| /* |
| * Copyright 2001 MontaVista Software Inc. |
| * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net |
| * Copyright (c) 2003, 2004 Maciej W. Rozycki |
| * |
| * Common time service routines for MIPS machines. See |
| * Documentation/mips/time.README. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; either version 2 of the License, or (at your |
| * option) any later version. |
| */ |
| #include <linux/bug.h> |
| #include <linux/clockchips.h> |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/sched.h> |
| #include <linux/param.h> |
| #include <linux/profile.h> |
| #include <linux/time.h> |
| #include <linux/timex.h> |
| #include <linux/smp.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/spinlock.h> |
| #include <linux/interrupt.h> |
| #include <linux/module.h> |
| #include <linux/kallsyms.h> |
| |
| #include <asm/bootinfo.h> |
| #include <asm/cache.h> |
| #include <asm/compiler.h> |
| #include <asm/cpu.h> |
| #include <asm/cpu-features.h> |
| #include <asm/div64.h> |
| #include <asm/sections.h> |
| #include <asm/smtc_ipi.h> |
| #include <asm/time.h> |
| |
| #include <irq.h> |
| |
| /* |
| * forward reference |
| */ |
| DEFINE_SPINLOCK(rtc_lock); |
| EXPORT_SYMBOL(rtc_lock); |
| |
| int __weak rtc_mips_set_time(unsigned long sec) |
| { |
| return 0; |
| } |
| EXPORT_SYMBOL(rtc_mips_set_time); |
| |
| int __weak rtc_mips_set_mmss(unsigned long nowtime) |
| { |
| return rtc_mips_set_time(nowtime); |
| } |
| |
| int update_persistent_clock(struct timespec now) |
| { |
| return rtc_mips_set_mmss(now.tv_sec); |
| } |
| |
| /* |
| * Null high precision timer functions for systems lacking one. |
| */ |
| static cycle_t null_hpt_read(void) |
| { |
| return 0; |
| } |
| |
| /* |
| * High precision timer functions for a R4k-compatible timer. |
| */ |
| static cycle_t c0_hpt_read(void) |
| { |
| return read_c0_count(); |
| } |
| |
| int (*mips_timer_state)(void); |
| |
| /* |
| * local_timer_interrupt() does profiling and process accounting |
| * on a per-CPU basis. |
| * |
| * In UP mode, it is invoked from the (global) timer_interrupt. |
| * |
| * In SMP mode, it might invoked by per-CPU timer interrupt, or |
| * a broadcasted inter-processor interrupt which itself is triggered |
| * by the global timer interrupt. |
| */ |
| void local_timer_interrupt(int irq, void *dev_id) |
| { |
| profile_tick(CPU_PROFILING); |
| update_process_times(user_mode(get_irq_regs())); |
| } |
| |
| int null_perf_irq(void) |
| { |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(null_perf_irq); |
| |
| int (*perf_irq)(void) = null_perf_irq; |
| |
| EXPORT_SYMBOL(perf_irq); |
| |
| /* |
| * time_init() - it does the following things. |
| * |
| * 1) plat_time_init() - |
| * a) (optional) set up RTC routines, |
| * b) (optional) calibrate and set the mips_hpt_frequency |
| * (only needed if you intended to use cpu counter as timer interrupt |
| * source) |
| * 2) calculate a couple of cached variables for later usage |
| */ |
| |
| unsigned int mips_hpt_frequency; |
| |
| static unsigned int __init calibrate_hpt(void) |
| { |
| cycle_t frequency, hpt_start, hpt_end, hpt_count, hz; |
| |
| const int loops = HZ / 10; |
| int log_2_loops = 0; |
| int i; |
| |
| /* |
| * We want to calibrate for 0.1s, but to avoid a 64-bit |
| * division we round the number of loops up to the nearest |
| * power of 2. |
| */ |
| while (loops > 1 << log_2_loops) |
| log_2_loops++; |
| i = 1 << log_2_loops; |
| |
| /* |
| * Wait for a rising edge of the timer interrupt. |
| */ |
| while (mips_timer_state()); |
