blob: cd2bd9820103980ca1d667150ccb7e55eb848f24 [file] [log] [blame]
/*
* max77823_fuelgauge.c
* Samsung MAX77823 Fuel Gauge Driver
*
* Copyright (C) 2012 Samsung Electronics
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#define DEBUG
#include <linux/mfd/max77823-private.h>
#include <linux/of_gpio.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
static enum power_supply_property max77823_fuelgauge_props[] = {
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_VOLTAGE_AVG,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CURRENT_AVG,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_ENERGY_NOW,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_TEMP_AMBIENT,
};
#ifdef CONFIG_FUELGAUGE_MAX77823_VOLTAGE_TRACKING
static void max77823_init_regs(struct max77823_fuelgauge_data *fuelgauge)
{
u8 data[2];
if (max77823_read_reg(fuelgauge->i2c, MAX77823_REG_FILTERCFG, data) < 0)
return;
/* Clear average vcell (12 sec) */
data[0] &= 0x8f;
max77823_write_reg(fuelgauge->i2c, MAX77823_REG_FILTERCFG, data);
}
static void max77823_get_version(struct max77823_fuelgauge_data *fuelgauge)
{
u8 data[2];
if (max77823_read_reg(fuelgauge->i2c, MAX77823_REG_VERSION, data) < 0)
return;
pr_debug("MAX77823 Fuel-Gauge Ver %d%d\n",
data[0], data[1]);
}
static void max77823_alert_init(struct max77823_fuelgauge_data *fuelgauge)
{
u8 data[2];
/* SALRT Threshold setting */
data[0] = fuelgauge->pdata->fuel_alert_soc;
data[1] = 0xff;
max77823_write_reg(fuelgauge->i2c, MAX77823_REG_SALRT_TH, data);
/* VALRT Threshold setting */
data[0] = 0x00;
data[1] = 0xff;
max77823_write_reg(fuelgauge->i2c, MAX77823_REG_VALRT_TH, data);
/* TALRT Threshold setting */
data[0] = 0x80;
data[1] = 0x7f;
max77823_write_reg(fuelgauge->i2c, MAX77823_REG_TALRT_TH, data);
}
static bool max77823_check_status(struct max77823_fuelgauge_data *fuelgauge)
{
u8 data[2];
bool ret = false;
/* check if Smn was generated */
if (max77823_read_reg(fuelgauge->i2c, MAX77823_REG_STATUS, data) < 0)
return ret;
pr_info("%s: status_reg(%02x%02x)\n",
__func__, data[1], data[0]);
/* minimum SOC threshold exceeded. */
if (data[1] & (0x1 << 2))
ret = true;
/* clear status reg */
if (!ret) {
data[1] = 0;
max77823_write_reg(fuelgauge->i2c, MAX77823_REG_STATUS, data);
msleep(200);
}
return ret;
}
static int max77823_set_temperature(struct max77823_fuelgauge_data *fuelgauge,
int temperature)
{
u8 data[2];
data[0] = 0;
data[1] = temperature;
max77823_write_reg(fuelgauge->i2c, MAX77823_REG_TEMPERATURE, data);
pr_debug("%s: temperature to (%d)\n", __func__, temperature);
return temperature;
}
static int max77823_get_temperature(struct max77823_fuelgauge_data *fuelgauge)
{
u8 data[2];
s32 temperature = 0;
if (max77823_read_reg(fuelgauge->i2c,
MAX77823_REG_TEMPERATURE, data) < 0)
return -ERANGE;
/* data[] store 2's compliment format number */
if (data[1] & (0x1 << 7)) {
/* Negative */
temperature = ((~(data[1])) & 0xFF) + 1;
temperature *= (-1000);
} else {
temperature = data[1] & 0x7F;
temperature *= 1000;
temperature += data[0] * 39 / 10;
}
pr_debug("%s: temperature (%d)\n", __func__, temperature);
return temperature;
}
/* soc should be 0.01% unit */
static int max77823_get_soc(struct max77823_fuelgauge_data *fuelgauge)
{
u8 data[2];
int soc;
if (max77823_read_reg(fuelgauge->i2c, MAX77823_REG_SOC_VF, data) < 0)
return -EINVAL;
soc = ((data[1] * 100) + (data[0] * 100 / 256));
pr_debug("%s: raw capacity (%d)\n", __func__, soc);
return min(soc, 10000);
}
static int max77823_get_vfocv(struct max77823_fuelgauge_data *fuelgauge)
{
u8 data[2];
u32 vfocv = 0;
if (max77823_read_reg(fuelgauge->i2c, MAX77823_REG_VFOCV, data) < 0)
return -EINVAL;
vfocv = ((data[0] >> 3) + (data[1] << 5)) * 625 / 1000;
pr_debug("%s: vfocv (%d)\n", __func__, vfocv);
return vfocv;
}
static int max77823_get_vcell(struct max77823_fuelgauge_data *fuelgauge)
{
u8 data[2];
u32 vcell = 0;
if (max77823_read_reg(fuelgauge->i2c, MAX77823_REG_VCELL, data) < 0)
return -EINVAL;
vcell = ((data[0] >> 3) + (data[1] << 5)) * 625 / 1000;
pr_debug("%s: vcell (%d)\n", __func__, vcell);
return vcell;
}
static int max77823_get_avgvcell(struct max77823_fuelgauge_data *fuelgauge)
{
u8 data[2];
u32 avgvcell = 0;
if (max77823_read_reg(fuelgauge->i2c, MAX77823_REG_AVGVCELL, data) < 0)
return -EINVAL;
avgvcell = ((data[0] >> 3) + (data[1] << 5)) * 625 / 1000;
pr_debug("%s: avgvcell (%d)\n", __func__, avgvcell);
return avgvcell;
}
bool max77823_fg_init(struct max77823_fuelgauge_data *fuelgauge)
{
/* initialize fuel gauge registers */
max77823_init_regs(fuelgauge);
max77823_get_version(fuelgauge);
return true;
}
bool max77823_fg_fuelalert_init(struct max77823_fuelgauge_data *fuelgauge,
int soc)
{
u8 data[2];
/* 1. Set max77823 alert configuration. */
max77823_alert_init(fuelgauge);
if (max77823_read_reg(fuelgauge->i2c, MAX77823_REG_CONFIG, data)
< 0)
return -1;
/*Enable Alert (Aen = 1) */
data[0] |= (0x1 << 2);
max77823_write_reg(fuelgauge, MAX77823_REG_CONFIG, data);
pr_debug("%s: config_reg(%02x%02x) irq(%d)\n",
__func__, data[1], data[0], fuelgauge->pdata->fg_irq);
return true;
}
bool max77823_fg_is_fuelalerted(struct max77823_fuelgauge_data *fuelgauge)
{
return max77823_check_status(fuelgauge);
}
bool max77823_fg_fuelalert_process(void *irq_data, bool is_fuel_alerted)
{
struct max77823_fuelgauge_data *fuelgauge = irq_data;
u8 data[2];
/* update SOC */
/* max77823_get_soc(fuelgauge); */
if (is_fuel_alerted) {
if (max77823_read_reg(fuelgauge->i2c,
MAX77823_REG_CONFIG, data) < 0)
return false;
data[1] |= (0x1 << 3);
max77823_write_reg(fuelgauge->i2c,
MAX77823_REG_CONFIG, data);
pr_info("%s: Fuel-alert Alerted!! (%02x%02x)\n",
__func__, data[1], data[0]);
} else {
if (max77823_read_reg(fuelgauge->i2c,
MAX77823_REG_CONFIG, data)
< 0)
return false;
data[1] &= (~(0x1 << 3));
max77823_write_reg(fuelgauge->i2c,
MAX77823_REG_CONFIG, data);
pr_info("%s: Fuel-alert Released!! (%02x%02x)\n",
__func__, data[1], data[0]);
}
max77823_read_reg(fuelgauge->i2c, MAX77823_REG_VCELL, data);
pr_debug("%s: MAX77823_REG_VCELL(%02x%02x)\n",
__func__, data[1], data[0]);
max77823_read_reg(fuelgauge->i2c, MAX77823_REG_TEMPERATURE, data);
pr_debug("%s: MAX77823_REG_TEMPERATURE(%02x%02x)\n",
__func__, data[1], data[0]);
max77823_read_reg(fuelgauge->i2c, MAX77823_REG_CONFIG, data);
pr_debug("%s: MAX77823_REG_CONFIG(%02x%02x)\n",
__func__, data[1], data[0]);
max77823_read_reg(fuelgauge->i2c, MAX77823_REG_VFOCV, data);
pr_debug("%s: MAX77823_REG_VFOCV(%02x%02x)\n",
__func__, data[1], data[0]);
max77823_read_reg(fuelgauge->i2c, MAX77823_REG_SOC_VF, data);
pr_debug("%s: MAX77823_REG_SOC_VF(%02x%02x)\n",
__func__, data[1], data[0]);
pr_debug("%s: FUEL GAUGE IRQ (%d)\n",
__func__,
gpio_get_value(fuelgauge->pdata->fg_irq));
return true;
}
bool max77823_fg_full_charged(struct max77823_fuelgauge_data *fuelgauge)
{
return true;
}
#endif
#ifdef CONFIG_FUELGAUGE_MAX77823_COULOMB_COUNTING
static void fg_test_print(struct max77823_fuelgauge_data *fuelgauge)
{
u8 data[2];
u32 average_vcell;
u16 w_data;
u32 temp;
u32 temp2;
u16 reg_data;
if (max77823_bulk_write(fuelgauge->i2c,
AVR_VCELL_REG, 2, data) < 0) {
pr_err("%s: Failed to read VCELL\n", __func__);
return;
}
w_data = (data[1]<<8) | data[0];
temp = (w_data & 0xFFF) * 78125;
average_vcell = temp / 1000000;
temp = ((w_data & 0xF000) >> 4) * 78125;
temp2 = temp / 1000000;
average_vcell += (temp2 << 4);
pr_info("%s: AVG_VCELL(%d), data(0x%04x)\n", __func__,
average_vcell, (data[1]<<8) | data[0]);
reg_data = max77823_read_word(fuelgauge->i2c, FULLCAP_REG);
pr_info("%s: FULLCAP(%d), data(0x%04x)\n", __func__,
reg_data/2, reg_data);
reg_data = max77823_read_word(fuelgauge->i2c, REMCAP_REP_REG);
pr_info("%s: REMCAP_REP(%d), data(0x%04x)\n", __func__,
reg_data/2, reg_data);
reg_data = max77823_read_word(fuelgauge->i2c, REMCAP_MIX_REG);
pr_info("%s: REMCAP_MIX(%d), data(0x%04x)\n", __func__,
reg_data/2, reg_data);
reg_data = max77823_read_word(fuelgauge->i2c, REMCAP_AV_REG);
