thread(int irq, void *irq_data)
{
struct s2mu005_fuelgauge_data *fuelgauge = irq_data;
u8 fg_irq = 0;
s2mu005_read_reg_byte(fuelgauge->i2c, S2MU005_REG_IRQ, &fg_irq);
dev_info(&fuelgauge->i2c->dev, "%s: fg_irq(0x%x)\n",
__func__, fg_irq);
if (fuelgauge->is_fuel_alerted) {
return IRQ_HANDLED;
} else {
wake_lock(&fuelgauge->fuel_alert_wake_lock);
fuelgauge->is_fuel_alerted = true;
schedule_delayed_work(&fuelgauge->isr_work, 0);
}
return IRQ_HANDLED;
}
#ifdef CONFIG_OF
static int s2mu005_fuelgauge_parse_dt(struct s2mu005_fuelgauge_data *fuelgauge)
{
struct device_node *np = of_find_node_by_name(NULL, "s2mu005-fuelgauge");
int ret;
#if defined(CONFIG_BATTERY_AGE_FORECAST)
int i, len;
#endif
/* reset, irq gpio info */
if (np == NULL) {
pr_err("%s np NULL\n", __func__);
} else {
fuelgauge->pdata->fg_irq = of_get_named_gpio(np, "fuelgauge,fuel_int", 0);
if (fuelgauge->pdata->fg_irq < 0)
pr_err("%s error reading fg_irq = %d\n",
__func__, fuelgauge->pdata->fg_irq);
ret = of_property_read_u32(np, "fuelgauge,capacity_max",
&fuelgauge->pdata->capacity_max);
if (ret < 0)
pr_err("%s error reading capacity_max %d\n", __func__, ret);
ret = of_property_read_u32(np, "fuelgauge,capacity_max_margin",
&fuelgauge->pdata->capacity_max_margin);
if (ret < 0)
pr_err("%s error reading capacity_max_margin %d\n", __func__, ret);
ret = of_property_read_u32(np, "fuelgauge,capacity_min",
&fuelgauge->pdata->capacity_min);
if (ret < 0)
pr_err("%s error reading capacity_min %d\n", __func__, ret);
ret = of_property_read_u32(np, "fuelgauge,fuel_alert_vol",
&fuelgauge->pdata->fuel_alert_vol);
if (ret < 0) {
fuelgauge->pdata->fuel_alert_vol = 3300;
pr_err("%s Default value of fuel_alert_vol : %d\n",
__func__, fuelgauge->pdata->fuel_alert_vol);
}
ret = of_property_read_u32(np, "fuelgauge,capacity_calculation_type",
&fuelgauge->pdata->capacity_calculation_type);
if (ret < 0)
pr_err("%s error reading capacity_calculation_type %d\n",
__func__, ret);
ret = of_property_read_u32(np, "fuelgauge,fg_log_enable",
&fuelgauge->pdata->fg_log_enable);
if (ret < 0)
pr_err("%s fg_log_disabled %d\n", __func__, ret);
ret = of_property_read_u32(np, "fuelgauge,fuel_alert_soc",
&fuelgauge->pdata->fuel_alert_soc);
if (ret < 0)
pr_err("%s error reading pdata->fuel_alert_soc %d\n",
__func__, ret);
fuelgauge->pdata->repeated_fuelalert = of_property_read_bool(np,
"fuelgauge,repeated_fuelalert");
ret = of_property_read_u32(np, "fuelgauge,low_temp_limit",
&fuelgauge->low_temp_limit);
if (ret < 0) {
pr_err("%s error reading low temp limit %d\n", __func__, ret);
fuelgauge->low_temp_limit = 100;
}
pr_info("%s : LOW TEMP LIMIT(%d)\n",
__func__, fuelgauge->low_temp_limit);
ret = of_property_read_u32(np, "fuelgauge,sw_vbat_l_recovery_vol",
&fuelgauge->sw_vbat_l_recovery_vol);
if (ret < 0) {
pr_err("%s error reading sw_vbat_l_recovery_vol %d\n",
__func__, ret);
fuelgauge->sw_vbat_l_recovery_vol = 3465;
}
pr_info("%s : SW VBAT_L recovery (%d)mV\n",
__func__, fuelgauge->sw_vbat_l_recovery_vol);
ret = of_property_read_u32(np, "fuelgauge,capacity_full",
&fuelgauge->pdata->capacity_full);
if (ret < 0)
pr_err("%s error reading pdata->capacity_full %d\n",
__func__, ret);
#if defined(CONFIG_S2MU005_VOLT_MODE_TUNING)
/* get topoff info */
np = of_find_node_by_name(NULL, "cable-info");
if (!np) {
pr_err("%s np NULL\n", __func__);
} else {
