| #include <linux/bootmem.h> |
| #include <linux/linkage.h> |
| #include <linux/bitops.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/percpu.h> |
| #include <linux/string.h> |
| #include <linux/delay.h> |
| #include <linux/sched.h> |
| #include <linux/init.h> |
| #include <linux/kgdb.h> |
| #include <linux/smp.h> |
| #include <linux/io.h> |
| |
| #include <asm/stackprotector.h> |
| #include <asm/perf_event.h> |
| #include <asm/mmu_context.h> |
| #include <asm/hypervisor.h> |
| #include <asm/processor.h> |
| #include <asm/sections.h> |
| #include <linux/topology.h> |
| #include <linux/cpumask.h> |
| #include <asm/pgtable.h> |
| #include <asm/atomic.h> |
| #include <asm/proto.h> |
| #include <asm/setup.h> |
| #include <asm/apic.h> |
| #include <asm/desc.h> |
| #include <asm/i387.h> |
| #include <asm/mtrr.h> |
| #include <linux/numa.h> |
| #include <asm/asm.h> |
| #include <asm/cpu.h> |
| #include <asm/mce.h> |
| #include <asm/msr.h> |
| #include <asm/pat.h> |
| |
| #ifdef CONFIG_X86_LOCAL_APIC |
| #include <asm/uv/uv.h> |
| #endif |
| |
| #include "cpu.h" |
| |
| /* all of these masks are initialized in setup_cpu_local_masks() */ |
| cpumask_var_t cpu_initialized_mask; |
| cpumask_var_t cpu_callout_mask; |
| cpumask_var_t cpu_callin_mask; |
| |
| /* representing cpus for which sibling maps can be computed */ |
| cpumask_var_t cpu_sibling_setup_mask; |
| |
| /* correctly size the local cpu masks */ |
| void __init setup_cpu_local_masks(void) |
| { |
| alloc_bootmem_cpumask_var(&cpu_initialized_mask); |
| alloc_bootmem_cpumask_var(&cpu_callin_mask); |
| alloc_bootmem_cpumask_var(&cpu_callout_mask); |
| alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask); |
| } |
| |
| static void __cpuinit default_init(struct cpuinfo_x86 *c) |
| { |
| #ifdef CONFIG_X86_64 |
| cpu_detect_cache_sizes(c); |
| #else |
| /* Not much we can do here... */ |
| /* Check if at least it has cpuid */ |
| if (c->cpuid_level == -1) { |
| /* No cpuid. It must be an ancient CPU */ |
| if (c->x86 == 4) |
| strcpy(c->x86_model_id, "486"); |
| else if (c->x86 == 3) |
| strcpy(c->x86_model_id, "386"); |
| } |
| #endif |
| } |
| |
| static const struct cpu_dev __cpuinitconst default_cpu = { |
| .c_init = default_init, |
| .c_vendor = "Unknown", |
| .c_x86_vendor = X86_VENDOR_UNKNOWN, |
| }; |
| |
| static const struct cpu_dev *this_cpu __cpuinitdata = &default_cpu; |
| |
| DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = { |
| #ifdef CONFIG_X86_64 |
| /* |
| * We need valid kernel segments for data and code in long mode too |
| * IRET will check the segment types kkeil 2000/10/28 |
| * Also sysret mandates a special GDT layout |
| * |
| * TLS descriptors are currently at a different place compared to i386. |
| * Hopefully nobody expects them at a fixed place (Wine?) |
| */ |
| [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff), |
| [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff), |
| [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff), |
| [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff), |
| [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff), |
| [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff), |
| #else |
| [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff), |
| [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), |
| [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff), |
| [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff), |
| /* |
| * Segments used for calling PnP BIOS have byte granularity. |
| * They code segments and data segments have fixed 64k limits, |
| * the transfer segment sizes are set at run time. |
| */ |
| /* 32-bit code */ |
| [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff), |
| /* 16-bit code */ |
| [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff), |
| /* 16-bit data */ |
| [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff), |
| /* 16-bit data */ |
| [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0), |
| /* 16-bit data */ |
| [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0), |
| /* |
| * The APM segments have byte granularity and their bases |
| * are set at run time. All have 64k limits. |
| */ |
| /* 32-bit code */ |