pr_info("%s: REMCAP_AV(%d), data(0x%04x)\n", __func__,
reg_data/2, reg_data);
reg_data = max77823_read_word(fuelgauge->i2c, CONFIG_REG);
pr_info("%s: CONFIG_REG(0x%02x), data(0x%04x)\n", __func__,
CONFIG_REG, reg_data);
}
static void fg_periodic_read(struct max77823_fuelgauge_data *fuelgauge)
{
u8 reg;
int i;
int data[0x10];
char *str = NULL;
str = kzalloc(sizeof(char)*1024, GFP_KERNEL);
if (!str)
return;
for (i = 0; i < 16; i++) {
for (reg = 0; reg < 0x10; reg++)
data[reg] = max77823_read_word(fuelgauge->i2c, reg + i * 0x10);
sprintf(str+strlen(str),
"%04xh,%04xh,%04xh,%04xh,%04xh,%04xh,%04xh,%04xh,",
data[0x00], data[0x01], data[0x02], data[0x03],
data[0x04], data[0x05], data[0x06], data[0x07]);
sprintf(str+strlen(str),
"%04xh,%04xh,%04xh,%04xh,%04xh,%04xh,%04xh,%04xh,",
data[0x08], data[0x09], data[0x0a], data[0x0b],
data[0x0c], data[0x0d], data[0x0e], data[0x0f]);
if (i == 4)
i = 13;
}
pr_info("%s", str);
kfree(str);
}
static int fg_read_vcell(struct max77823_fuelgauge_data *fuelgauge)
{
u8 data[2];
u32 vcell;
u16 w_data;
u32 temp;
u32 temp2;
if (max77823_bulk_read(fuelgauge->i2c, VCELL_REG, 2, data) < 0) {
pr_err("%s: Failed to read VCELL\n", __func__);
return -1;
}
w_data = (data[1]<<8) | data[0];
temp = (w_data & 0xFFF) * 78125;
vcell = temp / 1000000;
temp = ((w_data & 0xF000) >> 4) * 78125;
temp2 = temp / 1000000;
vcell += (temp2 << 4);
if (!(fuelgauge->info.pr_cnt % PRINT_COUNT))
pr_info("%s: VCELL(%d), data(0x%04x)\n",
__func__, vcell, (data[1]<<8) | data[0]);
return vcell;
}
static int fg_read_vfocv(struct max77823_fuelgauge_data *fuelgauge)
{
u8 data[2];
u32 vfocv = 0;
u16 w_data;
u32 temp;
u32 temp2;
if (max77823_bulk_read(fuelgauge->i2c, VFOCV_REG, 2, data) < 0) {
pr_err("%s: Failed to read VFOCV\n", __func__);
return -1;
}
w_data = (data[1]<<8) | data[0];
temp = (w_data & 0xFFF) * 78125;
vfocv = temp / 1000000;
temp = ((w_data & 0xF000) >> 4) * 78125;
temp2 = temp / 1000000;
vfocv += (temp2 << 4);
return vfocv;
}
static int fg_read_avg_vcell(struct max77823_fuelgauge_data *fuelgauge)
{
u8 data[2];
u32 avg_vcell = 0;
u16 w_data;
u32 temp;
u32 temp2;
if (max77823_bulk_read(fuelgauge->i2c, AVR_VCELL_REG,
2, data) < 0) {
pr_err("%s: Failed to read AVG_VCELL\n", __func__);
return -1;
}
w_data = (data[1]<<8) | data[0];
temp = (w_data & 0xFFF) * 78125;
avg_vcell = temp / 1000000;
temp = ((w_data & 0xF000) >> 4) * 78125;
temp2 = temp / 1000000;
avg_vcell += (temp2 << 4);
return avg_vcell;
}
static int fg_check_battery_present(struct max77823_fuelgauge_data *fuelgauge)
{
u8 status_data[2];
int ret = 1;
/* 1. Check Bst bit */
if (max77823_bulk_read(fuelgauge->i2c, STATUS_REG,
2, status_data) < 0) {
pr_err("%s: Failed to read STATUS_REG\n", __func__);
return 0;
}
if (status_data[0] & (0x1 << 3)) {
pr_info("%s: addr(0x01), data(0x%04x)\n", __func__,
(status_data[1]<<8) | status_data[0]);
pr_info("%s: battery is absent!!\n", __func__);
ret = 0;
}
return ret;
}
static int fg_write_temp(struct max77823_fuelgauge_data *fuelgauge,
int temperature)
{
u8 data[2];
data[0] = (temperature%10) * 1000 / 39;
data[1] = temperature / 10;
max77823_bulk_read(fuelgauge->i2c, TEMPERATURE_REG,
2, data);
pr_debug("%s: temperature to (%d, 0x%02x%02x)\n",
__func__, temperature, data[1], data[0]);
return temperature;
}
static int fg_read_temp(struct max77823_fuelgauge_data *fuelgauge)
{
u8 data[2] = {0, 0};
int temper = 0;
if (fg_check_battery_present(fuelgauge)) {
if (max77823_bulk_read(fuelgauge->i2c,
TEMPERATURE_REG, 2, data) < 0) {
pr_err("%s: Failed to read TEMPERATURE_REG\n",
__func__);
return -1;
}
if (data[1]&(0x1 << 7)) {
temper = ((~(data[1]))&0xFF)+1;
temper *= (-1000);
temper -= ((~((int)data[0]))+1) * 39 / 10;
} else {
temper = data[1] & 0x7f;
temper *= 1000;
temper += data[0] * 39 / 10;
}
} else
temper = 20000;
if (!(fuelgauge->info.pr_cnt % PRINT_COUNT))
pr_info("%s: TEMPERATURE(%d), data(0x%04x)\n",
__func__, temper, (data[1]<<8) | data[0]);
return temper/100;
}
/* soc should be 0.1% unit */
static int fg_read_vfsoc(struct max77823_fuelgauge_data *fuelgauge)
{
u8 data[2];
int soc;
if (max77823_bulk_read(fuelgauge->i2c, VFSOC_REG,
2, data) < 0) {
pr_err("%s: Failed to read VFSOC\n", __func__);
return -1;
}
soc = ((data[1] * 100) + (data[0] * 100 / 256)) / 10;
return min(soc, 1000);
}
/* soc should be 0.1% unit */
static int fg_read_avsoc(struct max77823_fuelgauge_data *fuelgauge)
{
u8 data[2];
int soc;
if (max77823_bulk_read(fuelgauge->i2c, SOCAV_REG,
2, data) < 0) {
pr_err("%s: Failed to read AVSOC\n", __func__);
return -1;
}
soc = ((data[1] * 100) + (data[0] * 100 / 256)) / 10;
return min(soc, 1000);
}
/* soc should be 0.1% unit */
static int fg_read_soc(struct max77823_fuelgauge_data *fuelgauge)
{
u8 data[2];
int soc;
if (max77823_bulk_read(fuelgauge->i2c, SOCREP_REG, 2, data) < 0) {
pr_err("%s: Failed to read SOCREP\n", __func__);
return -1;
}
soc = ((data[1] * 100) + (data[0] * 100 / 256)) / 10;
pr_debug("%s: raw capacity (%d)\n", __func__, soc);
if (!(fuelgauge->info.pr_cnt % PRINT_COUNT))
pr_debug("%s: raw capacity (%d), data(0x%04x)\n",
__func__, soc, (data[1]<<8) | data[0]);
return min(soc, 1000);
}
/* soc should be 0.01% unit */
static int fg_read_rawsoc(struct max77823_fuelgauge_data *fuelgauge)
{
u8 data[2];
int soc;
if (max77823_bulk_read(fuelgauge->i2c, SOCREP_REG,
2, data) < 0) {
pr_err("%s: Failed to read SOCREP\n", __func__);
return -1;
}
soc = (data[1] * 100) + (data[0] * 100 / 256);
pr_debug("%s: raw capacity (0.01%%) (%d)\n",
__func__, soc);
if (!(fuelgauge->info.pr_cnt % PRINT_COUNT))
pr_debug("%s: raw capacity (%d), data(0x%04x)\n",
__func__, soc, (data[1]<<8) | data[0]);
return min(soc, 10000);
}
static int fg_read_fullcap(struct max77823_fuelgauge_data *fuelgauge)
{
u8 data[2];
int ret;
if (max77823_bulk_read(fuelgauge->i2c, FULLCAP_REG,
2, data) < 0) {
pr_err("%s: Failed to read FULLCAP\n", __func__);
return -1;
}
ret = (data[1] << 8) + data[0];
return ret;
}
static int fg_read_mixcap(struct max77823_fuelgauge_data *fuelgauge)
{
u8 data[2];
int ret;
if (max77823_bulk_read(fuelgauge->i2c, REMCAP_MIX_REG,
2, data) < 0) {
pr_err("%s: Failed to read REMCAP_MIX_REG\n",
__func__);
return -1;
}
ret = (data[1] << 8) + data[0];
return ret;
}
static int fg_read_avcap(struct max77823_fuelgauge_data *fuelgauge)
{
u8 data[2];
int ret;
if (max77823_bulk_read(fuelgauge->i2c, REMCAP_AV_REG,
2, data) < 0) {
pr_err("%s: Failed to read REMCAP_AV_REG\n",
__func__);
return -1;
}
ret = (data[1] << 8) + data[0];
return ret;
}
static int fg_read_repcap(struct max77823_fuelgauge_data *fuelgauge)
{
u8 data[2];
int ret;
if (max77823_bulk_read(fuelgauge->i2c, REMCAP_REP_REG,
2, data) < 0) {
pr_err("%s: Failed to read REMCAP_REP_REG\n",
__func__);
return -1;
}
ret = (data[1] << 8) + data[0];
return ret;
}
static int fg_read_current(struct max77823_fuelgauge_data *fuelgauge, int unit)
{
u8 data1[2], data2[2];
u32 temp, sign;
s32 i_current;
s32 avg_current;
if (max77823_bulk_read(fuelgauge->i2c, CURRENT_REG,
2, data1) < 0) {
pr_err("%s: Failed to read CURRENT\n", __func__);
return -1;
}
if (max77823_bulk_read(fuelgauge->i2c, AVG_CURRENT_REG,
2, data2) < 0) {
pr_err("%s: Failed to read AVERAGE CURRENT\n", __func__);
return -1;
}
temp = ((data1[1]<<8) | data1[0]) & 0xFFFF;
if (temp & (0x1 << 15)) {
sign = NEGATIVE;
temp = (~temp & 0xFFFF) + 1;
} else
sign = POSITIVE;
/* 1.5625uV/0.01Ohm(Rsense) = 156.25uA */
switch (unit) {
case SEC_BATTEY_CURRENT_UA:
i_current = temp * 15625 / 100;
break;
case SEC_BATTEY_CURRENT_MA:
default:
i_current = temp * 15625 / 100000;
}
if (sign)
i_current *= -1;
temp = ((data2[1]<<8) | data2[0]) & 0xFFFF;
if (temp & (0x1 << 15)) {
sign = NEGATIVE;
temp = (~temp & 0xFFFF) + 1;
} else
sign = POSITIVE;
/* 1.5625uV/0.01Ohm(Rsense) = 156.25uA */
avg_current = temp * 15625 / 100000;
if (sign)
avg_current *= -1;
if (!(fuelgauge->info.pr_cnt++ % PRINT_COUNT)) {
fg_test_print(fuelgauge);
pr_info("%s: CURRENT(%dmA), AVG_CURRENT(%dmA)\n",
__func__, i_current, avg_current);
fuelgauge->info.pr_cnt = 1;