ret = of_property_read_u32(np, "full_check_current_1st",
&fuelgauge->topoff_current);
if (ret < 0) {
pr_err("%s fail to get topoff current %d\n", __func__, ret);
fuelgauge->topoff_current = 500;
}
}
#endif
np = of_find_node_by_name(NULL, "battery");
if (!np) {
pr_err("%s np NULL\n", __func__);
} else {
ret = of_property_read_string(np,
"battery,fuelgauge_name",
(char const **)&fuelgauge->pdata->fuelgauge_name);
}
/* get battery_params node */
np = of_find_node_by_name(NULL, "battery_params");
if (!np) {
pr_err("%s battery_params node NULL\n", __func__);
} else {
#if !defined(CONFIG_BATTERY_AGE_FORECAST)
/* get battery_table */
ret = of_property_read_u32_array(np, "battery,battery_table1", fuelgauge->info.battery_table1, 88);
if (ret < 0) {
pr_err("%s error reading battery,battery_table1\n", __func__);
}
ret = of_property_read_u32_array(np, "battery,battery_table2", fuelgauge->info.battery_table2, 22);
if (ret < 0) {
pr_err("%s error reading battery,battery_table2\n", __func__);
}
ret = of_property_read_u32_array(np, "battery,battery_table3", fuelgauge->info.battery_table3, 88);
if (ret < 0) {
pr_err("%s error reading battery,battery_table3\n", __func__);
}
ret = of_property_read_u32_array(np, "battery,battery_table4", fuelgauge->info.battery_table4, 22);
if (ret < 0) {
pr_err("%s error reading battery,battery_table4\n", __func__);
}
ret = of_property_read_u32_array(np, "battery,batcap", fuelgauge->info.batcap, 4);
if (ret < 0) {
pr_err("%s error reading battery,batcap\n", __func__);
}
ret = of_property_read_u32_array(np, "battery,soc_arr_evt1", fuelgauge->info.soc_arr_evt1, 22);
if (ret < 0) {
pr_err("%s error reading battery,soc_arr_evt1\n", __func__);
}
ret = of_property_read_u32_array(np, "battery,ocv_arr_evt1", fuelgauge->info.ocv_arr_evt1, 22);
if (ret < 0) {
pr_err("%s error reading battery,ocv_arr_evt1\n", __func__);
}
ret = of_property_read_u32_array(np, "battery,soc_arr_evt2", fuelgauge->info.soc_arr_evt2, 22);
if (ret < 0) {
pr_err("%s error reading battery,soc_arr_evt2\n", __func__);
}
ret = of_property_read_u32_array(np, "battery,ocv_arr_evt2", fuelgauge->info.ocv_arr_evt2, 22);
if (ret < 0) {
pr_err("%s error reading battery,ocv_arr_evt2\n", __func__);
}
ret = of_property_read_u32_array(np, "battery,FG_Accumulative_rate_evt2", fuelgauge->info.fg_accumulative_rate_evt2, 2);
if (ret < 0) {
fuelgauge->info.fg_accumulative_rate_evt2[0]=0x00; // REG 0x44
fuelgauge->info.fg_accumulative_rate_evt2[1]=0x08; // REG 0x45
pr_err("%s There is no FG_Accumulative_rate value in DT. set to the default value(0x800)\n", __func__);
}
#else
of_get_property(np, "battery,battery_data", &len);
fuelgauge->fg_num_age_step = len / sizeof(fg_age_data_info_t);
fuelgauge->age_data_info = kzalloc(len, GFP_KERNEL);
ret = of_property_read_u32_array(np, "battery,battery_data",
(int *)fuelgauge->age_data_info, len/sizeof(int));
pr_err("%s: [Long life] fuelgauge->fg_num_age_step %d\n", __func__,fuelgauge->fg_num_age_step);
if ((sizeof(fg_age_data_info_t) * fuelgauge->fg_num_age_step) != len) {
pr_err("%s: The Long life variables and the data in device tree does not match\n", __func__);
BUG();
}
for (i = 0; i < fuelgauge->fg_num_age_step; i++) {
#if defined(CONFIG_S2MU005_VOLT_MODE_TUNING)
pr_err("%s: [Long life] age_step = %d, table3[0] %d, table4[0] %d, batcap[0] %02x, accum[0] %02x, soc_arr[0] %d, ocv_arr[0] %d, volt_tun : %02x\n",