| [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff), |
| /* 16-bit code */ |
| [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff), |
| /* data */ |
| [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff), |
| |
| [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), |
| [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), |
| GDT_STACK_CANARY_INIT |
| #endif |
| } }; |
| EXPORT_PER_CPU_SYMBOL_GPL(gdt_page); |
| |
| static int __init x86_xsave_setup(char *s) |
| { |
| setup_clear_cpu_cap(X86_FEATURE_XSAVE); |
| return 1; |
| } |
| __setup("noxsave", x86_xsave_setup); |
| |
| #ifdef CONFIG_X86_32 |
| static int cachesize_override __cpuinitdata = -1; |
| static int disable_x86_serial_nr __cpuinitdata = 1; |
| |
| static int __init cachesize_setup(char *str) |
| { |
| get_option(&str, &cachesize_override); |
| return 1; |
| } |
| __setup("cachesize=", cachesize_setup); |
| |
| static int __init x86_fxsr_setup(char *s) |
| { |
| setup_clear_cpu_cap(X86_FEATURE_FXSR); |
| setup_clear_cpu_cap(X86_FEATURE_XMM); |
| return 1; |
| } |
| __setup("nofxsr", x86_fxsr_setup); |
| |
| static int __init x86_sep_setup(char *s) |
| { |
| setup_clear_cpu_cap(X86_FEATURE_SEP); |
| return 1; |
| } |
| __setup("nosep", x86_sep_setup); |
| |
| /* Standard macro to see if a specific flag is changeable */ |
| static inline int flag_is_changeable_p(u32 flag) |
| { |
| u32 f1, f2; |
| |
| /* |
| * Cyrix and IDT cpus allow disabling of CPUID |
| * so the code below may return different results |
| * when it is executed before and after enabling |
| * the CPUID. Add "volatile" to not allow gcc to |
| * optimize the subsequent calls to this function. |
| */ |
| asm volatile ("pushfl \n\t" |
| "pushfl \n\t" |
| "popl %0 \n\t" |
| "movl %0, %1 \n\t" |
| "xorl %2, %0 \n\t" |
| "pushl %0 \n\t" |
| "popfl \n\t" |
| "pushfl \n\t" |
| "popl %0 \n\t" |
| "popfl \n\t" |
| |
| : "=&r" (f1), "=&r" (f2) |
| : "ir" (flag)); |
| |
| return ((f1^f2) & flag) != 0; |
| } |
| |
| /* Probe for the CPUID instruction */ |
| static int __cpuinit have_cpuid_p(void) |
| { |
| return flag_is_changeable_p(X86_EFLAGS_ID); |
| } |
| |
| static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c) |
| { |
| unsigned long lo, hi; |
| |
| if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr) |
| return; |
| |
| /* Disable processor serial number: */ |
| |
| rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi); |
| lo |= 0x200000; |
| wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi); |
| |
| printk(KERN_NOTICE "CPU serial number disabled.\n"); |
| clear_cpu_cap(c, X86_FEATURE_PN); |
| |
| /* Disabling the serial number may affect the cpuid level */ |
| c->cpuid_level = cpuid_eax(0); |
| } |
| |
| static int __init x86_serial_nr_setup(char *s) |
| { |
| disable_x86_serial_nr = 0; |
| return 1; |
| } |
| __setup("serialnumber", x86_serial_nr_setup); |
| #else |
| static inline int flag_is_changeable_p(u32 flag) |
| { |
| return 1; |
| } |
| /* Probe for the CPUID instruction */ |
| static inline int have_cpuid_p(void) |
| { |
| return 1; |
| } |
| static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c) |
| { |
| } |
| #endif |
| |
| /* |
| * Some CPU features depend on higher CPUID levels, which may not always |
| * be available due to CPUID level capping or broken virtualization |
| * software. Add those features to this table to auto-disable them. |
| */ |
| struct cpuid_dependent_feature { |
| u32 feature; |
| u32 level; |
| }; |
| |
| static const struct cpuid_dependent_feature __cpuinitconst |
| cpuid_dependent_features[] = { |
| { X86_FEATURE_MWAIT, 0x00000005 }, |
| { X86_FEATURE_DCA, 0x00000009 }, |
| { X86_FEATURE_XSAVE, 0x0000000d }, |
| { 0, 0 } |
| }; |
| |
| static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn) |
| { |
| const struct cpuid_dependent_feature *df; |
| |
| for (df = cpuid_dependent_features; df->feature; df++) { |
| |
| if (!cpu_has(c, df->feature)) |
| continue; |
| /* |
| * Note: cpuid_level is set to -1 if unavailable, but |
| * extended_extended_level is set to 0 if unavailable |
| * and the legitimate extended levels are all negative |
| * when signed; hence the weird messing around with |
| * signs here... |