/* Read max77823's all registers every 5 minute. */
fg_periodic_read(fuelgauge);
}
return i_current;
}
static int fg_read_avg_current(struct max77823_fuelgauge_data *fuelgauge, int unit)
{
u8 data2[2];
u32 temp, sign;
s32 avg_current;
if (max77823_bulk_read(fuelgauge->i2c, AVG_CURRENT_REG,
2, data2) < 0) {
pr_err("%s: Failed to read AVERAGE CURRENT\n",
__func__);
return -1;
}
temp = ((data2[1]<<8) | data2[0]) & 0xFFFF;
if (temp & (0x1 << 15)) {
sign = NEGATIVE;
temp = (~temp & 0xFFFF) + 1;
} else
sign = POSITIVE;
/* 1.5625uV/0.01Ohm(Rsense) = 156.25uA */
switch (unit) {
case SEC_BATTEY_CURRENT_UA:
avg_current = temp * 15625 / 100;
break;
case SEC_BATTEY_CURRENT_MA:
default:
avg_current = temp * 15625 / 100000;
}
if (sign)
avg_current *= -1;
return avg_current;
}
int fg_reset_soc(struct max77823_fuelgauge_data *fuelgauge)
{
u8 data[2];
int vfocv, fullcap;
/* delay for current stablization */
msleep(500);
pr_info("%s: Before quick-start - VCELL(%d), VFOCV(%d), VfSOC(%d), RepSOC(%d)\n",
__func__, fg_read_vcell(fuelgauge), fg_read_vfocv(fuelgauge),
fg_read_vfsoc(fuelgauge), fg_read_soc(fuelgauge));
pr_info("%s: Before quick-start - current(%d), avg current(%d)\n",
__func__, fg_read_current(fuelgauge, SEC_BATTEY_CURRENT_MA),
fg_read_avg_current(fuelgauge, SEC_BATTEY_CURRENT_MA));
if (fuelgauge->pdata->check_jig_status ||
!fuelgauge->pdata->check_jig_status()) {
pr_info("%s : Return by No JIG_ON signal\n", __func__);
return 0;
}
max77823_write_word(fuelgauge->i2c, CYCLES_REG, 0);
if (max77823_bulk_read(fuelgauge->i2c, MISCCFG_REG,
2, data) < 0) {
pr_err("%s: Failed to read MiscCFG\n", __func__);
return -1;
}
data[1] |= (0x1 << 2);
if (max77823_bulk_write(fuelgauge->i2c, MISCCFG_REG,
2, data) < 0) {
pr_err("%s: Failed to write MiscCFG\n", __func__);
return -1;
}
msleep(250);
max77823_write_word(fuelgauge->i2c, FULLCAP_REG,
fuelgauge->battery_data->Capacity);
msleep(500);
pr_info("%s: After quick-start - VCELL(%d), VFOCV(%d), VfSOC(%d), RepSOC(%d)\n",
__func__, fg_read_vcell(fuelgauge), fg_read_vfocv(fuelgauge),
fg_read_vfsoc(fuelgauge), fg_read_soc(fuelgauge));
pr_info("%s: After quick-start - current(%d), avg current(%d)\n",
__func__, fg_read_current(fuelgauge, SEC_BATTEY_CURRENT_MA),
fg_read_avg_current(fuelgauge, SEC_BATTEY_CURRENT_MA));
max77823_write_word(fuelgauge->i2c, CYCLES_REG, 0x00a0);
/* P8 is not turned off by Quickstart @3.4V
* (It's not a problem, depend on mode data)
* Power off for factory test(File system, etc..) */
vfocv = fg_read_vfocv(fuelgauge);
if (vfocv < POWER_OFF_VOLTAGE_LOW_MARGIN) {
pr_info("%s: Power off condition(%d)\n", __func__, vfocv);
fullcap = max77823_read_word(fuelgauge->i2c, FULLCAP_REG);
/* FullCAP * 0.009 */
max77823_write_word(fuelgauge->i2c, REMCAP_REP_REG,
(u16)(fullcap * 9 / 1000));
msleep(200);
pr_info("%s: new soc=%d, vfocv=%d\n", __func__,
fg_read_soc(fuelgauge), vfocv);
}
pr_info("%s: Additional step - VfOCV(%d), VfSOC(%d), RepSOC(%d)\n",
__func__, fg_read_vfocv(fuelgauge),
fg_read_vfsoc(fuelgauge), fg_read_soc(fuelgauge));
return 0;
}
int fg_reset_capacity_by_jig_connection(struct max77823_fuelgauge_data *fuelgauge)
{
pr_info("%s: DesignCap = Capacity - 1 (Jig Connection)\n", __func__);
return max77823_write_word(fuelgauge->i2c, DESIGNCAP_REG,
fuelgauge->battery_data->Capacity-1);
}
int fg_adjust_capacity(struct max77823_fuelgauge_data *fuelgauge)
{
u8 data[2];
data[0] = 0;
data[1] = 0;
/* 1. Write RemCapREP(05h)=0; */
if (max77823_bulk_write(fuelgauge->i2c, REMCAP_REP_REG,
2, data) < 0) {
pr_err("%s: Failed to write RemCap_REP\n", __func__);
return -1;
}
msleep(200);
pr_info("%s: After adjust - RepSOC(%d)\n", __func__,
fg_read_soc(fuelgauge));
return 0;
}
void fg_low_batt_compensation(struct max77823_fuelgauge_data *fuelgauge,
u32 level)
{
int read_val;
u32 temp;
pr_info("%s: Adjust SOCrep to %d!!\n", __func__, level);
read_val = max77823_read_word(fuelgauge->i2c, FULLCAP_REG);
/* RemCapREP (05h) = FullCap(10h) x 0.0090 */
temp = read_val * (level*90) / 10000;
max77823_write_word(fuelgauge->i2c, REMCAP_REP_REG,
(u16)temp);
}
static int fg_check_status_reg(struct max77823_fuelgauge_data *fuelgauge)
{
u8 status_data[2];
int ret = 0;
/* 1. Check Smn was generatedread */
if (max77823_bulk_read(fuelgauge->i2c, STATUS_REG,
2, status_data) < 0) {
pr_err("%s: Failed to read STATUS_REG\n", __func__);
return -1;
}
pr_info("%s: addr(0x00), data(0x%04x)\n", __func__,
(status_data[1]<<8) | status_data[0]);
if (status_data[1] & (0x1 << 2))
ret = 1;
/* 2. clear Status reg */
status_data[1] = 0;
if (max77823_bulk_write(fuelgauge->i2c, STATUS_REG,
2, status_data) < 0) {
pr_info("%s: Failed to write STATUS_REG\n", __func__);
return -1;
}
return ret;
}
int get_fuelgauge_value(struct max77823_fuelgauge_data *fuelgauge, int data)
{
int ret;
switch (data) {
case FG_LEVEL:
ret = fg_read_soc(fuelgauge);
break;
case FG_TEMPERATURE:
ret = fg_read_temp(fuelgauge);
break;
case FG_VOLTAGE:
ret = fg_read_vcell(fuelgauge);
break;
case FG_CURRENT:
ret = fg_read_current(fuelgauge, SEC_BATTEY_CURRENT_MA);
break;
case FG_CURRENT_AVG:
ret = fg_read_avg_current(fuelgauge, SEC_BATTEY_CURRENT_MA);
break;
case FG_CHECK_STATUS:
ret = fg_check_status_reg(fuelgauge);
break;
case FG_RAW_SOC:
ret = fg_read_rawsoc(fuelgauge);
break;
case FG_VF_SOC:
ret = fg_read_vfsoc(fuelgauge);
break;
case FG_AV_SOC:
ret = fg_read_avsoc(fuelgauge);
break;
case FG_FULLCAP:
ret = fg_read_fullcap(fuelgauge);
break;
case FG_MIXCAP:
ret = fg_read_mixcap(fuelgauge);
break;
case FG_AVCAP:
ret = fg_read_avcap(fuelgauge);
break;
case FG_REPCAP:
ret = fg_read_repcap(fuelgauge);
break;
default:
ret = -1;
break;
}
return ret;
}
int max77823_alert_init(struct max77823_fuelgauge_data *fuelgauge, int soc)
{
u8 misccgf_data[2];
u8 salrt_data[2];
u8 config_data[2];
u8 valrt_data[2];
u8 talrt_data[2];
u16 read_data = 0;
/* Using RepSOC */
if (max77823_bulk_read(fuelgauge->i2c, MISCCFG_REG, 2,
misccgf_data) < 0) {
pr_err("%s: Failed to read MISCCFG_REG\n", __func__);
return -1;
}
misccgf_data[0] = misccgf_data[0] & ~(0x03);
if (max77823_bulk_write(fuelgauge->i2c, MISCCFG_REG,
2, misccgf_data) < 0) {
pr_info("%s: Failed to write MISCCFG_REG\n", __func__);
return -1;
}
/* SALRT Threshold setting */
salrt_data[1] = 0xff;
salrt_data[0] = soc;
if (max77823_bulk_write(fuelgauge->i2c, SALRT_THRESHOLD_REG,
2, salrt_data) < 0) {
pr_info("%s: Failed to write SALRT_THRESHOLD_REG\n", __func__);
return -1;
}
/* Reset VALRT Threshold setting (disable) */
valrt_data[1] = 0xFF;
valrt_data[0] = 0x00;
if (max77823_bulk_write(fuelgauge->i2c, VALRT_THRESHOLD_REG,
2, valrt_data) < 0) {
pr_info("%s: Failed to write VALRT_THRESHOLD_REG\n", __func__);
return -1;
}
read_data = max77823_read_word(fuelgauge->i2c, (u8)VALRT_THRESHOLD_REG);
if (read_data != 0xff00)
pr_err("%s: VALRT_THRESHOLD_REG is not valid (0x%x)\n",
__func__, read_data);
/* Reset TALRT Threshold setting (disable) */
talrt_data[1] = 0x7F;
talrt_data[0] = 0x80;
if (max77823_bulk_write(fuelgauge->i2c, TALRT_THRESHOLD_REG,
2, talrt_data) < 0) {
pr_info("%s: Failed to write TALRT_THRESHOLD_REG\n", __func__);
return -1;
}
read_data = max77823_read_word(fuelgauge->i2c, (u8)TALRT_THRESHOLD_REG);
if (read_data != 0x7f80)
pr_err("%s: TALRT_THRESHOLD_REG is not valid (0x%x)\n",
__func__, read_data);
/*mdelay(100);*/
/* Enable SOC alerts */
if (max77823_bulk_read(fuelgauge->i2c, CONFIG_REG,
2, config_data) < 0) {
pr_err("%s: Failed to read CONFIG_REG\n", __func__);
return -1;
}
config_data[0] = config_data[0] | (0x1 << 2);
if (max77823_bulk_write(fuelgauge->i2c, CONFIG_REG,
2, config_data) < 0) {
pr_info("%s: Failed to write CONFIG_REG\n", __func__);
return -1;
}
pr_info("[%s] SALRT(0x%x%x), VALRT(0x%x%x), CONFIG(0x%x%x)\n",
__func__,
salrt_data[1], salrt_data[0],
valrt_data[1], valrt_data[0],
config_data[1], config_data[0]);
return 1;
}
void fg_fullcharged_compensation(struct max77823_fuelgauge_data *fuelgauge,
u32 is_recharging, bool pre_update)
{
static int new_fullcap_data;