| while (!mips_timer_state()); |
| |
| /* |
| * Now see how many high precision timer ticks happen |
| * during the calculated number of periods between timer |
| * interrupts. |
| */ |
| hpt_start = clocksource_mips.read(); |
| do { |
| while (mips_timer_state()); |
| while (!mips_timer_state()); |
| } while (--i); |
| hpt_end = clocksource_mips.read(); |
| |
| hpt_count = (hpt_end - hpt_start) & clocksource_mips.mask; |
| hz = HZ; |
| frequency = hpt_count * hz; |
| |
| return frequency >> log_2_loops; |
| } |
| |
| struct clocksource clocksource_mips = { |
| .name = "MIPS", |
| .mask = CLOCKSOURCE_MASK(32), |
| .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| }; |
| |
| void __init clocksource_set_clock(struct clocksource *cs, unsigned int clock) |
| { |
| u64 temp; |
| u32 shift; |
| |
| /* Find a shift value */ |
| for (shift = 32; shift > 0; shift--) { |
| temp = (u64) NSEC_PER_SEC << shift; |
| do_div(temp, clock); |
| if ((temp >> 32) == 0) |
| break; |
| } |
| cs->shift = shift; |
| cs->mult = (u32) temp; |
| } |
| |
| void __cpuinit clockevent_set_clock(struct clock_event_device *cd, |
| unsigned int clock) |
| { |
| u64 temp; |
| u32 shift; |
| |
| /* Find a shift value */ |
| for (shift = 32; shift > 0; shift--) { |
| temp = (u64) clock << shift; |
| do_div(temp, NSEC_PER_SEC); |
| if ((temp >> 32) == 0) |
| break; |
| } |
| cd->shift = shift; |
| cd->mult = (u32) temp; |
| } |
| |
| static void __init init_mips_clocksource(void) |
| { |
| if (!mips_hpt_frequency || clocksource_mips.read == null_hpt_read) |
| return; |
| |
| /* Calclate a somewhat reasonable rating value */ |
| clocksource_mips.rating = 200 + mips_hpt_frequency / 10000000; |
| |
| clocksource_set_clock(&clocksource_mips, mips_hpt_frequency); |
| |
| clocksource_register(&clocksource_mips); |
| } |
| |
| void __init __weak plat_time_init(void) |
| { |
| } |
| |
| /* |
| * This function exists in order to cause an error due to a duplicate |
| * definition if platform code should have its own implementation. The hook |
| * to use instead is plat_time_init. plat_time_init does not receive the |
| * irqaction pointer argument anymore. This is because any function which |
| * initializes an interrupt timer now takes care of its own request_irq rsp. |
| * setup_irq calls and each clock_event_device should use its own |
| * struct irqrequest. |
| */ |
| void __init plat_timer_setup(struct irqaction *irq) |
| { |
| BUG(); |
| } |
| |
| void __init time_init(void) |
| { |
| plat_time_init(); |
| |
| /* Choose appropriate high precision timer routines. */ |
| if (!cpu_has_counter && !clocksource_mips.read) |
| /* No high precision timer -- sorry. */ |
| clocksource_mips.read = null_hpt_read; |
| else if (!mips_hpt_frequency && !mips_timer_state) { |
| /* A high precision timer of unknown frequency. */ |
| if (!clocksource_mips.read) |
| /* No external high precision timer -- use R4k. */ |
| clocksource_mips.read = c0_hpt_read; |
| } else { |
| /* We know counter frequency. Or we can get it. */ |
| if (!clocksource_mips.read) { |
| /* No external high precision timer -- use R4k. */ |
| clocksource_mips.read = c0_hpt_read; |
| } |
| if (!mips_hpt_frequency) |
| mips_hpt_frequency = calibrate_hpt(); |
| |
| /* Report the high precision timer rate for a reference. */ |
| printk("Using %u.%03u MHz high precision timer.\n", |
| ((mips_hpt_frequency + 500) / 1000) / 1000, |
| ((mips_hpt_frequency + 500) / 1000) % 1000); |
| } |
| |
| init_mips_clocksource(); |
| mips_clockevent_init(); |
| } |