| */ |
| if (!((s32)df->level < 0 ? |
| (u32)df->level > (u32)c->extended_cpuid_level : |
| (s32)df->level > (s32)c->cpuid_level)) |
| continue; |
| |
| clear_cpu_cap(c, df->feature); |
| if (!warn) |
| continue; |
| |
| printk(KERN_WARNING |
| "CPU: CPU feature %s disabled, no CPUID level 0x%x\n", |
| x86_cap_flags[df->feature], df->level); |
| } |
| } |
| |
| /* |
| * Naming convention should be: <Name> [(<Codename>)] |
| * This table only is used unless init_<vendor>() below doesn't set it; |
| * in particular, if CPUID levels 0x80000002..4 are supported, this |
| * isn't used |
| */ |
| |
| /* Look up CPU names by table lookup. */ |
| static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c) |
| { |
| const struct cpu_model_info *info; |
| |
| if (c->x86_model >= 16) |
| return NULL; /* Range check */ |
| |
| if (!this_cpu) |
| return NULL; |
| |
| info = this_cpu->c_models; |
| |
| while (info && info->family) { |
| if (info->family == c->x86) |
| return info->model_names[c->x86_model]; |
| info++; |
| } |
| return NULL; /* Not found */ |
| } |
| |
| __u32 cpu_caps_cleared[NCAPINTS] __cpuinitdata; |
| __u32 cpu_caps_set[NCAPINTS] __cpuinitdata; |
| |
| void load_percpu_segment(int cpu) |
| { |
| #ifdef CONFIG_X86_32 |
| loadsegment(fs, __KERNEL_PERCPU); |
| #else |
| loadsegment(gs, 0); |
| wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu)); |
| #endif |
| load_stack_canary_segment(); |
| } |
| |
| /* |
| * Current gdt points %fs at the "master" per-cpu area: after this, |
| * it's on the real one. |
| */ |
| void switch_to_new_gdt(int cpu) |
| { |
| struct desc_ptr gdt_descr; |
| |
| gdt_descr.address = (long)get_cpu_gdt_table(cpu); |
| gdt_descr.size = GDT_SIZE - 1; |
| load_gdt(&gdt_descr); |
| /* Reload the per-cpu base */ |
| |
| load_percpu_segment(cpu); |
| } |
| |
| static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {}; |
| |
| static void __cpuinit get_model_name(struct cpuinfo_x86 *c) |
| { |
| unsigned int *v; |
| char *p, *q; |
| |
| if (c->extended_cpuid_level < 0x80000004) |
| return; |
| |
| v = (unsigned int *)c->x86_model_id; |
| cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]); |
| cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]); |
| cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]); |
| c->x86_model_id[48] = 0; |
| |
| /* |
| * Intel chips right-justify this string for some dumb reason; |
| * undo that brain damage: |
| */ |
| p = q = &c->x86_model_id[0]; |
| while (*p == ' ') |
| p++; |
| if (p != q) { |
| while (*p) |
| *q++ = *p++; |
| while (q <= &c->x86_model_id[48]) |
| *q++ = '\0'; /* Zero-pad the rest */ |
| } |
| } |
| |
| void __cpuinit cpu_detect_cache_sizes(struct cpuinfo_x86 *c) |
| { |
| unsigned int n, dummy, ebx, ecx, edx, l2size; |
| |
| n = c->extended_cpuid_level; |
| |
| if (n >= 0x80000005) { |
| cpuid(0x80000005, &dummy, &ebx, &ecx, &edx); |
| c->x86_cache_size = (ecx>>24) + (edx>>24); |
| #ifdef CONFIG_X86_64 |
| /* On K8 L1 TLB is inclusive, so don't count it */ |
| c->x86_tlbsize = 0; |
| #endif |
| } |
| |
| if (n < 0x80000006) /* Some chips just has a large L1. */ |
| return; |
| |
| cpuid(0x80000006, &dummy, &ebx, &ecx, &edx); |
| l2size = ecx >> 16; |
| |
| #ifdef CONFIG_X86_64 |
| c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff); |
| #else |
| /* do processor-specific cache resizing */ |
| if (this_cpu->c_size_cache) |
| l2size = this_cpu->c_size_cache(c, l2size); |
| |
| /* Allow user to override all this if necessary. */ |
| if (cachesize_override != -1) |
| l2size = cachesize_override; |
| |
| if (l2size == 0) |
| return; /* Again, no L2 cache is possible */ |
| #endif |
| |
| c->x86_cache_size = l2size; |
| } |
| |
| void __cpuinit detect_ht(struct cpuinfo_x86 *c) |
| { |
| #ifdef CONFIG_X86_HT |
| u32 eax, ebx, ecx, edx; |
| int index_msb, core_bits; |
| |
| if (!cpu_has(c, X86_FEATURE_HT)) |
| return; |
| |
| if (cpu_has(c, X86_FEATURE_CMP_LEGACY)) |
| goto out; |
| |
| if (cpu_has(c, X86_FEATURE_XTOPOLOGY)) |
| return; |
| |
| cpuid(1, &eax, &ebx, &ecx, &edx); |
| |
| smp_num_siblings = (ebx & 0xff0000) >> 16; |
| |
| if (smp_num_siblings == 1) { |
| printk(KERN_INFO "CPU: Hyper-Threading is disabled\n"); |