pr_info("%s: is_recharging(%d), pre_update(%d)\n",
__func__, is_recharging, pre_update);
new_fullcap_data =
max77823_read_word(fuelgauge->i2c, FULLCAP_REG);
if (new_fullcap_data < 0)
new_fullcap_data = fuelgauge->battery_data->Capacity;
/* compare with initial capacity */
if (new_fullcap_data >
(fuelgauge->battery_data->Capacity * 110 / 100)) {
pr_info("%s: [Case 1] capacity = 0x%04x, NewFullCap = 0x%04x\n",
__func__, fuelgauge->battery_data->Capacity,
new_fullcap_data);
new_fullcap_data =
(fuelgauge->battery_data->Capacity * 110) / 100;
max77823_write_word(fuelgauge->i2c, REMCAP_REP_REG,
(u16)(new_fullcap_data));
max77823_write_word(fuelgauge->i2c, FULLCAP_REG,
(u16)(new_fullcap_data));
} else if (new_fullcap_data <
(fuelgauge->battery_data->Capacity * 50 / 100)) {
pr_info("%s: [Case 5] capacity = 0x%04x, NewFullCap = 0x%04x\n",
__func__, fuelgauge->battery_data->Capacity,
new_fullcap_data);
new_fullcap_data =
(fuelgauge->battery_data->Capacity * 50) / 100;
max77823_write_word(fuelgauge->i2c, REMCAP_REP_REG,
(u16)(new_fullcap_data));
max77823_write_word(fuelgauge->i2c, FULLCAP_REG,
(u16)(new_fullcap_data));
} else {
/* compare with previous capacity */
if (new_fullcap_data >
(fuelgauge->info.previous_fullcap * 110 / 100)) {
pr_info("%s: [Case 2] previous_fullcap = 0x%04x, NewFullCap = 0x%04x\n",
__func__, fuelgauge->info.previous_fullcap,
new_fullcap_data);
new_fullcap_data =
(fuelgauge->info.previous_fullcap * 110) / 100;
max77823_write_word(fuelgauge->i2c, REMCAP_REP_REG,
(u16)(new_fullcap_data));
max77823_write_word(fuelgauge->i2c, FULLCAP_REG,
(u16)(new_fullcap_data));
} else if (new_fullcap_data <
(fuelgauge->info.previous_fullcap * 90 / 100)) {
pr_info("%s: [Case 3] previous_fullcap = 0x%04x, NewFullCap = 0x%04x\n",
__func__, fuelgauge->info.previous_fullcap,
new_fullcap_data);
new_fullcap_data =
(fuelgauge->info.previous_fullcap * 90) / 100;
max77823_write_word(fuelgauge->i2c, REMCAP_REP_REG,
(u16)(new_fullcap_data));
max77823_write_word(fuelgauge->i2c, FULLCAP_REG,
(u16)(new_fullcap_data));
} else {
pr_info("%s: [Case 4] previous_fullcap = 0x%04x, NewFullCap = 0x%04x\n",
__func__, fuelgauge->info.previous_fullcap,
new_fullcap_data);
}
}
/* 4. Write RepSOC(06h)=100%; */
max77823_write_word(fuelgauge->i2c, SOCREP_REG, (u16)(0x64 << 8));
/* 5. Write MixSOC(0Dh)=100%; */
max77823_write_word(fuelgauge->i2c, SOCMIX_REG, (u16)(0x64 << 8));
/* 6. Write AVSOC(0Eh)=100%; */
max77823_write_word(fuelgauge->i2c, SOCAV_REG, (u16)(0x64 << 8));
/* if pre_update case, skip updating PrevFullCAP value. */
if (!pre_update)
fuelgauge->info.previous_fullcap =
max77823_read_word(fuelgauge->i2c, FULLCAP_REG);
pr_info("%s: (A) FullCap = 0x%04x, RemCap = 0x%04x\n", __func__,
max77823_read_word(fuelgauge->i2c, FULLCAP_REG),
max77823_read_word(fuelgauge->i2c, REMCAP_REP_REG));
fg_periodic_read(fuelgauge);
}
void fg_check_vf_fullcap_range(struct max77823_fuelgauge_data *fuelgauge)
{
static int new_vffullcap;
bool is_vffullcap_changed = true;
if (fuelgauge->pdata->check_jig_status &&
fuelgauge->pdata->check_jig_status())
fg_reset_capacity_by_jig_connection(fuelgauge);
new_vffullcap = max77823_read_word(fuelgauge->i2c, FULLCAP_NOM_REG);
if (new_vffullcap < 0)
new_vffullcap = fuelgauge->battery_data->Capacity;
pr_info("[%s]vffullcap = %d\n", __func__, new_vffullcap);
/* compare with initial capacity */
if (new_vffullcap >
(fuelgauge->battery_data->Capacity * 110 / 100)) {
pr_info("%s: [Case 1] capacity = 0x%04x, NewVfFullCap = 0x%04x\n",
__func__, fuelgauge->battery_data->Capacity,
new_vffullcap);
new_vffullcap =
(fuelgauge->battery_data->Capacity * 110) / 100;
max77823_write_word(fuelgauge->i2c, DQACC_REG,
(u16)(new_vffullcap / 4));
max77823_write_word(fuelgauge->i2c, DPACC_REG, (u16)0x3200);
} else if (new_vffullcap <
(fuelgauge->battery_data->Capacity * 50 / 100)) {
pr_info("%s: [Case 5] capacity = 0x%04x, NewVfFullCap = 0x%04x\n",
__func__, fuelgauge->battery_data->Capacity,
new_vffullcap);
new_vffullcap =
(fuelgauge->battery_data->Capacity * 50) / 100;
max77823_write_word(fuelgauge->i2c, DQACC_REG,
(u16)(new_vffullcap / 4));
max77823_write_word(fuelgauge->i2c, DPACC_REG,
(u16)0x3200);
} else {
/* compare with previous capacity */
if (new_vffullcap >
(fuelgauge->info.previous_vffullcap * 110 / 100)) {
pr_info("%s: [Case 2] previous_vffullcap = 0x%04x, NewVfFullCap = 0x%04x\n",
__func__, fuelgauge->info.previous_vffullcap,
new_vffullcap);
new_vffullcap =
(fuelgauge->info.previous_vffullcap * 110) /
100;
max77823_write_word(fuelgauge->i2c, DQACC_REG,
(u16)(new_vffullcap / 4));
max77823_write_word(fuelgauge->i2c, DPACC_REG,
(u16)0x3200);
} else if (new_vffullcap <
(fuelgauge->info.previous_vffullcap * 90 / 100)) {
pr_info("%s: [Case 3] previous_vffullcap = 0x%04x, NewVfFullCap = 0x%04x\n",
__func__, fuelgauge->info.previous_vffullcap,
new_vffullcap);
new_vffullcap =
(fuelgauge->info.previous_vffullcap * 90) / 100;
max77823_write_word(fuelgauge->i2c, DQACC_REG,
(u16)(new_vffullcap / 4));
max77823_write_word(fuelgauge->i2c, DPACC_REG,
(u16)0x3200);
} else {
pr_info("%s: [Case 4] previous_vffullcap = 0x%04x, NewVfFullCap = 0x%04x\n",
__func__, fuelgauge->info.previous_vffullcap,
new_vffullcap);
is_vffullcap_changed = false;
}
}
/* delay for register setting (dQacc, dPacc) */
if (is_vffullcap_changed)
msleep(300);
fuelgauge->info.previous_vffullcap =
max77823_read_word(fuelgauge->i2c, FULLCAP_NOM_REG);
if (is_vffullcap_changed)
pr_info("%s : VfFullCap(0x%04x), dQacc(0x%04x), dPacc(0x%04x)\n",
__func__,
max77823_read_word(fuelgauge->i2c, FULLCAP_NOM_REG),
max77823_read_word(fuelgauge->i2c, DQACC_REG),
max77823_read_word(fuelgauge->i2c, DPACC_REG));
}
void fg_set_full_charged(struct max77823_fuelgauge_data *fuelgauge)
{
pr_info("[FG_Set_Full] (B) FullCAP(%d), RemCAP(%d)\n",
(max77823_read_word(fuelgauge->i2c, FULLCAP_REG)/2),
(max77823_read_word(fuelgauge->i2c, REMCAP_REP_REG)/2));
max77823_write_word(fuelgauge->i2c, FULLCAP_REG,
(u16)max77823_read_word(fuelgauge->i2c, REMCAP_REP_REG));
pr_info("[FG_Set_Full] (A) FullCAP(%d), RemCAP(%d)\n",
(max77823_read_word(fuelgauge->i2c, FULLCAP_REG)/2),
(max77823_read_word(fuelgauge->i2c, REMCAP_REP_REG)/2));
}
static void display_low_batt_comp_cnt(struct max77823_fuelgauge_data *fuelgauge)
{
pr_info("[%d, %d], [%d, %d], ",
fuelgauge->info.low_batt_comp_cnt[0][0],
fuelgauge->info.low_batt_comp_cnt[0][1],
fuelgauge->info.low_batt_comp_cnt[1][0],
fuelgauge->info.low_batt_comp_cnt[1][1]);
pr_info("[%d, %d], [%d, %d], [%d, %d]\n",
fuelgauge->info.low_batt_comp_cnt[2][0],
fuelgauge->info.low_batt_comp_cnt[2][1],
fuelgauge->info.low_batt_comp_cnt[3][0],
fuelgauge->info.low_batt_comp_cnt[3][1],
fuelgauge->info.low_batt_comp_cnt[4][0],
fuelgauge->info.low_batt_comp_cnt[4][1]);
}
static void add_low_batt_comp_cnt(struct max77823_fuelgauge_data *fuelgauge,
int range, int level)
{
int i;
int j;
/* Increase the requested count value, and reset others. */
fuelgauge->info.low_batt_comp_cnt[range-1][level/2]++;
for (i = 0; i < LOW_BATT_COMP_RANGE_NUM; i++) {
for (j = 0; j < LOW_BATT_COMP_LEVEL_NUM; j++) {
if (i == range-1 && j == level/2)
continue;
else
fuelgauge->info.low_batt_comp_cnt[i][j] = 0;
}
}
}
void prevent_early_poweroff(struct max77823_fuelgauge_data *fuelgauge,
int vcell, int *fg_soc)
{
int soc = 0;
int read_val;
soc = fg_read_soc(fuelgauge);
/* No need to write REMCAP_REP in below normal cases */
if (soc > POWER_OFF_SOC_HIGH_MARGIN ||
vcell > fuelgauge->battery_data->low_battery_comp_voltage)
return;
pr_info("%s: soc=%d, vcell=%d\n", __func__, soc, vcell);
if (vcell > POWER_OFF_VOLTAGE_HIGH_MARGIN) {
read_val = max77823_read_word(fuelgauge->i2c, FULLCAP_REG);
/* FullCAP * 0.013 */
max77823_write_word(fuelgauge->i2c, REMCAP_REP_REG,
(u16)(read_val * 13 / 1000));
msleep(200);
*fg_soc = fg_read_soc(fuelgauge);
pr_info("%s: new soc=%d, vcell=%d\n", __func__, *fg_soc, vcell);
}
}
void reset_low_batt_comp_cnt(struct max77823_fuelgauge_data *fuelgauge)
{