__func__, i,
fuelgauge->age_data_info[i].battery_table3[0],
fuelgauge->age_data_info[i].battery_table4[0],
fuelgauge->age_data_info[i].batcap[0],
fuelgauge->age_data_info[i].accum[0],
fuelgauge->age_data_info[i].soc_arr_val[0],
fuelgauge->age_data_info[i].ocv_arr_val[0],
fuelgauge->age_data_info[i].volt_mode_tunning);
#else
pr_err("%s: [Long life] age_step = %d, table3[0] %d, table4[0] %d, batcap[0] %02x, accum[0] %02x, soc_arr[0] %d, ocv_arr[0] %d\n",
__func__, i,
fuelgauge->age_data_info[i].battery_table3[0],
fuelgauge->age_data_info[i].battery_table4[0],
fuelgauge->age_data_info[i].batcap[0],
fuelgauge->age_data_info[i].accum[0],
fuelgauge->age_data_info[i].soc_arr_val[0],
fuelgauge->age_data_info[i].ocv_arr_val[0]);
#endif
}
#endif
/* batt data version */
ret = of_property_read_u32_array(np, "battery,data_ver", &fuelgauge->info.data_ver, 1);
if (ret < 0) {
pr_err("error reading data_ver %s (%d)\n", "battery,data_ver", ret);
fuelgauge->info.data_ver = 0;
}
pr_info("%s = <%d>\n", "battery,data_ver", fuelgauge->info.data_ver);
}
}
return 0;
}
static struct of_device_id s2mu005_fuelgauge_match_table[] = {
{ .compatible = "samsung,s2mu005-fuelgauge",},
{},
};
#else
static int s2mu005_fuelgauge_parse_dt(struct s2mu005_fuelgauge_data *fuelgauge)
{
return -ENOSYS;
}
#define s2mu005_fuelgauge_match_table NULL
#endif /* CONFIG_OF */
static const struct power_supply_desc s2mu005_fuelgauge_power_supply_desc = {
.name = "s2mu005-fuelgauge",
.type = POWER_SUPPLY_TYPE_UNKNOWN,
.properties = s2mu005_fuelgauge_props,
.num_properties = ARRAY_SIZE(s2mu005_fuelgauge_props),
.get_property = s2mu005_fg_get_property,
.set_property = s2mu005_fg_set_property,
};
static int s2mu005_fuelgauge_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct i2c_adapter *adapter = to_i2c_adapter(client->dev.parent);
struct s2mu005_fuelgauge_data *fuelgauge;
union power_supply_propval raw_soc_val;
struct power_supply_config fuelgauge_cfg = {};
int ret = 0;
u8 temp = 0;
pr_info("%s: S2MU005 Fuelgauge Driver Loading\n", __func__);
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE))
return -EIO;
fuelgauge = kzalloc(sizeof(*fuelgauge), GFP_KERNEL);
if (!fuelgauge)
return -ENOMEM;
mutex_init(&fuelgauge->fg_lock);
fuelgauge->i2c = client;
if (client->dev.of_node) {
fuelgauge->pdata = devm_kzalloc(&client->dev, sizeof(*(fuelgauge->pdata)),
GFP_KERNEL);
if (!fuelgauge->pdata) {
dev_err(&client->dev, "Failed to allocate memory\n");
ret = -ENOMEM;
goto err_parse_dt_nomem;
}
ret = s2mu005_fuelgauge_parse_dt(fuelgauge);
if (ret < 0)
goto err_parse_dt;
} else {
fuelgauge->pdata = client->dev.platform_data;
}
i2c_set_clientdata(client, fuelgauge);
if (fuelgauge->pdata->fuelgauge_name == NULL)
fuelgauge->pdata->fuelgauge_name = "s2mu005-fuelgauge";
fuelgauge_cfg.drv_data = fuelgauge;
if (!fuelgauge->info.data_ver) {
s2mu005_read_reg_byte(fuelgauge->i2c, 0x48, &temp);
fuelgauge->info.data_ver = (temp & 0x0E) >> 1;
}
/* 0x48[7:4]=0010 : EVT2 */
fuelgauge->revision = 0;
s2mu005_read_reg_byte(fuelgauge->i2c, 0x48, &temp);
fuelgauge->revision = (temp & 0xF0) >> 4;
pr_info("%s: S2MU005 Fuelgauge revision: 0x%x, reg 0x48 = 0x%x\n",
__func__, fuelgauge->revision, temp);
fuelgauge->capacity_max = fuelgauge->pdata->capacity_max;
fuelgauge->info.soc = 0;
fuelgauge->mode = CURRENT_MODE;