| goto out; |
| } |
| |
| if (smp_num_siblings <= 1) |
| goto out; |
| |
| if (smp_num_siblings > nr_cpu_ids) { |
| pr_warning("CPU: Unsupported number of siblings %d", |
| smp_num_siblings); |
| smp_num_siblings = 1; |
| return; |
| } |
| |
| index_msb = get_count_order(smp_num_siblings); |
| c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb); |
| |
| smp_num_siblings = smp_num_siblings / c->x86_max_cores; |
| |
| index_msb = get_count_order(smp_num_siblings); |
| |
| core_bits = get_count_order(c->x86_max_cores); |
| |
| c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) & |
| ((1 << core_bits) - 1); |
| |
| out: |
| if ((c->x86_max_cores * smp_num_siblings) > 1) { |
| printk(KERN_INFO "CPU: Physical Processor ID: %d\n", |
| c->phys_proc_id); |
| printk(KERN_INFO "CPU: Processor Core ID: %d\n", |
| c->cpu_core_id); |
| } |
| #endif |
| } |
| |
| static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c) |
| { |
| char *v = c->x86_vendor_id; |
| int i; |
| |
| for (i = 0; i < X86_VENDOR_NUM; i++) { |
| if (!cpu_devs[i]) |
| break; |
| |
| if (!strcmp(v, cpu_devs[i]->c_ident[0]) || |
| (cpu_devs[i]->c_ident[1] && |
| !strcmp(v, cpu_devs[i]->c_ident[1]))) { |
| |
| this_cpu = cpu_devs[i]; |
| c->x86_vendor = this_cpu->c_x86_vendor; |
| return; |
| } |
| } |
| |
| printk_once(KERN_ERR |
| "CPU: vendor_id '%s' unknown, using generic init.\n" \ |
| "CPU: Your system may be unstable.\n", v); |
| |
| c->x86_vendor = X86_VENDOR_UNKNOWN; |
| this_cpu = &default_cpu; |
| } |
| |
| void __cpuinit cpu_detect(struct cpuinfo_x86 *c) |
| { |
| /* Get vendor name */ |
| cpuid(0x00000000, (unsigned int *)&c->cpuid_level, |
| (unsigned int *)&c->x86_vendor_id[0], |
| (unsigned int *)&c->x86_vendor_id[8], |
| (unsigned int *)&c->x86_vendor_id[4]); |
| |
| c->x86 = 4; |
| /* Intel-defined flags: level 0x00000001 */ |
| if (c->cpuid_level >= 0x00000001) { |
| u32 junk, tfms, cap0, misc; |
| |
| cpuid(0x00000001, &tfms, &misc, &junk, &cap0); |
| c->x86 = (tfms >> 8) & 0xf; |
| c->x86_model = (tfms >> 4) & 0xf; |
| c->x86_mask = tfms & 0xf; |
| |
| if (c->x86 == 0xf) |
| c->x86 += (tfms >> 20) & 0xff; |
| if (c->x86 >= 0x6) |
| c->x86_model += ((tfms >> 16) & 0xf) << 4; |
| |
| if (cap0 & (1<<19)) { |
| c->x86_clflush_size = ((misc >> 8) & 0xff) * 8; |
| c->x86_cache_alignment = c->x86_clflush_size; |
| } |
| } |
| } |
| |
| static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c) |
| { |
| u32 tfms, xlvl; |
| u32 ebx; |
| |
| /* Intel-defined flags: level 0x00000001 */ |
| if (c->cpuid_level >= 0x00000001) { |
| u32 capability, excap; |
| |
| cpuid(0x00000001, &tfms, &ebx, &excap, &capability); |
| c->x86_capability[0] = capability; |
| c->x86_capability[4] = excap; |
| } |
| |
| /* AMD-defined flags: level 0x80000001 */ |
| xlvl = cpuid_eax(0x80000000); |
| c->extended_cpuid_level = xlvl; |
| |
| if ((xlvl & 0xffff0000) == 0x80000000) { |
| if (xlvl >= 0x80000001) { |
| c->x86_capability[1] = cpuid_edx(0x80000001); |
| c->x86_capability[6] = cpuid_ecx(0x80000001); |
| } |
| } |
| |
| if (c->extended_cpuid_level >= 0x80000008) { |
| u32 eax = cpuid_eax(0x80000008); |
| |
| c->x86_virt_bits = (eax >> 8) & 0xff; |
| c->x86_phys_bits = eax & 0xff; |
| } |
| #ifdef CONFIG_X86_32 |
| else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36)) |
| c->x86_phys_bits = 36; |
| #endif |
| |
| if (c->extended_cpuid_level >= 0x80000007) |
| c->x86_power = cpuid_edx(0x80000007); |
| |
| } |
| |
| static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c) |
| { |
| #ifdef CONFIG_X86_32 |
| int i; |
| |
| /* |
| * First of all, decide if this is a 486 or higher |
| * It's a 486 if we can modify the AC flag |
| */ |
| if (flag_is_changeable_p(X86_EFLAGS_AC)) |
| c->x86 = 4; |
| else |
| c->x86 = 3; |
| |
| for (i = 0; i < X86_VENDOR_NUM; i++) |
| if (cpu_devs[i] && cpu_devs[i]->c_identify) { |
| c->x86_vendor_id[0] = 0; |
| cpu_devs[i]->c_identify(c); |
| if (c->x86_vendor_id[0]) { |
| get_cpu_vendor(c); |
| break; |
| } |
| } |
| #endif |
| } |
| |
| /* |
| * Do minimum CPU detection early. |
| * Fields really needed: vendor, cpuid_level, family, model, mask, |
| * cache alignment. |
| * The others are not touched to avoid unwanted side effects. |