memset(fuelgauge->info.low_batt_comp_cnt, 0,
sizeof(fuelgauge->info.low_batt_comp_cnt));
}
static int check_low_batt_comp_condition(
struct max77823_fuelgauge_data *fuelgauge,
int *nLevel)
{
int i;
int j;
int ret = 0;
for (i = 0; i < LOW_BATT_COMP_RANGE_NUM; i++) {
for (j = 0; j < LOW_BATT_COMP_LEVEL_NUM; j++) {
if (fuelgauge->info.low_batt_comp_cnt[i][j] >=
MAX_LOW_BATT_CHECK_CNT) {
display_low_batt_comp_cnt(fuelgauge);
ret = 1;
*nLevel = j*2 + 1;
break;
}
}
}
return ret;
}
static int get_low_batt_threshold(struct max77823_fuelgauge_data *fuelgauge,
int range, int nCurrent, int level)
{
int ret = 0;
ret = fuelgauge->battery_data->low_battery_table[range][OFFSET] +
((nCurrent *
fuelgauge->battery_data->low_battery_table[range][SLOPE]) /
1000);
return ret;
}
int low_batt_compensation(struct max77823_fuelgauge_data *fuelgauge,
int fg_soc, int fg_vcell, int fg_current)
{
int fg_avg_current = 0;
int fg_min_current = 0;
int new_level = 0;
int i, table_size;
/* Not charging, Under low battery comp voltage */
if (fg_vcell <= fuelgauge->battery_data->low_battery_comp_voltage) {
fg_avg_current = fg_read_avg_current(fuelgauge,
SEC_BATTEY_CURRENT_MA);
fg_min_current = min(fg_avg_current, fg_current);
table_size =
sizeof(fuelgauge->battery_data->low_battery_table) /
(sizeof(s16)*TABLE_MAX);
for (i = 1; i < CURRENT_RANGE_MAX_NUM; i++) {
if ((fg_min_current >= fuelgauge->battery_data->
low_battery_table[i-1][RANGE]) &&
(fg_min_current < fuelgauge->battery_data->
low_battery_table[i][RANGE])) {
if (fg_soc >= 10 && fg_vcell <
get_low_batt_threshold(fuelgauge,
i, fg_min_current, 1)) {
add_low_batt_comp_cnt(
fuelgauge, i, 1);
} else {
reset_low_batt_comp_cnt(fuelgauge);
}
}
}
if (check_low_batt_comp_condition(fuelgauge, &new_level)) {
fg_low_batt_compensation(fuelgauge, new_level);
reset_low_batt_comp_cnt(fuelgauge);
/* Do not update soc right after
* low battery compensation
* to prevent from powering-off suddenly
*/
pr_info("%s: SOC is set to %d by low compensation!!\n",
__func__, fg_read_soc(fuelgauge));
}
}
/* Prevent power off over 3500mV */
prevent_early_poweroff(fuelgauge, fg_vcell, &fg_soc);
return fg_soc;
}
static bool is_booted_in_low_battery(struct max77823_fuelgauge_data *fuelgauge)
{
int fg_vcell = get_fuelgauge_value(fuelgauge, FG_VOLTAGE);
int fg_current = get_fuelgauge_value(fuelgauge, FG_CURRENT);
int threshold = 0;
threshold = 3300 + ((fg_current * 17) / 100);
if (fg_vcell <= threshold)
return true;
else
return false;
}
static bool fuelgauge_recovery_handler(struct max77823_fuelgauge_data *fuelgauge)
{
int current_soc;
int avsoc;
int temperature;
if (fuelgauge->info.soc >= LOW_BATTERY_SOC_REDUCE_UNIT) {
pr_err("%s: Reduce the Reported SOC by 1%%\n",
__func__);
current_soc =
get_fuelgauge_value(fuelgauge, FG_LEVEL) / 10;
if (current_soc) {
pr_info("%s: Returning to Normal discharge path\n",
__func__);
pr_info("%s: Actual SOC(%d) non-zero\n",
__func__, current_soc);
fuelgauge->info.is_low_batt_alarm = false;
} else {
temperature =
get_fuelgauge_value(fuelgauge, FG_TEMPERATURE);
avsoc =
get_fuelgauge_value(fuelgauge, FG_AV_SOC);
if ((fuelgauge->info.soc > avsoc) ||
(temperature < 0)) {
fuelgauge->info.soc -=
LOW_BATTERY_SOC_REDUCE_UNIT;
pr_err("%s: New Reduced RepSOC (%d)\n",
__func__, fuelgauge->info.soc);
} else
pr_info("%s: Waiting for recovery (AvSOC:%d)\n",
__func__, avsoc);
}
}
return fuelgauge->info.is_low_batt_alarm;
}
static int get_fuelgauge_soc(struct max77823_fuelgauge_data *fuelgauge)
{
union power_supply_propval value;
int fg_soc = 0;
int fg_vfsoc;
int fg_vcell;
int fg_current;
int avg_current;
ktime_t current_time;
struct timespec ts;
int fullcap_check_interval;
if (fuelgauge->info.is_low_batt_alarm)
if (fuelgauge_recovery_handler(fuelgauge)) {
fg_soc = fuelgauge->info.soc;
goto return_soc;
}
#if defined(ANDROID_ALARM_ACTIVATED)
current_time = alarm_get_elapsed_realtime();
ts = ktime_to_timespec(current_time);
#else
current_time = ktime_get_boottime();
ts = ktime_to_timespec(current_time);
#endif
/* check fullcap range */
fullcap_check_interval =
(ts.tv_sec - fuelgauge->info.fullcap_check_interval);
if (fullcap_check_interval >
VFFULLCAP_CHECK_INTERVAL) {
pr_info("%s: check fullcap range (interval:%d)\n",
__func__, fullcap_check_interval);
fg_check_vf_fullcap_range(fuelgauge);
fuelgauge->info.fullcap_check_interval = ts.tv_sec;
}
fg_soc = get_fuelgauge_value(fuelgauge, FG_LEVEL);
if (fg_soc < 0) {
pr_info("Can't read soc!!!");
fg_soc = fuelgauge->info.soc;
}
if (fuelgauge->info.low_batt_boot_flag) {
fg_soc = 0;
if (fuelgauge->pdata->check_cable_callback &&
fuelgauge->pdata->check_cable_callback() !=
POWER_SUPPLY_TYPE_BATTERY &&
!is_booted_in_low_battery(fuelgauge)) {
fg_adjust_capacity(fuelgauge);
fuelgauge->info.low_batt_boot_flag = 0;
}
if (fuelgauge->pdata->check_cable_callback &&
fuelgauge->pdata->check_cable_callback() ==
POWER_SUPPLY_TYPE_BATTERY)
fuelgauge->info.low_batt_boot_flag = 0;
}
fg_vcell = get_fuelgauge_value(fuelgauge, FG_VOLTAGE);
fg_current = get_fuelgauge_value(fuelgauge, FG_CURRENT);
avg_current = get_fuelgauge_value(fuelgauge, FG_CURRENT_AVG);
fg_vfsoc = get_fuelgauge_value(fuelgauge, FG_VF_SOC);
psy_do_property("battery", get,
POWER_SUPPLY_PROP_STATUS, value);
/* Algorithm for reducing time to fully charged (from MAXIM) */
if (value.intval != POWER_SUPPLY_STATUS_DISCHARGING &&
value.intval != POWER_SUPPLY_STATUS_FULL &&
fuelgauge->cable_type != POWER_SUPPLY_TYPE_USB &&
/* Skip when first check after boot up */
!fuelgauge->info.is_first_check &&
(fg_vfsoc > VFSOC_FOR_FULLCAP_LEARNING &&
(fg_current > LOW_CURRENT_FOR_FULLCAP_LEARNING &&
fg_current < HIGH_CURRENT_FOR_FULLCAP_LEARNING) &&
(avg_current > LOW_AVGCURRENT_FOR_FULLCAP_LEARNING &&
avg_current < HIGH_AVGCURRENT_FOR_FULLCAP_LEARNING))) {
if (fuelgauge->info.full_check_flag == 2) {
pr_info("%s: force fully charged SOC !! (%d)",
__func__, fuelgauge->info.full_check_flag);
fg_set_full_charged(fuelgauge);
fg_soc = get_fuelgauge_value(fuelgauge, FG_LEVEL);
} else if (fuelgauge->info.full_check_flag < 2)
pr_info("%s: full_check_flag (%d)",
__func__, fuelgauge->info.full_check_flag);
/* prevent overflow */
if (fuelgauge->info.full_check_flag++ > 10000)
fuelgauge->info.full_check_flag = 3;
} else
fuelgauge->info.full_check_flag = 0;
/* Checks vcell level and tries to compensate SOC if needed.*/
/* If jig cable is connected, then skip low batt compensation check. */
if (fuelgauge->pdata->check_jig_status &&
!fuelgauge->pdata->check_jig_status() &&
value.intval == POWER_SUPPLY_STATUS_DISCHARGING)
fg_soc = low_batt_compensation(
fuelgauge, fg_soc, fg_vcell, fg_current);
if (fuelgauge->info.is_first_check)
fuelgauge->info.is_first_check = false;
fuelgauge->info.soc = fg_soc;
return_soc:
pr_debug("%s: soc(%d), low_batt_alarm(%d)\n",
__func__, fuelgauge->info.soc,
fuelgauge->info.is_low_batt_alarm);
return fg_soc;
}
static void full_comp_work_handler(struct work_struct *work)
{
struct sec_fg_info *fg_info =
container_of(work, struct sec_fg_info, full_comp_work.work);
struct max77823_fuelgauge_data *fuelgauge =
container_of(fg_info, struct max77823_fuelgauge_data, info);
int avg_current;
union power_supply_propval value;
avg_current = get_fuelgauge_value(fuelgauge, FG_CURRENT_AVG);
psy_do_property("battery", get,
POWER_SUPPLY_PROP_STATUS, value);
if (avg_current >= 25) {
cancel_delayed_work(&fuelgauge->info.full_comp_work);
schedule_delayed_work(&fuelgauge->info.full_comp_work, 100);
} else {
pr_info("%s: full charge compensation start (avg_current %d)\n",
__func__, avg_current);
fg_fullcharged_compensation(fuelgauge,
(int)(value.intval ==
POWER_SUPPLY_STATUS_FULL), false);
}
}
static irqreturn_t max77823_jig_irq_thread(int irq, void *irq_data)
{
struct max77823_fuelgauge_data *fuelgauge = irq_data;
if (fuelgauge->pdata->check_jig_status &&
fuelgauge->pdata->check_jig_status())
fg_reset_capacity_by_jig_connection(fuelgauge);
else
pr_info("%s: jig removed\n", __func__);
return IRQ_HANDLED;
}