raw_soc_val.intval = s2mu005_get_rawsoc(fuelgauge);
raw_soc_val.intval = raw_soc_val.intval / 10;
if (raw_soc_val.intval > fuelgauge->capacity_max)
s2mu005_fg_calculate_dynamic_scale(fuelgauge, 100);
s2mu005_init_regs(fuelgauge);
fuelgauge->psy_fg = power_supply_register(
&client->dev, &s2mu005_fuelgauge_power_supply_desc, &fuelgauge_cfg);
if (!fuelgauge->psy_fg) {
pr_err("%s: Failed to Register psy_fg\n", __func__);
goto err_data_free;
}
fuelgauge->is_fuel_alerted = false;
if (fuelgauge->pdata->fuel_alert_soc >= 0) {
s2mu005_fuelgauge_fuelalert_init(fuelgauge->i2c,
fuelgauge->pdata->fuel_alert_soc);
wake_lock_init(&fuelgauge->fuel_alert_wake_lock,
WAKE_LOCK_SUSPEND, "fuel_alerted");
if (fuelgauge->pdata->fg_irq > 0) {
INIT_DELAYED_WORK(
&fuelgauge->isr_work, s2mu005_fg_isr_work);
fuelgauge->fg_irq = gpio_to_irq(fuelgauge->pdata->fg_irq);
dev_info(&client->dev,
"%s : fg_irq = %d\n", __func__, fuelgauge->fg_irq);
if (fuelgauge->fg_irq > 0) {
ret = request_threaded_irq(fuelgauge->fg_irq,
NULL, s2mu005_fg_irq_thread,
IRQF_TRIGGER_FALLING | IRQF_TRIGGER_RISING
| IRQF_ONESHOT,
"fuelgauge-irq", fuelgauge);
if (ret) {
dev_err(&client->dev,
"%s: Failed to Request IRQ\n", __func__);
goto err_supply_unreg;
}
ret = enable_irq_wake(fuelgauge->fg_irq);
if (ret < 0)
dev_err(&client->dev,
"%s: Failed to Enable Wakeup Source(%d)\n",
__func__, ret);
} else {
dev_err(&client->dev, "%s: Failed gpio_to_irq(%d)\n",
__func__, fuelgauge->fg_irq);
goto err_supply_unreg;
}
}
}
fuelgauge->sleep_initial_update_of_soc = false;
fuelgauge->initial_update_of_soc = true;
fuelgauge->cc_on = true;
fuelgauge->probe_done = true;
pr_info("%s: S2MU005 Fuelgauge Driver Loaded\n", __func__);
return 0;
err_supply_unreg:
power_supply_unregister(fuelgauge->psy_fg);
err_data_free:
if (client->dev.of_node)
kfree(fuelgauge->pdata);
err_parse_dt:
err_parse_dt_nomem:
mutex_destroy(&fuelgauge->fg_lock);
kfree(fuelgauge);
return ret;
}
static const struct i2c_device_id s2mu005_fuelgauge_id[] = {
{"s2mu005-fuelgauge", 0},
{}
};
static void s2mu005_fuelgauge_shutdown(struct i2c_client *client)
{
struct s2mu005_fuelgauge_data *fuelgauge = i2c_get_clientdata(client);
u8 temp = 0;
if (fuelgauge->revision < 2) {
s2mu005_read_reg_byte(fuelgauge->i2c, 0x45, &temp);
temp &= 0xF0;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x45, temp);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x44, 0x00);
}
}
static int s2mu005_fuelgauge_remove(struct i2c_client *client)
{
struct s2mu005_fuelgauge_data *fuelgauge = i2c_get_clientdata(client);
if (fuelgauge->pdata->fuel_alert_soc >= 0)
wake_lock_destroy(&fuelgauge->fuel_alert_wake_lock);
return 0;
}
#if defined CONFIG_PM
static int s2mu005_fuelgauge_suspend(struct device *dev)
{
struct s2mu005_fuelgauge_data *fuelgauge = dev_get_drvdata(dev);
u8 temp = 0;
if (fuelgauge->revision < 2) {
if (!fuelgauge->is_charging) {
if (fuelgauge->mode == CURRENT_MODE) {
s2mu005_read_reg_byte(fuelgauge->i2c, 0x45, &temp);
temp &= 0xF0;
temp |= 0x06;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x45, temp);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x44, 0xBD);
} else {
s2mu005_read_reg_byte(fuelgauge->i2c, 0x45, &temp);
temp &= 0xF0;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x45, temp);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x44, 0x00);
}