| * |
| * WARNING: this function is only called on the BP. Don't add code here |
| * that is supposed to run on all CPUs. |
| */ |
| static void __init early_identify_cpu(struct cpuinfo_x86 *c) |
| { |
| #ifdef CONFIG_X86_64 |
| c->x86_clflush_size = 64; |
| c->x86_phys_bits = 36; |
| c->x86_virt_bits = 48; |
| #else |
| c->x86_clflush_size = 32; |
| c->x86_phys_bits = 32; |
| c->x86_virt_bits = 32; |
| #endif |
| c->x86_cache_alignment = c->x86_clflush_size; |
| |
| memset(&c->x86_capability, 0, sizeof c->x86_capability); |
| c->extended_cpuid_level = 0; |
| |
| if (!have_cpuid_p()) |
| identify_cpu_without_cpuid(c); |
| |
| /* cyrix could have cpuid enabled via c_identify()*/ |
| if (!have_cpuid_p()) |
| return; |
| |
| cpu_detect(c); |
| |
| get_cpu_vendor(c); |
| |
| get_cpu_cap(c); |
| |
| if (this_cpu->c_early_init) |
| this_cpu->c_early_init(c); |
| |
| #ifdef CONFIG_SMP |
| c->cpu_index = boot_cpu_id; |
| #endif |
| filter_cpuid_features(c, false); |
| } |
| |
| void __init early_cpu_init(void) |
| { |
| const struct cpu_dev *const *cdev; |
| int count = 0; |
| |
| #ifdef PROCESSOR_SELECT |
| printk(KERN_INFO "KERNEL supported cpus:\n"); |
| #endif |
| |
| for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) { |
| const struct cpu_dev *cpudev = *cdev; |
| |
| if (count >= X86_VENDOR_NUM) |
| break; |
| cpu_devs[count] = cpudev; |
| count++; |
| |
| #ifdef PROCESSOR_SELECT |
| { |
| unsigned int j; |
| |
| for (j = 0; j < 2; j++) { |
| if (!cpudev->c_ident[j]) |
| continue; |
| printk(KERN_INFO " %s %s\n", cpudev->c_vendor, |
| cpudev->c_ident[j]); |
| } |
| } |
| #endif |
| } |
| early_identify_cpu(&boot_cpu_data); |
| } |
| |
| /* |
| * The NOPL instruction is supposed to exist on all CPUs with |
| * family >= 6; unfortunately, that's not true in practice because |
| * of early VIA chips and (more importantly) broken virtualizers that |
| * are not easy to detect. In the latter case it doesn't even *fail* |
| * reliably, so probing for it doesn't even work. Disable it completely |
| * unless we can find a reliable way to detect all the broken cases. |
| */ |
| static void __cpuinit detect_nopl(struct cpuinfo_x86 *c) |
| { |
| clear_cpu_cap(c, X86_FEATURE_NOPL); |
| } |
| |
| static void __cpuinit generic_identify(struct cpuinfo_x86 *c) |
| { |
| c->extended_cpuid_level = 0; |
| |
| if (!have_cpuid_p()) |
| identify_cpu_without_cpuid(c); |
| |
| /* cyrix could have cpuid enabled via c_identify()*/ |
| if (!have_cpuid_p()) |
| return; |
| |
| cpu_detect(c); |
| |
| get_cpu_vendor(c); |
| |
| get_cpu_cap(c); |
| |
| if (c->cpuid_level >= 0x00000001) { |
| c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF; |
| #ifdef CONFIG_X86_32 |
| # ifdef CONFIG_X86_HT |
| c->apicid = apic->phys_pkg_id(c->initial_apicid, 0); |
| # else |
| c->apicid = c->initial_apicid; |
| # endif |
| #endif |
| |
| #ifdef CONFIG_X86_HT |
| c->phys_proc_id = c->initial_apicid; |
| #endif |
| } |
| |
| get_model_name(c); /* Default name */ |
| |
| init_scattered_cpuid_features(c); |
| detect_nopl(c); |
| } |
| |
| /* |
| * This does the hard work of actually picking apart the CPU stuff... |
| */ |
| static void __cpuinit identify_cpu(struct cpuinfo_x86 *c) |
| { |
| int i; |
| |
| c->loops_per_jiffy = loops_per_jiffy; |
| c->x86_cache_size = -1; |
| c->x86_vendor = X86_VENDOR_UNKNOWN; |
| c->x86_model = c->x86_mask = 0; /* So far unknown... */ |
| c->x86_vendor_id[0] = '\0'; /* Unset */ |
| c->x86_model_id[0] = '\0'; /* Unset */ |
| c->x86_max_cores = 1; |
| c->x86_coreid_bits = 0; |
| #ifdef CONFIG_X86_64 |
| c->x86_clflush_size = 64; |
| c->x86_phys_bits = 36; |
| c->x86_virt_bits = 48; |
| #else |
| c->cpuid_level = -1; /* CPUID not detected */ |
| c->x86_clflush_size = 32; |
| c->x86_phys_bits = 32; |
| c->x86_virt_bits = 32; |
| #endif |
| c->x86_cache_alignment = c->x86_clflush_size; |
| memset(&c->x86_capability, 0, sizeof c->x86_capability); |
| |
| generic_identify(c); |
| |
| if (this_cpu->c_identify) |
| this_cpu->c_identify(c); |
| |
| /* Clear/Set all flags overriden by options, after probe */ |
| for (i = 0; i < NCAPINTS; i++) { |
| c->x86_capability[i] &= ~cpu_caps_cleared[i]; |
| c->x86_capability[i] |= cpu_caps_set[i]; |