bool max77823_fg_init(struct max77823_fuelgauge_data *fuelgauge)
{
ktime_t current_time;
struct timespec ts;
u8 data[2] = {0, 0};
#if defined(ANDROID_ALARM_ACTIVATED)
current_time = alarm_get_elapsed_realtime();
ts = ktime_to_timespec(current_time);
#else
current_time = ktime_get_boottime();
ts = ktime_to_timespec(current_time);
#endif
fuelgauge->info.fullcap_check_interval = ts.tv_sec;
fuelgauge->info.is_low_batt_alarm = false;
fuelgauge->info.is_first_check = true;
/* Init parameters to prevent wrong compensation. */
fuelgauge->info.previous_fullcap =
max77823_read_word(fuelgauge->i2c, FULLCAP_REG);
fuelgauge->info.previous_vffullcap =
max77823_read_word(fuelgauge->i2c, FULLCAP_NOM_REG);
if (fuelgauge->pdata->check_cable_callback &&
(fuelgauge->pdata->check_cable_callback() !=
POWER_SUPPLY_TYPE_BATTERY) &&
is_booted_in_low_battery(fuelgauge))
fuelgauge->info.low_batt_boot_flag = 1;
if (fuelgauge->pdata->check_jig_status &&
fuelgauge->pdata->check_jig_status())
fg_reset_capacity_by_jig_connection(fuelgauge);
else {
if (fuelgauge->pdata->jig_irq) {
int ret;
ret = request_threaded_irq(fuelgauge->pdata->jig_irq,
NULL, max77823_jig_irq_thread,
fuelgauge->pdata->jig_irq_attr,
"jig-irq", fuelgauge);
if (ret) {
pr_info("%s: Failed to Reqeust IRQ\n",
__func__);
}
}
}
INIT_DELAYED_WORK(&fuelgauge->info.full_comp_work,
full_comp_work_handler);
/* NOT using FG for temperature */
if (fuelgauge->pdata->thermal_source != SEC_BATTERY_THERMAL_SOURCE_FG) {
data[0] = 0x00;
data[1] = 0x21;
max77823_bulk_write(fuelgauge->i2c, CONFIG_REG,
2, data);
}
return true;
}
bool max77823_fg_fuelalert_init(struct max77823_fuelgauge_data *fuelgauge,
int soc)
{
/* 1. Set max77823 alert configuration. */
if (max77823_alert_init(fuelgauge, soc) > 0)
return true;
else
return false;
}
bool max77823_fg_is_fuelalerted(struct max77823_fuelgauge_data *fuelgauge)
{
if (get_fuelgauge_value(fuelgauge, FG_CHECK_STATUS) > 0)
return true;
else
return false;
}
bool max77823_fg_fuelalert_process(void *irq_data, bool is_fuel_alerted)
{
struct max77823_fuelgauge_data *fuelgauge =
(struct max77823_fuelgauge_data *)irq_data;
union power_supply_propval value;
int overcurrent_limit_in_soc;
int current_soc =
get_fuelgauge_value(fuelgauge, FG_LEVEL);
psy_do_property("battery", get,
POWER_SUPPLY_PROP_STATUS, value);
if (value.intval == POWER_SUPPLY_STATUS_CHARGING)
return true;
if (fuelgauge->info.soc <= STABLE_LOW_BATTERY_DIFF)
overcurrent_limit_in_soc = STABLE_LOW_BATTERY_DIFF_LOWBATT;
else
overcurrent_limit_in_soc = STABLE_LOW_BATTERY_DIFF;
if (((int)fuelgauge->info.soc - current_soc) >
overcurrent_limit_in_soc) {
pr_info("%s: Abnormal Current Consumption jump by %d units\n",
__func__, (((int)fuelgauge->info.soc - current_soc)));
pr_info("%s: Last Reported SOC (%d).\n",
__func__, fuelgauge->info.soc);
fuelgauge->info.is_low_batt_alarm = true;
if (fuelgauge->info.soc >=
LOW_BATTERY_SOC_REDUCE_UNIT)
return true;
}
if (value.intval ==
POWER_SUPPLY_STATUS_DISCHARGING) {
pr_err("Set battery level as 0, power off.\n");
fuelgauge->info.soc = 0;
value.intval = 0;
psy_do_property("battery", set,
POWER_SUPPLY_PROP_CAPACITY, value);
}
return true;
}
bool max77823_fg_full_charged(struct max77823_fuelgauge_data *fuelgauge)
{
union power_supply_propval value;
psy_do_property("battery", get,
POWER_SUPPLY_PROP_STATUS, value);
/* full charge compensation algorithm by MAXIM */
fg_fullcharged_compensation(fuelgauge,
(int)(value.intval == POWER_SUPPLY_STATUS_FULL), true);
cancel_delayed_work(&fuelgauge->info.full_comp_work);
schedule_delayed_work(&fuelgauge->info.full_comp_work, 100);
return false;
}
bool max77823_fg_reset(struct max77823_fuelgauge_data *fuelgauge)
{
if (!fg_reset_soc(fuelgauge))
return true;
else
return false;
}
#endif
static void max77823_fg_get_scaled_capacity(
struct max77823_fuelgauge_data *fuelgauge,
union power_supply_propval *val)
{
val->intval = (val->intval < fuelgauge->pdata->capacity_min) ?
0 : ((val->intval - fuelgauge->pdata->capacity_min) * 1000 /
(fuelgauge->capacity_max - fuelgauge->pdata->capacity_min));
pr_debug("%s: scaled capacity (%d.%d)\n",
__func__, val->intval/10, val->intval%10);
}
/* capacity is integer */
static void max77823_fg_get_atomic_capacity(
struct max77823_fuelgauge_data *fuelgauge,
union power_supply_propval *val)
{
if (fuelgauge->pdata->capacity_calculation_type &
SEC_FUELGAUGE_CAPACITY_TYPE_ATOMIC) {
if (fuelgauge->capacity_old < val->intval)
val->intval = fuelgauge->capacity_old + 1;
else if (fuelgauge->capacity_old > val->intval)
val->intval = fuelgauge->capacity_old - 1;
}
/* keep SOC stable in abnormal status */
if (fuelgauge->pdata->capacity_calculation_type &
SEC_FUELGAUGE_CAPACITY_TYPE_SKIP_ABNORMAL) {
if (!fuelgauge->is_charging &&
fuelgauge->capacity_old < val->intval) {
pr_err("%s: capacity (old %d : new %d)\n",
__func__, fuelgauge->capacity_old, val->intval);
val->intval = fuelgauge->capacity_old;
}
}
/* updated old capacity */
fuelgauge->capacity_old = val->intval;
}
static int max77823_fg_calculate_dynamic_scale(
struct max77823_fuelgauge_data *fuelgauge)
{
union power_supply_propval raw_soc_val;
#ifdef CONFIG_FUELGAUGE_MAX77823_VOLTAGE_TRACKING
raw_soc_val.intval = max77823_get_soc(fuelgauge) / 10;
#else
raw_soc_val.intval = get_fuelgauge_value(fuelgauge,
FG_RAW_SOC);
#endif
if (raw_soc_val.intval <
fuelgauge->pdata->capacity_max -
fuelgauge->pdata->capacity_max_margin) {
fuelgauge->capacity_max =
fuelgauge->pdata->capacity_max -
fuelgauge->pdata->capacity_max_margin;
pr_debug("%s: capacity_max (%d)", __func__,
fuelgauge->capacity_max);
} else {
fuelgauge->capacity_max =
(raw_soc_val.intval >
fuelgauge->pdata->capacity_max +
fuelgauge->pdata->capacity_max_margin) ?
(fuelgauge->pdata->capacity_max +
fuelgauge->pdata->capacity_max_margin) :
raw_soc_val.intval;
pr_debug("%s: raw soc (%d)", __func__,
fuelgauge->capacity_max);
}
fuelgauge->capacity_max =
(fuelgauge->capacity_max * 99 / 100);
/* update capacity_old for sec_fg_get_atomic_capacity algorithm */
fuelgauge->capacity_old = 100;
pr_info("%s: %d is used for capacity_max\n",
__func__, fuelgauge->capacity_max);
return fuelgauge->capacity_max;
}
#ifdef CONFIG_FUELGAUGE_MAX77823_VOLTAGE_TRACKING
static int max77823_fg_get_property(strcut power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
struct max77823_fuelgauge_data *fuelgauge =
container_of(psy, struct max77823_fuelgauge_data, psy_fg);
switch (psp) {
/* Cell voltage (VCELL, mV) */
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
val->intval = max77823_get_vcell(fuelgauge);
break;
/* Additional Voltage Information (mV) */
case POWER_SUPPLY_PROP_VOLTAGE_AVG:
switch (val->intval) {
case SEC_BATTEY_VOLTAGE_AVERAGE:
val->intval = max77823_get_avgvcell(fuelgauge);
break;
case SEC_BATTEY_VOLTAGE_OCV:
val->intval = max77823_get_vfocv(fuelgauge);
break;
}
break;
/* Current (mA) */
case POWER_SUPPLY_PROP_CURRENT_NOW:
val->intval = 0;
break;
/* Average Current (mA) */
case POWER_SUPPLY_PROP_CURRENT_AVG:
val->intval = 0;
break;
/* SOC (%) */
case POWER_SUPPLY_PROP_CAPACITY:
if (val->intval == SEC_FUELGAUGE_CAPACITY_TYPE_RAW) {
val->intval = max77823_get_soc(fuelgauge);
} else {
val->intval = max77823_get_soc(fuelgauge) / 10;
if (fuelgauge->pdata->capacity_calculation_type &
(SEC_FUELGAUGE_CAPACITY_TYPE_SCALE |
SEC_FUELGAUGE_CAPACITY_TYPE_DYNAMIC_SCALE))
max77823_fg_get_scaled_capacity(fuelgauge, val);
/* capacity should be between 0% and 100%
* (0.1% degree)
*/
if (val->intval > 1000)
val->intval = 1000;
if (val->intval < 0)
val->intval = 0;
/* get only integer part */
val->intval /= 10;
/* check whether doing the wake_unlock */
if ((val->intval > fuelgauge->pdata->fuel_alert_soc) &&
fuelgauge->is_fuel_alerted) {
wake_unlock(&fuelgauge->fuel_alert_wake_lock);
max77823_fg_fuelalert_init(fuelgauge,
fuelgauge->pdata->fuel_alert_soc);
}
/* (Only for atomic capacity)
* In initial time, capacity_old is 0.
* and in resume from sleep,
* capacity_old is too different from actual soc.
