| /* |
| * SGI UltraViolet TLB flush routines. |
| * |
| * (c) 2008-2010 Cliff Wickman <cpw@sgi.com>, SGI. |
| * |
| * This code is released under the GNU General Public License version 2 or |
| * later. |
| */ |
| #include <linux/seq_file.h> |
| #include <linux/proc_fs.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| |
| #include <asm/mmu_context.h> |
| #include <asm/uv/uv.h> |
| #include <asm/uv/uv_mmrs.h> |
| #include <asm/uv/uv_hub.h> |
| #include <asm/uv/uv_bau.h> |
| #include <asm/apic.h> |
| #include <asm/idle.h> |
| #include <asm/tsc.h> |
| #include <asm/irq_vectors.h> |
| #include <asm/timer.h> |
| |
| struct msg_desc { |
| struct bau_payload_queue_entry *msg; |
| int msg_slot; |
| int sw_ack_slot; |
| struct bau_payload_queue_entry *va_queue_first; |
| struct bau_payload_queue_entry *va_queue_last; |
| }; |
| |
| #define UV_INTD_SOFT_ACK_TIMEOUT_PERIOD 0x000000000bUL |
| |
| static int uv_bau_max_concurrent __read_mostly; |
| |
| static int nobau; |
| static int __init setup_nobau(char *arg) |
| { |
| nobau = 1; |
| return 0; |
| } |
| early_param("nobau", setup_nobau); |
| |
| /* base pnode in this partition */ |
| static int uv_partition_base_pnode __read_mostly; |
| /* position of pnode (which is nasid>>1): */ |
| static int uv_nshift __read_mostly; |
| static unsigned long uv_mmask __read_mostly; |
| |
| static DEFINE_PER_CPU(struct ptc_stats, ptcstats); |
| static DEFINE_PER_CPU(struct bau_control, bau_control); |
| static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask); |
| |
| struct reset_args { |
| int sender; |
| }; |
| |
| /* |
| * Determine the first node on a uvhub. 'Nodes' are used for kernel |
| * memory allocation. |
| */ |
| static int __init uvhub_to_first_node(int uvhub) |
| { |
| int node, b; |
| |
| for_each_online_node(node) { |
| b = uv_node_to_blade_id(node); |
| if (uvhub == b) |
| return node; |
| } |
| return -1; |
| } |
| |
| /* |
| * Determine the apicid of the first cpu on a uvhub. |
| */ |
| static int __init uvhub_to_first_apicid(int uvhub) |
| { |
| int cpu; |
| |
| for_each_present_cpu(cpu) |
| if (uvhub == uv_cpu_to_blade_id(cpu)) |
| return per_cpu(x86_cpu_to_apicid, cpu); |
| return -1; |
| } |
| |
| /* |
| * Free a software acknowledge hardware resource by clearing its Pending |
| * bit. This will return a reply to the sender. |
| * If the message has timed out, a reply has already been sent by the |
| * hardware but the resource has not been released. In that case our |
| * clear of the Timeout bit (as well) will free the resource. No reply will |
| * be sent (the hardware will only do one reply per message). |
| */ |
| static inline void uv_reply_to_message(struct msg_desc *mdp, |
| struct bau_control *bcp) |
| { |
| unsigned long dw; |
| struct bau_payload_queue_entry *msg; |
| |
| msg = mdp->msg; |
| if (!msg->canceled) { |
| dw = (msg->sw_ack_vector << UV_SW_ACK_NPENDING) | |
| msg->sw_ack_vector; |
| uv_write_local_mmr( |
| UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw); |
| } |
| msg->replied_to = 1; |
| msg->sw_ack_vector = 0; |
| } |
| |
| /* |
| * Process the receipt of a RETRY message |
| */ |
| static inline void uv_bau_process_retry_msg(struct msg_desc *mdp, |
| struct bau_control *bcp) |
| { |
| int i; |
| int cancel_count = 0; |
| int slot2; |
| unsigned long msg_res; |
| unsigned long mmr = 0; |
| struct bau_payload_queue_entry *msg; |
| struct bau_payload_queue_entry *msg2; |
| struct ptc_stats *stat; |
| |
| msg = mdp->msg; |
| stat = &per_cpu(ptcstats, bcp->cpu); |
| stat->d_retries++; |
| /* |
| * cancel any message from msg+1 to the retry itself |
| */ |
| for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) { |