| } |
| |
| #ifdef CONFIG_X86_64 |
| c->apicid = apic->phys_pkg_id(c->initial_apicid, 0); |
| #endif |
| |
| /* |
| * Vendor-specific initialization. In this section we |
| * canonicalize the feature flags, meaning if there are |
| * features a certain CPU supports which CPUID doesn't |
| * tell us, CPUID claiming incorrect flags, or other bugs, |
| * we handle them here. |
| * |
| * At the end of this section, c->x86_capability better |
| * indicate the features this CPU genuinely supports! |
| */ |
| if (this_cpu->c_init) |
| this_cpu->c_init(c); |
| |
| /* Disable the PN if appropriate */ |
| squash_the_stupid_serial_number(c); |
| |
| /* |
| * The vendor-specific functions might have changed features. |
| * Now we do "generic changes." |
| */ |
| |
| /* Filter out anything that depends on CPUID levels we don't have */ |
| filter_cpuid_features(c, true); |
| |
| /* If the model name is still unset, do table lookup. */ |
| if (!c->x86_model_id[0]) { |
| const char *p; |
| p = table_lookup_model(c); |
| if (p) |
| strcpy(c->x86_model_id, p); |
| else |
| /* Last resort... */ |
| sprintf(c->x86_model_id, "%02x/%02x", |
| c->x86, c->x86_model); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| detect_ht(c); |
| #endif |
| |
| init_hypervisor(c); |
| |
| /* |
| * Clear/Set all flags overriden by options, need do it |
| * before following smp all cpus cap AND. |
| */ |
| for (i = 0; i < NCAPINTS; i++) { |
| c->x86_capability[i] &= ~cpu_caps_cleared[i]; |
| c->x86_capability[i] |= cpu_caps_set[i]; |
| } |
| |
| /* |
| * On SMP, boot_cpu_data holds the common feature set between |
| * all CPUs; so make sure that we indicate which features are |
| * common between the CPUs. The first time this routine gets |
| * executed, c == &boot_cpu_data. |
| */ |
| if (c != &boot_cpu_data) { |
| /* AND the already accumulated flags with these */ |
| for (i = 0; i < NCAPINTS; i++) |
| boot_cpu_data.x86_capability[i] &= c->x86_capability[i]; |
| } |
| |
| /* Init Machine Check Exception if available. */ |
| mcheck_cpu_init(c); |
| |
| select_idle_routine(c); |
| |
| #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64) |
| numa_add_cpu(smp_processor_id()); |
| #endif |
| } |
| |
| #ifdef CONFIG_X86_64 |
| static void vgetcpu_set_mode(void) |
| { |
| if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP)) |
| vgetcpu_mode = VGETCPU_RDTSCP; |
| else |
| vgetcpu_mode = VGETCPU_LSL; |
| } |
| #endif |
| |
| void __init identify_boot_cpu(void) |
| { |
| identify_cpu(&boot_cpu_data); |
| init_c1e_mask(); |
| #ifdef CONFIG_X86_32 |
| sysenter_setup(); |
| enable_sep_cpu(); |
| #else |
| vgetcpu_set_mode(); |
| #endif |
| init_hw_perf_events(); |
| } |
| |
| void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c) |
| { |
| BUG_ON(c == &boot_cpu_data); |
| identify_cpu(c); |
| #ifdef CONFIG_X86_32 |
| enable_sep_cpu(); |
| #endif |
| mtrr_ap_init(); |
| } |
| |
| struct msr_range { |
| unsigned min; |
| unsigned max; |
| }; |
| |
| static const struct msr_range msr_range_array[] __cpuinitconst = { |
| { 0x00000000, 0x00000418}, |
| { 0xc0000000, 0xc000040b}, |
| { 0xc0010000, 0xc0010142}, |
| { 0xc0011000, 0xc001103b}, |
| }; |
| |
| static void __cpuinit print_cpu_msr(void) |
| { |
| unsigned index_min, index_max; |
| unsigned index; |
| u64 val; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) { |
| index_min = msr_range_array[i].min; |
| index_max = msr_range_array[i].max; |
| |
| for (index = index_min; index < index_max; index++) { |
| if (rdmsrl_amd_safe(index, &val)) |
| continue; |
| printk(KERN_INFO " MSR%08x: %016llx\n", index, val); |
| } |
| } |
| } |
| |
| static int show_msr __cpuinitdata; |
| |
| static __init int setup_show_msr(char *arg) |
| { |
| int num; |
| |
| get_option(&arg, &num); |
| |
| if (num > 0) |
| show_msr = num; |
| return 1; |
| } |
| __setup("show_msr=", setup_show_msr); |
| |
| static __init int setup_noclflush(char *arg) |
| { |
| setup_clear_cpu_cap(X86_FEATURE_CLFLSH); |
| return 1; |
| } |
| __setup("noclflush", setup_noclflush); |
| |
| void __cpuinit print_cpu_info(struct cpuinfo_x86 *c) |
| { |
| const char *vendor = NULL; |
| |
| if (c->x86_vendor < X86_VENDOR_NUM) { |
| vendor = this_cpu->c_vendor; |