* should update capacity_old
* by val->intval in booting or resume.
*/
if (fuelgauge->initial_update_of_soc) {
/* updated old capacity */
fuelgauge->capacity_old = val->intval;
fuelgauge->initial_update_of_soc = false;
break;
}
if (fuelgauge->pdata->capacity_calculation_type &
(SEC_FUELGAUGE_CAPACITY_TYPE_ATOMIC |
SEC_FUELGAUGE_CAPACITY_TYPE_SKIP_ABNORMAL))
max77823_fg_get_atomic_capacity(fuelgauge, val);
}
break;
/* Battery Temperature */
case POWER_SUPPLY_PROP_TEMP:
/* Target Temperature */
case POWER_SUPPLY_PROP_TEMP_AMBIENT:
val->intval = max77823_get_temperature(fuelgauge);
break;
default:
return false;
}
return true;
}
static int max77823_fg_set_property(struct power_supply *psy,
enum power_supply_property psp,
const union power_supply_propval *val)
{
struct max77823_fuelgauge_data *fuelgauge =
container_of(psy, struct max77823_fuelgauge_data, psy_fg);
switch (psp) {
case POWER_SUPPLY_PROP_STATUS:
if (val->intval == POWER_SUPPLY_STATUS_FULL)
max77823_fg_full_charged(fuelgauge);
break;
case POWER_SUPPLY_PROP_CHARGE_FULL:
if (val->intval == POWER_SUPPLY_TYPE_BATTERY) {
if (fuelgauge->pdata->capacity_calculation_type &
SEC_FUELGAUGE_CAPACITY_TYPE_DYNAMIC_SCALE)
max77823_fg_calculate_dynamic_scale(fuelgauge);
}
break;
case POWER_SUPPLY_PROP_ONLINE:
fuelgauge->cable_type = val->intval;
if (val->intval == POWER_SUPPLY_TYPE_BATTERY)
fuelgauge->is_charging = false;
else
fuelgauge->is_charging = true;
break;
/* Battery Temperature */
case POWER_SUPPLY_PROP_CAPACITY:
if (val->intval == SEC_FUELGAUGE_CAPACITY_TYPE_RESET) {
fuelgauge->initial_update_of_soc = true;
if (!max77823_fg_reset(fuelgauge))
return -EINVAL;
else
break;
}
/* Battery Temperature */
case POWER_SUPPLY_PROP_TEMP:
/* Target Temperature */
case POWER_SUPPLY_PROP_TEMP_AMBIENT:
max77823_set_temperature(fuelgauge, val->intval);
break;
default:
return false;
}
return true;
}
#endif
#ifdef CONFIG_FUELGAUGE_MAX77823_COULOMB_COUNTING
static int max77823_fg_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
struct max77823_fuelgauge_data *fuelgauge =
container_of(psy, struct max77823_fuelgauge_data, psy_fg);
switch (psp) {
/* Cell voltage (VCELL, mV) */
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
val->intval = get_fuelgauge_value(fuelgauge, FG_VOLTAGE);
break;
/* Additional Voltage Information (mV) */
case POWER_SUPPLY_PROP_VOLTAGE_AVG:
switch (val->intval) {
case SEC_BATTEY_VOLTAGE_OCV:
val->intval = fg_read_vfocv(fuelgauge);
break;
case SEC_BATTEY_VOLTAGE_AVERAGE:
default:
val->intval = fg_read_avg_vcell(fuelgauge);
break;
}
break;
/* Current */
case POWER_SUPPLY_PROP_CURRENT_NOW:
switch (val->intval) {
case SEC_BATTEY_CURRENT_UA:
val->intval =
fg_read_current(fuelgauge,
SEC_BATTEY_CURRENT_UA);
break;
case SEC_BATTEY_CURRENT_MA:
default:
val->intval = get_fuelgauge_value(fuelgauge,
FG_CURRENT);
break;
}
break;
/* Average Current */
case POWER_SUPPLY_PROP_CURRENT_AVG:
switch (val->intval) {
case SEC_BATTEY_CURRENT_UA:
val->intval =
fg_read_avg_current(fuelgauge,
SEC_BATTEY_CURRENT_UA);
break;
case SEC_BATTEY_CURRENT_MA:
default:
val->intval =
get_fuelgauge_value(fuelgauge,
FG_CURRENT_AVG);
break;
}
break;
/* Full Capacity */
case POWER_SUPPLY_PROP_ENERGY_NOW:
switch (val->intval) {
case SEC_BATTEY_CAPACITY_DESIGNED:
val->intval = get_fuelgauge_value(fuelgauge,
FG_FULLCAP);
break;
case SEC_BATTEY_CAPACITY_ABSOLUTE:
val->intval = get_fuelgauge_value(fuelgauge,
FG_MIXCAP);
break;
case SEC_BATTEY_CAPACITY_TEMPERARY:
val->intval = get_fuelgauge_value(fuelgauge,
FG_AVCAP);
break;
case SEC_BATTEY_CAPACITY_CURRENT:
val->intval = get_fuelgauge_value(fuelgauge,
FG_REPCAP);
break;
}
break;
/* SOC (%) */
case POWER_SUPPLY_PROP_CAPACITY:
if (val->intval == SEC_FUELGAUGE_CAPACITY_TYPE_RAW) {
val->intval = get_fuelgauge_value(fuelgauge,
FG_RAW_SOC);
} else {
val->intval = get_fuelgauge_soc(fuelgauge);
if (fuelgauge->pdata->capacity_calculation_type &
(SEC_FUELGAUGE_CAPACITY_TYPE_SCALE |
SEC_FUELGAUGE_CAPACITY_TYPE_DYNAMIC_SCALE))
max77823_fg_get_scaled_capacity(fuelgauge, val);
/* capacity should be between 0% and 100%
* (0.1% degree)
*/
if (val->intval > 1000)
val->intval = 1000;
if (val->intval < 0)
val->intval = 0;
/* get only integer part */
val->intval /= 10;
/* check whether doing the wake_unlock */
if ((val->intval > fuelgauge->pdata->fuel_alert_soc) &&
fuelgauge->is_fuel_alerted) {
wake_unlock(&fuelgauge->fuel_alert_wake_lock);
max77823_fg_fuelalert_init(fuelgauge,
fuelgauge->pdata->fuel_alert_soc);
}
/* (Only for atomic capacity)
* In initial time, capacity_old is 0.
* and in resume from sleep,
* capacity_old is too different from actual soc.
* should update capacity_old
* by val->intval in booting or resume.
*/
if (fuelgauge->initial_update_of_soc) {
/* updated old capacity */
fuelgauge->capacity_old = val->intval;
fuelgauge->initial_update_of_soc = false;
break;
}
if (fuelgauge->pdata->capacity_calculation_type &
(SEC_FUELGAUGE_CAPACITY_TYPE_ATOMIC |
SEC_FUELGAUGE_CAPACITY_TYPE_SKIP_ABNORMAL))
max77823_fg_get_atomic_capacity(fuelgauge, val);
}
break;
/* Battery Temperature */
case POWER_SUPPLY_PROP_TEMP:
/* Target Temperature */
case POWER_SUPPLY_PROP_TEMP_AMBIENT:
val->intval = get_fuelgauge_value(fuelgauge,
FG_TEMPERATURE);
break;
default:
return -EINVAL;
}
return 0;
}
static int max77823_fg_set_property(struct power_supply *psy,
enum power_supply_property psp,
const union power_supply_propval *val)
{
struct max77823_fuelgauge_data *fuelgauge =
container_of(psy, struct max77823_fuelgauge_data, psy_fg);
switch (psp) {
case POWER_SUPPLY_PROP_STATUS:
if (val->intval == POWER_SUPPLY_STATUS_FULL)
max77823_fg_full_charged(fuelgauge);
break;
case POWER_SUPPLY_PROP_CHARGE_FULL:
if (val->intval == POWER_SUPPLY_TYPE_BATTERY) {
if (fuelgauge->pdata->capacity_calculation_type &
SEC_FUELGAUGE_CAPACITY_TYPE_DYNAMIC_SCALE)
max77823_fg_calculate_dynamic_scale(fuelgauge);
}
break;
case POWER_SUPPLY_PROP_ONLINE:
fuelgauge->cable_type = val->intval;
if (val->intval == POWER_SUPPLY_TYPE_BATTERY) {
fuelgauge->is_charging = false;
} else {
fuelgauge->is_charging = true;
if (fuelgauge->info.is_low_batt_alarm) {
pr_info("%s: Reset low_batt_alarm\n",
__func__);
fuelgauge->info.is_low_batt_alarm = false;
}
reset_low_batt_comp_cnt(fuelgauge);
}
break;
/* Battery Temperature */
case POWER_SUPPLY_PROP_CAPACITY:
if (val->intval == SEC_FUELGAUGE_CAPACITY_TYPE_RESET) {
fuelgauge->initial_update_of_soc = true;
if (!max77823_fg_reset(fuelgauge))
return -EINVAL;
else
break;
}
case POWER_SUPPLY_PROP_TEMP:
/* Target Temperature */
case POWER_SUPPLY_PROP_TEMP_AMBIENT:
fg_write_temp(fuelgauge, val->intval);
break;
case POWER_SUPPLY_PROP_ENERGY_NOW:
fg_reset_capacity_by_jig_connection(fuelgauge);
break;
default:
return -EINVAL;
}
return 0;
}
#endif
static void max77823_fg_isr_work(struct work_struct *work)
{
struct max77823_fuelgauge_data *fuelgauge =
container_of(work, struct max77823_fuelgauge_data, isr_work.work);
/* process for fuel gauge chip */
max77823_fg_fuelalert_process(fuelgauge, fuelgauge->is_fuel_alerted);
/* process for others */
if (fuelgauge->pdata->fuelalert_process != NULL)
fuelgauge->pdata->fuelalert_process(fuelgauge->is_fuel_alerted);
}
static irqreturn_t max77823_fg_irq_thread(int irq, void *irq_data)
{
struct max77823_fuelgauge_data *fuelgauge = irq_data;
bool fuel_alerted;
if (fuelgauge->pdata->fuel_alert_soc >= 0) {
fuel_alerted =
max77823_fg_is_fuelalerted(fuelgauge);
pr_info("%s: Fuel-alert %salerted!\n",
__func__, fuel_alerted ? "" : "NOT ");
fg_test_print(fuelgauge);
if (fuel_alerted == fuelgauge->is_fuel_alerted) {
if (!fuelgauge->pdata->repeated_fuelalert) {
pr_debug("%s: Fuel-alert Repeated (%d)\n",
__func__, fuelgauge->is_fuel_alerted);
return IRQ_HANDLED;
}
}
if (fuel_alerted)
wake_lock(&fuelgauge->fuel_alert_wake_lock);
else
wake_unlock(&fuelgauge->fuel_alert_wake_lock);
schedule_delayed_work(&fuelgauge->isr_work, 0);
fuelgauge->is_fuel_alerted = fuel_alerted;
}
return IRQ_HANDLED;
}
static int max77823_fuelgauge_debugfs_show(struct seq_file *s, void *data)
{
struct max77823_fuelgauge_data *fuelgauge = s->private;
u8 reg;
u8 reg_data;