| if (msg2 > mdp->va_queue_last) |
| msg2 = mdp->va_queue_first; |
| if (msg2 == msg) |
| break; |
| |
| /* same conditions for cancellation as uv_do_reset */ |
| if ((msg2->replied_to == 0) && (msg2->canceled == 0) && |
| (msg2->sw_ack_vector) && ((msg2->sw_ack_vector & |
| msg->sw_ack_vector) == 0) && |
| (msg2->sending_cpu == msg->sending_cpu) && |
| (msg2->msg_type != MSG_NOOP)) { |
| slot2 = msg2 - mdp->va_queue_first; |
| mmr = uv_read_local_mmr |
| (UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE); |
| msg_res = ((msg2->sw_ack_vector << 8) | |
| msg2->sw_ack_vector); |
| /* |
| * This is a message retry; clear the resources held |
| * by the previous message only if they timed out. |
| * If it has not timed out we have an unexpected |
| * situation to report. |
| */ |
| if (mmr & (msg_res << 8)) { |
| /* |
| * is the resource timed out? |
| * make everyone ignore the cancelled message. |
| */ |
| msg2->canceled = 1; |
| stat->d_canceled++; |
| cancel_count++; |
| uv_write_local_mmr( |
| UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, |
| (msg_res << 8) | msg_res); |
| } else |
| printk(KERN_INFO "note bau retry: no effect\n"); |
| } |
| } |
| if (!cancel_count) |
| stat->d_nocanceled++; |
| } |
| |
| /* |
| * Do all the things a cpu should do for a TLB shootdown message. |
| * Other cpu's may come here at the same time for this message. |
| */ |
| static void uv_bau_process_message(struct msg_desc *mdp, |
| struct bau_control *bcp) |
| { |
| int msg_ack_count; |
| short socket_ack_count = 0; |
| struct ptc_stats *stat; |
| struct bau_payload_queue_entry *msg; |
| struct bau_control *smaster = bcp->socket_master; |
| |
| /* |
| * This must be a normal message, or retry of a normal message |
| */ |
| msg = mdp->msg; |
| stat = &per_cpu(ptcstats, bcp->cpu); |
| if (msg->address == TLB_FLUSH_ALL) { |
| local_flush_tlb(); |
| stat->d_alltlb++; |
| } else { |
| __flush_tlb_one(msg->address); |
| stat->d_onetlb++; |
| } |
| stat->d_requestee++; |
| |
| /* |
| * One cpu on each uvhub has the additional job on a RETRY |
| * of releasing the resource held by the message that is |
| * being retried. That message is identified by sending |
| * cpu number. |
| */ |
| if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master) |
| uv_bau_process_retry_msg(mdp, bcp); |
| |
| /* |
| * This is a sw_ack message, so we have to reply to it. |
| * Count each responding cpu on the socket. This avoids |
| * pinging the count's cache line back and forth between |
| * the sockets. |
| */ |
| socket_ack_count = atomic_add_short_return(1, (struct atomic_short *) |
| &smaster->socket_acknowledge_count[mdp->msg_slot]); |
| if (socket_ack_count == bcp->cpus_in_socket) { |
| /* |
| * Both sockets dump their completed count total into |
| * the message's count. |
| */ |
| smaster->socket_acknowledge_count[mdp->msg_slot] = 0; |
| msg_ack_count = atomic_add_short_return(socket_ack_count, |
| (struct atomic_short *)&msg->acknowledge_count); |
| |
| if (msg_ack_count == bcp->cpus_in_uvhub) { |
| /* |
| * All cpus in uvhub saw it; reply |
| */ |
| uv_reply_to_message(mdp, bcp); |
| } |
| } |
| |
| return; |
| } |
| |
| /* |
| * Determine the first cpu on a uvhub. |
| */ |
| static int uvhub_to_first_cpu(int uvhub) |
| { |
| int cpu; |
| for_each_present_cpu(cpu) |
| if (uvhub == uv_cpu_to_blade_id(cpu)) |
| return cpu; |
| return -1; |
| } |
| |
| /* |
| * Last resort when we get a large number of destination timeouts is |
| * to clear resources held by a given cpu. |
| * Do this with IPI so that all messages in the BAU message queue |