| } else { |
| if (c->cpuid_level >= 0) |
| vendor = c->x86_vendor_id; |
| } |
| |
| if (vendor && !strstr(c->x86_model_id, vendor)) |
| printk(KERN_CONT "%s ", vendor); |
| |
| if (c->x86_model_id[0]) |
| printk(KERN_CONT "%s", c->x86_model_id); |
| else |
| printk(KERN_CONT "%d86", c->x86); |
| |
| if (c->x86_mask || c->cpuid_level >= 0) |
| printk(KERN_CONT " stepping %02x\n", c->x86_mask); |
| else |
| printk(KERN_CONT "\n"); |
| |
| #ifdef CONFIG_SMP |
| if (c->cpu_index < show_msr) |
| print_cpu_msr(); |
| #else |
| if (show_msr) |
| print_cpu_msr(); |
| #endif |
| } |
| |
| static __init int setup_disablecpuid(char *arg) |
| { |
| int bit; |
| |
| if (get_option(&arg, &bit) && bit < NCAPINTS*32) |
| setup_clear_cpu_cap(bit); |
| else |
| return 0; |
| |
| return 1; |
| } |
| __setup("clearcpuid=", setup_disablecpuid); |
| |
| #ifdef CONFIG_X86_64 |
| struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table }; |
| |
| DEFINE_PER_CPU_FIRST(union irq_stack_union, |
| irq_stack_union) __aligned(PAGE_SIZE); |
| |
| /* |
| * The following four percpu variables are hot. Align current_task to |
| * cacheline size such that all four fall in the same cacheline. |
| */ |
| DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned = |
| &init_task; |
| EXPORT_PER_CPU_SYMBOL(current_task); |
| |
| DEFINE_PER_CPU(unsigned long, kernel_stack) = |
| (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE; |
| EXPORT_PER_CPU_SYMBOL(kernel_stack); |
| |
| DEFINE_PER_CPU(char *, irq_stack_ptr) = |
| init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64; |
| |
| DEFINE_PER_CPU(unsigned int, irq_count) = -1; |
| |
| /* |
| * Special IST stacks which the CPU switches to when it calls |
| * an IST-marked descriptor entry. Up to 7 stacks (hardware |
| * limit), all of them are 4K, except the debug stack which |
| * is 8K. |
| */ |
| static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = { |
| [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ, |
| [DEBUG_STACK - 1] = DEBUG_STKSZ |
| }; |
| |
| static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks |
| [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]); |
| |
| /* May not be marked __init: used by software suspend */ |
| void syscall_init(void) |
| { |
| /* |
| * LSTAR and STAR live in a bit strange symbiosis. |
| * They both write to the same internal register. STAR allows to |
| * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip. |
| */ |
| wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32); |
| wrmsrl(MSR_LSTAR, system_call); |
| wrmsrl(MSR_CSTAR, ignore_sysret); |
| |
| #ifdef CONFIG_IA32_EMULATION |
| syscall32_cpu_init(); |
| #endif |
| |
| /* Flags to clear on syscall */ |
| wrmsrl(MSR_SYSCALL_MASK, |
| X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL); |
| } |
| |
| unsigned long kernel_eflags; |
| |
| /* |
| * Copies of the original ist values from the tss are only accessed during |
| * debugging, no special alignment required. |
| */ |
| DEFINE_PER_CPU(struct orig_ist, orig_ist); |
| |
| #else /* CONFIG_X86_64 */ |
| |
| DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task; |
| EXPORT_PER_CPU_SYMBOL(current_task); |
| |
| #ifdef CONFIG_CC_STACKPROTECTOR |
| DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); |
| #endif |
| |
| /* Make sure %fs and %gs are initialized properly in idle threads */ |
| struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs) |
| { |
| memset(regs, 0, sizeof(struct pt_regs)); |
| regs->fs = __KERNEL_PERCPU; |
| regs->gs = __KERNEL_STACK_CANARY; |
| |
| return regs; |
| } |
| #endif /* CONFIG_X86_64 */ |
| |
| /* |
| * Clear all 6 debug registers: |
| */ |
| static void clear_all_debug_regs(void) |
| { |
| int i; |
| |
| for (i = 0; i < 8; i++) { |
| /* Ignore db4, db5 */ |
| if ((i == 4) || (i == 5)) |
| continue; |
| |
| set_debugreg(0, i); |
| } |
| } |
| |
| /* |
| * cpu_init() initializes state that is per-CPU. Some data is already |
| * initialized (naturally) in the bootstrap process, such as the GDT |
| * and IDT. We reload them nevertheless, this function acts as a |
| * 'CPU state barrier', nothing should get across. |
| * A lot of state is already set up in PDA init for 64 bit |