s2mu005_read_reg_byte(fuelgauge->i2c, 0x44, &temp);
pr_info("%s: Reg set suspend 0x44 : 0x%x\n",
__func__, temp);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x45, &temp);
pr_info("%s: Reg set suspend 0x45 : 0x%x\n",
__func__, temp);
}
}
return 0;
}
static int s2mu005_fuelgauge_resume(struct device *dev)
{
struct s2mu005_fuelgauge_data *fuelgauge = dev_get_drvdata(dev);
static int avg_vbat[5] = {0, };
static int vbat[5] = {0, };
static int avg_current[5] = {100, 100, 100, 100, 100};
static int loop_count = 0;
int target_ocv = 0, target_soc = 0, temp_vol = 0, j = 0, k = 0;
u8 temp = 0;
if (fuelgauge->revision < 2) {
if (fuelgauge->mode == CURRENT_MODE) {
avg_current[loop_count] = s2mu005_get_avgcurrent(fuelgauge);
avg_vbat[loop_count] = s2mu005_get_avgvbat(fuelgauge);
vbat[loop_count] = s2mu005_get_vbat(fuelgauge);
if (loop_count++ >= 5) loop_count = 0;
for (j = 0; j < 5; j++) {
pr_info("%s: abs avergae current : %d\n", __func__, abs(avg_current[j]));
if (abs(avg_current[j]) > 30)
break;
}
pr_info("%s: avg current count : %d\n", __func__, j);
if (j >= 5) {
for (k = 0; k < 5; k++) {
if (avg_vbat[k] > vbat[k])
temp_vol = avg_vbat[k];
else
temp_vol = vbat[k];
if (temp_vol > target_ocv)
target_ocv = temp_vol;
}
pr_info("%s: target ocv : %d\n", __func__, target_ocv);
/* work-around for restart */
fuelgauge->target_ocv = target_ocv; /* max(vbat[5], avgvbat[5]) */
target_soc = s2mu005_get_soc_from_ocv(fuelgauge, fuelgauge->target_ocv);
if (abs(target_soc - fuelgauge->info.soc) > 300)
WA_0_issue_at_init1(fuelgauge, fuelgauge->target_ocv);
}
}
if (!fuelgauge->is_charging) {
if (fuelgauge->mode == CURRENT_MODE) {
s2mu005_read_reg_byte(fuelgauge->i2c, 0x45, &temp);
temp &= 0xF0;
temp |= 0x07;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x45, temp);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x44, 0xCC);
} else {
s2mu005_read_reg_byte(fuelgauge->i2c, 0x45, &temp);
temp &= 0xF0;
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x45, temp);
s2mu005_write_and_verify_reg_byte(fuelgauge->i2c, 0x44, 0x00);
}
}
s2mu005_read_reg_byte(fuelgauge->i2c, 0x44, &temp);
pr_info("%s: Reg set resume 0x44 : 0x%x\n",
__func__, temp);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x45, &temp);
pr_info("%s: Reg set resume 0x45 : 0x%x\n",
__func__, temp);
}
fuelgauge->sleep_initial_update_of_soc = true;
return 0;
}
#else
#define s2mu005_fuelgauge_suspend NULL
#define s2mu005_fuelgauge_resume NULL
#endif
static SIMPLE_DEV_PM_OPS(s2mu005_fuelgauge_pm_ops, s2mu005_fuelgauge_suspend,
s2mu005_fuelgauge_resume);
static struct i2c_driver s2mu005_fuelgauge_driver = {
.driver = {
.name = "s2mu005-fuelgauge",
.owner = THIS_MODULE,
.pm = &s2mu005_fuelgauge_pm_ops,
.of_match_table = s2mu005_fuelgauge_match_table,
},
.probe = s2mu005_fuelgauge_probe,
.remove = s2mu005_fuelgauge_remove,
.shutdown = s2mu005_fuelgauge_shutdown,
.id_table = s2mu005_fuelgauge_id,
};
static int __init s2mu005_fuelgauge_init(void)
{
pr_info("%s: S2MU005 Fuelgauge Init\n", __func__);
return i2c_add_driver(&s2mu005_fuelgauge_driver);
}
static void __exit s2mu005_fuelgauge_exit(void)
{
i2c_del_driver(&s2mu005_fuelgauge_driver);
}
module_init(s2mu005_fuelgauge_init);
module_exit(s2mu005_fuelgauge_exit);
MODULE_DESCRIPTION("Samsung S2MU005 Fuel Gauge Driver");
MODULE_AUTHOR("Samsung Electronics");
MODULE_LICENSE("GPL");