| * can be identified by their nonzero sw_ack_vector field. |
| * |
| * This is entered for a single cpu on the uvhub. |
| * The sender want's this uvhub to free a specific message's |
| * sw_ack resources. |
| */ |
| static void |
| uv_do_reset(void *ptr) |
| { |
| int i; |
| int slot; |
| int count = 0; |
| unsigned long mmr; |
| unsigned long msg_res; |
| struct bau_control *bcp; |
| struct reset_args *rap; |
| struct bau_payload_queue_entry *msg; |
| struct ptc_stats *stat; |
| |
| bcp = &per_cpu(bau_control, smp_processor_id()); |
| rap = (struct reset_args *)ptr; |
| stat = &per_cpu(ptcstats, bcp->cpu); |
| stat->d_resets++; |
| |
| /* |
| * We're looking for the given sender, and |
| * will free its sw_ack resource. |
| * If all cpu's finally responded after the timeout, its |
| * message 'replied_to' was set. |
| */ |
| for (msg = bcp->va_queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) { |
| /* uv_do_reset: same conditions for cancellation as |
| uv_bau_process_retry_msg() */ |
| if ((msg->replied_to == 0) && |
| (msg->canceled == 0) && |
| (msg->sending_cpu == rap->sender) && |
| (msg->sw_ack_vector) && |
| (msg->msg_type != MSG_NOOP)) { |
| /* |
| * make everyone else ignore this message |
| */ |
| msg->canceled = 1; |
| slot = msg - bcp->va_queue_first; |
| count++; |
| /* |
| * only reset the resource if it is still pending |
| */ |
| mmr = uv_read_local_mmr |
| (UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE); |
| msg_res = ((msg->sw_ack_vector << 8) | |
| msg->sw_ack_vector); |
| if (mmr & msg_res) { |
| stat->d_rcanceled++; |
| uv_write_local_mmr( |
| UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, |
| msg_res); |
| } |
| } |
| } |
| return; |
| } |
| |
| /* |
| * Use IPI to get all target uvhubs to release resources held by |
| * a given sending cpu number. |
| */ |
| static void uv_reset_with_ipi(struct bau_target_uvhubmask *distribution, |
| int sender) |
| { |
| int uvhub; |
| int cpu; |
| cpumask_t mask; |
| struct reset_args reset_args; |
| |
| reset_args.sender = sender; |
| |
| cpus_clear(mask); |
| /* find a single cpu for each uvhub in this distribution mask */ |
| for (uvhub = 0; |
| uvhub < sizeof(struct bau_target_uvhubmask) * BITSPERBYTE; |
| uvhub++) { |
| if (!bau_uvhub_isset(uvhub, distribution)) |
| continue; |
| /* find a cpu for this uvhub */ |
| cpu = uvhub_to_first_cpu(uvhub); |
| cpu_set(cpu, mask); |
| } |
| /* IPI all cpus; Preemption is already disabled */ |
| smp_call_function_many(&mask, uv_do_reset, (void *)&reset_args, 1); |
| return; |
| } |
| |
| static inline unsigned long |
| cycles_2_us(unsigned long long cyc) |
| { |
| unsigned long long ns; |
| unsigned long us; |
| ns = (cyc * per_cpu(cyc2ns, smp_processor_id())) |
| >> CYC2NS_SCALE_FACTOR; |
| us = ns / 1000; |
| return us; |
| } |
| |
| /* |
| * wait for all cpus on this hub to finish their sends and go quiet |
| * leaves uvhub_quiesce set so that no new broadcasts are started by |
| * bau_flush_send_and_wait() |
| */ |
| static inline void |
| quiesce_local_uvhub(struct bau_control *hmaster) |
| { |
| atomic_add_short_return(1, (struct atomic_short *) |
| &hmaster->uvhub_quiesce); |
| } |
| |
| /* |
| * mark this quiet-requestor as done |
| */ |
| static inline void |
| end_uvhub_quiesce(struct bau_control *hmaster) |
| { |
| atomic_add_short_return(-1, (struct atomic_short *) |
| &hmaster->uvhub_quiesce); |
| } |
| |
| /* |
| * Wait for completion of a broadcast software ack message |
| * return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP |
| */ |
| static int uv_wait_completion(struct bau_desc *bau_desc, |
| unsigned long mmr_offset, int right_shift, int this_cpu, |