| */ |
| #ifdef CONFIG_X86_64 |
| |
| void __cpuinit cpu_init(void) |
| { |
| struct orig_ist *orig_ist; |
| struct task_struct *me; |
| struct tss_struct *t; |
| unsigned long v; |
| int cpu; |
| int i; |
| |
| cpu = stack_smp_processor_id(); |
| t = &per_cpu(init_tss, cpu); |
| orig_ist = &per_cpu(orig_ist, cpu); |
| |
| #ifdef CONFIG_NUMA |
| if (cpu != 0 && percpu_read(node_number) == 0 && |
| cpu_to_node(cpu) != NUMA_NO_NODE) |
| percpu_write(node_number, cpu_to_node(cpu)); |
| #endif |
| |
| me = current; |
| |
| if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) |
| panic("CPU#%d already initialized!\n", cpu); |
| |
| printk(KERN_INFO "Initializing CPU#%d\n", cpu); |
| |
| clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); |
| |
| /* |
| * Initialize the per-CPU GDT with the boot GDT, |
| * and set up the GDT descriptor: |
| */ |
| |
| switch_to_new_gdt(cpu); |
| loadsegment(fs, 0); |
| |
| load_idt((const struct desc_ptr *)&idt_descr); |
| |
| memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8); |
| syscall_init(); |
| |
| wrmsrl(MSR_FS_BASE, 0); |
| wrmsrl(MSR_KERNEL_GS_BASE, 0); |
| barrier(); |
| |
| check_efer(); |
| if (cpu != 0) |
| enable_x2apic(); |
| |
| /* |
| * set up and load the per-CPU TSS |
| */ |
| if (!orig_ist->ist[0]) { |
| char *estacks = per_cpu(exception_stacks, cpu); |
| |
| for (v = 0; v < N_EXCEPTION_STACKS; v++) { |
| estacks += exception_stack_sizes[v]; |
| orig_ist->ist[v] = t->x86_tss.ist[v] = |
| (unsigned long)estacks; |
| } |
| } |
| |
| t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap); |
| |
| /* |
| * <= is required because the CPU will access up to |
| * 8 bits beyond the end of the IO permission bitmap. |
| */ |
| for (i = 0; i <= IO_BITMAP_LONGS; i++) |
| t->io_bitmap[i] = ~0UL; |
| |
| atomic_inc(&init_mm.mm_count); |
| me->active_mm = &init_mm; |
| BUG_ON(me->mm); |
| enter_lazy_tlb(&init_mm, me); |
| |
| load_sp0(t, ¤t->thread); |
| set_tss_desc(cpu, t); |
| load_TR_desc(); |
| load_LDT(&init_mm.context); |
| |
| #ifdef CONFIG_KGDB |
| /* |
| * If the kgdb is connected no debug regs should be altered. This |
| * is only applicable when KGDB and a KGDB I/O module are built |
| * into the kernel and you are using early debugging with |
| * kgdbwait. KGDB will control the kernel HW breakpoint registers. |
| */ |
| if (kgdb_connected && arch_kgdb_ops.correct_hw_break) |
| arch_kgdb_ops.correct_hw_break(); |
| else |
| #endif |
| clear_all_debug_regs(); |
| |
| fpu_init(); |
| |
| raw_local_save_flags(kernel_eflags); |
| |
| if (is_uv_system()) |
| uv_cpu_init(); |
| } |
| |
| #else |
| |
| void __cpuinit cpu_init(void) |
| { |
| int cpu = smp_processor_id(); |
| struct task_struct *curr = current; |
| struct tss_struct *t = &per_cpu(init_tss, cpu); |
| struct thread_struct *thread = &curr->thread; |
| |
| if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) { |
| printk(KERN_WARNING "CPU#%d already initialized!\n", cpu); |
| for (;;) |
| local_irq_enable(); |
| } |
| |
| printk(KERN_INFO "Initializing CPU#%d\n", cpu); |
| |
| if (cpu_has_vme || cpu_has_tsc || cpu_has_de) |
| clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); |
| |
| load_idt(&idt_descr); |
| switch_to_new_gdt(cpu); |
| |
| /* |
| * Set up and load the per-CPU TSS and LDT |
| */ |
| atomic_inc(&init_mm.mm_count); |
| curr->active_mm = &init_mm; |
| BUG_ON(curr->mm); |
| enter_lazy_tlb(&init_mm, curr); |
| |
| load_sp0(t, thread); |
| set_tss_desc(cpu, t); |
| load_TR_desc(); |
| load_LDT(&init_mm.context); |
| |
| t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap); |
| |
| #ifdef CONFIG_DOUBLEFAULT |
| /* Set up doublefault TSS pointer in the GDT */ |
| __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss); |
| #endif |
| |
| clear_all_debug_regs(); |
| |
| /* |
| * Force FPU initialization: |
| */ |
| if (cpu_has_xsave) |
| current_thread_info()->status = TS_XSAVE; |
| else |
| current_thread_info()->status = 0; |
| clear_used_math(); |
| mxcsr_feature_mask_init(); |
| |
| /* |
| * Boot processor to setup the FP and extended state context info. |
| */ |
| if (smp_processor_id() == boot_cpu_id) |
| init_thread_xstate(); |
| |
| xsave_init(); |
| } |
| #endif |