seq_printf(s, "MAX77823 FUELGAUGE IC :\n");
seq_printf(s, "===================\n");
for (reg = 0xB0; reg <= 0xC3; reg++) {
max77823_read_reg(fuelgauge->i2c, reg, &reg_data);
seq_printf(s, "0x%02x:\t0x%02x\n", reg, reg_data);
}
seq_printf(s, "\n");
return 0;
}
static int max77823_fuelgauge_debugfs_open(struct inode *inode, struct file *file)
{
return single_open(file, max77823_fuelgauge_debugfs_show, inode->i_private);
}
static const struct file_operations max77823_fuelgauge_debugfs_fops = {
.open = max77823_fuelgauge_debugfs_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
#ifdef CONFIG_OF
static int max77823_fuelgauge_parse_dt(struct max77823_fuelgauge_data *fuelgauge)
{
struct device_node *np = of_find_node_by_name(NULL, "max77823-fuelgauge");
sec_battery_platform_data_t *pdata = fuelgauge->pdata;
int ret;
int i;
/* reset, irq gpio info */
if (np == NULL) {
pr_err("%s np NULL\n", __func__);
} else {
ret = of_property_read_u32(np, "fuelgauge,capacity_max",
&pdata->capacity_max);
if (ret < 0)
pr_err("%s error reading capacity_max %d\n", __func__, ret);
ret = of_property_read_u32(np, "fuelgauge,capacity_max_margin",
&pdata->capacity_max_margin);
if (ret < 0)
pr_err("%s error reading capacity_max_margin %d\n", __func__, ret);
ret = of_property_read_u32(np, "fuelgauge,capacity_min",
&pdata->capacity_min);
if (ret < 0)
pr_err("%s error reading capacity_min %d\n", __func__, ret);
ret = of_property_read_u32(np, "fuelgauge,capacity_calculation_type",
&pdata->capacity_calculation_type);
if (ret < 0)
pr_err("%s error reading capacity_calculation_type %d\n",
__func__, ret);
ret = of_property_read_u32(np, "fuelgauge,fuel_alert_soc",
&pdata->fuel_alert_soc);
if (ret < 0)
pr_err("%s error reading pdata->fuel_alert_soc %d\n",
__func__, ret);
pdata->repeated_fuelalert = of_property_read_bool(np,
"fuelgauge,repeated_fuelalert");
ret = of_property_read_u32(np, "fuelgauge,capacity",
&fuelgauge->battery_data->Capacity);
if (ret < 0)
pr_err("%s error reading capacity_calculation_type %d\n",
__func__, ret);
ret = of_property_read_u32(np, "fuelgauge,low_battery_comp_voltage",
&fuelgauge->battery_data->low_battery_comp_voltage);
if (ret < 0)
pr_err("%s error reading capacity_calculation_type %d\n",
__func__, ret);
for(i = 0; i < (CURRENT_RANGE_MAX_NUM * TABLE_MAX); i++) {
ret = of_property_read_u32_index(np,
"fuelgauge,low_battery_table",
i,
&fuelgauge->battery_data->low_battery_table[i/3][i%3]);
pr_info("[%d]",
fuelgauge->battery_data->low_battery_table[i/3][i%3]);
if ((i%3) == 2)
pr_info("\n");
}
pr_info("%s fg_irq: %d, capacity_max: %d\n"
"cpacity_max_margin: %d, capacity_min: %d\n"
"calculation_type: 0x%x, fuel_alert_soc: %d,\n"
"repeated_fuelalert: %d\n",
__func__, pdata->fg_irq,
pdata->capacity_max, pdata->capacity_max_margin,
pdata->capacity_min, pdata->capacity_calculation_type,
pdata->fuel_alert_soc, pdata->repeated_fuelalert);
}
pr_info("[%s][%d][%d]\n",
__func__, fuelgauge->battery_data->Capacity,
fuelgauge->battery_data->low_battery_comp_voltage);
return 0;
}
#endif
static int __devinit max77823_fuelgauge_probe(struct platform_device *pdev)
{
struct max77823_dev *max77823 = dev_get_drvdata(pdev->dev.parent);
struct max77823_platform_data *pdata = dev_get_platdata(max77823->dev);
struct max77823_fuelgauge_data *fuelgauge;
int ret = 0;
union power_supply_propval raw_soc_val;
pr_info("%s: MAX77823 Fuelgauge Driver Loading\n", __func__);
fuelgauge = kzalloc(sizeof(*fuelgauge), GFP_KERNEL);
if (!fuelgauge)
return -ENOMEM;
pdata->fuelgauge_data = kzalloc(sizeof(sec_battery_platform_data_t), GFP_KERNEL);
if (!pdata->fuelgauge_data)
return -ENOMEM;
mutex_init(&fuelgauge->fg_lock);
fuelgauge->dev = &pdev->dev;
fuelgauge->pdata = pdata->fuelgauge_data;
fuelgauge->i2c = max77823->fuelgauge;
fuelgauge->max77823_pdata = pdata;
#if defined(CONFIG_OF)
fuelgauge->battery_data = kzalloc(sizeof(struct battery_data_t),
GFP_KERNEL);
if(!fuelgauge->battery_data) {
pr_err("Failed to allocate memory\n");
return -ENOMEM;
}
ret = max77823_fuelgauge_parse_dt(fuelgauge);
if (ret < 0) {
pr_err("%s not found charger dt! ret[%d]\n",
__func__, ret);
}
#endif
platform_set_drvdata(pdev, fuelgauge);
fuelgauge->psy_fg.name = "max77823-fuelgauge";
fuelgauge->psy_fg.type = POWER_SUPPLY_TYPE_UNKNOWN;
fuelgauge->psy_fg.get_property = max77823_fg_get_property;
fuelgauge->psy_fg.set_property = max77823_fg_set_property;
fuelgauge->psy_fg.properties = max77823_fuelgauge_props;
fuelgauge->psy_fg.num_properties =
ARRAY_SIZE(max77823_fuelgauge_props);
fuelgauge->capacity_max = fuelgauge->pdata->capacity_max;
#ifdef CONFIG_FUELGAUGE_MAX77823_VOLTAGE_TRACKING
raw_soc_val.intval = max77823_get_soc(fuelgauge) / 10;
#else
raw_soc_val.intval = get_fuelgauge_value(fuelgauge, FG_RAW_SOC);
#endif
if(raw_soc_val.intval > fuelgauge->pdata->capacity_max)
max77823_fg_calculate_dynamic_scale(fuelgauge);
(void) debugfs_create_file("max77823-fuelgauge-regs",
S_IRUGO, NULL, (void *)fuelgauge, &max77823_fuelgauge_debugfs_fops);
if (!max77823_fg_init(fuelgauge)) {
pr_err("%s: Failed to Initialize Fuelgauge\n", __func__);
goto err_free;
}
ret = power_supply_register(&pdev->dev, &fuelgauge->psy_fg);
if (ret) {
pr_err("%s: Failed to Register psy_fg\n", __func__);
goto err_free;
}
fuelgauge->fg_irq = pdata->irq_base + MAX77823_FG_IRQ_ALERT;
pr_info("[%s]IRQ_BASE(%d) FG_IRQ(%d)\n",
__func__, pdata->irq_base, fuelgauge->fg_irq);
if (fuelgauge->fg_irq) {
INIT_DELAYED_WORK(&fuelgauge->isr_work, max77823_fg_isr_work);
ret = request_threaded_irq(fuelgauge->fg_irq,
NULL, max77823_fg_irq_thread,
IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
"fuelgauge-irq", fuelgauge);
if (ret) {
pr_err("%s: Failed to Reqeust IRQ\n", __func__);
goto err_supply_unreg;
}
}
fuelgauge->is_fuel_alerted = false;
if (fuelgauge->pdata->fuel_alert_soc >= 0) {
if (max77823_fg_fuelalert_init(fuelgauge,
fuelgauge->pdata->fuel_alert_soc))
wake_lock_init(&fuelgauge->fuel_alert_wake_lock,
WAKE_LOCK_SUSPEND, "fuel_alerted");
else {
pr_err("%s: Failed to Initialize Fuel-alert\n",
__func__);
goto err_irq;
}
}
fuelgauge->initial_update_of_soc = true;
pr_info("%s: MAX77823 Fuelgauge Driver Loaded\n", __func__);
return 0;
err_irq:
if (fuelgauge->fg_irq)
free_irq(fuelgauge->fg_irq, fuelgauge);
err_supply_unreg:
power_supply_unregister(&fuelgauge->psy_fg);
err_free:
mutex_destroy(&fuelgauge->fg_lock);
kfree(fuelgauge);
return ret;
}
static int __devexit max77823_fuelgauge_remove(struct platform_device *pdev)
{
struct max77823_fuelgauge_data *fuelgauge =
platform_get_drvdata(pdev);
if (fuelgauge->pdata->fuel_alert_soc >= 0)
wake_lock_destroy(&fuelgauge->fuel_alert_wake_lock);
return 0;
}
static int max77823_fuelgauge_suspend(struct device *dev)
{
return 0;
}
static int max77823_fuelgauge_resume(struct device *dev)
{
struct max77823_fuelgauge_data *fuelgauge = dev_get_drvdata(dev);
fuelgauge->initial_update_of_soc = true;
return 0;
}
static void max77823_fuelgauge_shutdown(struct device *dev)
{
}
#if defined(CONFIG_OF)
static struct of_device_id max77823_fuelgauge_dt_ids[] = {
{ .compatible = "samsung,max77823-fuelgauge" },
{ }
};
MODULE_DEVICE_TABLE(of, max77823_fuelgauge_dt_ids);
#endif /* CONFIG_OF */
static SIMPLE_DEV_PM_OPS(max77823_fuelgauge_pm_ops, max77823_fuelgauge_suspend,
max77823_fuelgauge_resume);
static struct platform_driver max77823_fuelgauge_driver = {
.driver = {
.name = "max77823-fuelgauge",
.owner = THIS_MODULE,
#ifdef CONFIG_PM
.pm = &max77823_fuelgauge_pm_ops,
#endif
.shutdown = max77823_fuelgauge_shutdown,
#if defined(CONFIG_OF)
.of_match_table = max77823_fuelgauge_dt_ids,
#endif /* CONFIG_OF */
},
.probe = max77823_fuelgauge_probe,
.remove = __devexit_p(max77823_fuelgauge_remove),
};
static int __init max77823_fuelgauge_init(void)
{
pr_info("%s: \n", __func__);
return platform_driver_register(&max77823_fuelgauge_driver);
}
static void __exit max77823_fuelgauge_exit(void)
{
platform_driver_unregister(&max77823_fuelgauge_driver);
}
module_init(max77823_fuelgauge_init);
module_exit(max77823_fuelgauge_exit);
MODULE_DESCRIPTION("Samsung MAX778023 Fuel Gauge Driver");
MODULE_AUTHOR("Samsung Electronics");
MODULE_LICENSE("GPL");