| struct bau_control *bcp, struct bau_control *smaster, long try) |
| { |
| int relaxes = 0; |
| unsigned long descriptor_status; |
| unsigned long mmr; |
| unsigned long mask; |
| cycles_t ttime; |
| cycles_t timeout_time; |
| struct ptc_stats *stat = &per_cpu(ptcstats, this_cpu); |
| struct bau_control *hmaster; |
| |
| hmaster = bcp->uvhub_master; |
| timeout_time = get_cycles() + bcp->timeout_interval; |
| |
| /* spin on the status MMR, waiting for it to go idle */ |
| while ((descriptor_status = (((unsigned long) |
| uv_read_local_mmr(mmr_offset) >> |
| right_shift) & UV_ACT_STATUS_MASK)) != |
| DESC_STATUS_IDLE) { |
| /* |
| * Our software ack messages may be blocked because there are |
| * no swack resources available. As long as none of them |
| * has timed out hardware will NACK our message and its |
| * state will stay IDLE. |
| */ |
| if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) { |
| stat->s_stimeout++; |
| return FLUSH_GIVEUP; |
| } else if (descriptor_status == |
| DESC_STATUS_DESTINATION_TIMEOUT) { |
| stat->s_dtimeout++; |
| ttime = get_cycles(); |
| |
| /* |
| * Our retries may be blocked by all destination |
| * swack resources being consumed, and a timeout |
| * pending. In that case hardware returns the |
| * ERROR that looks like a destination timeout. |
| */ |
| if (cycles_2_us(ttime - bcp->send_message) < BIOS_TO) { |
| bcp->conseccompletes = 0; |
| return FLUSH_RETRY_PLUGGED; |
| } |
| |
| bcp->conseccompletes = 0; |
| return FLUSH_RETRY_TIMEOUT; |
| } else { |
| /* |
| * descriptor_status is still BUSY |
| */ |
| cpu_relax(); |
| relaxes++; |
| if (relaxes >= 10000) { |
| relaxes = 0; |
| if (get_cycles() > timeout_time) { |
| quiesce_local_uvhub(hmaster); |
| |
| /* single-thread the register change */ |
| spin_lock(&hmaster->masks_lock); |
| mmr = uv_read_local_mmr(mmr_offset); |
| mask = 0UL; |
| mask |= (3UL < right_shift); |
| mask = ~mask; |
| mmr &= mask; |
| uv_write_local_mmr(mmr_offset, mmr); |
| spin_unlock(&hmaster->masks_lock); |
| end_uvhub_quiesce(hmaster); |
| stat->s_busy++; |
| return FLUSH_GIVEUP; |
| } |
| } |
| } |
| } |
| bcp->conseccompletes++; |
| return FLUSH_COMPLETE; |
| } |
| |
| static inline cycles_t |
| sec_2_cycles(unsigned long sec) |
| { |
| unsigned long ns; |
| cycles_t cyc; |
| |
| ns = sec * 1000000000; |
| cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id())); |
| return cyc; |
| } |
| |
| /* |
| * conditionally add 1 to *v, unless *v is >= u |
| * return 0 if we cannot add 1 to *v because it is >= u |
| * return 1 if we can add 1 to *v because it is < u |
| * the add is atomic |
| * |
| * This is close to atomic_add_unless(), but this allows the 'u' value |
| * to be lowered below the current 'v'. atomic_add_unless can only stop |
| * on equal. |
| */ |
| static inline int atomic_inc_unless_ge(spinlock_t *lock, atomic_t *v, int u) |
| { |
| spin_lock(lock); |
| if (atomic_read(v) >= u) { |
| spin_unlock(lock); |
| return 0; |
| } |
| atomic_inc(v); |
| spin_unlock(lock); |
| return 1; |
| } |
| |
| /** |
| * uv_flush_send_and_wait |
| * |
| * Send a broadcast and wait for it to complete. |
| * |
| * The flush_mask contains the cpus the broadcast is to be sent to, plus |
| * cpus that are on the local uvhub. |
| * |
| * Returns NULL if all flushing represented in the mask was done. The mask |
| * is zeroed. |
| * Returns @flush_mask if some remote flushing remains to be done. The |
| * mask will have some bits still set, representing any cpus on the local |
| * uvhub (not current cpu) and any on remote uvhubs if the broadcast failed. |
| */ |
| const struct cpumask *uv_flush_send_and_wait(struct bau_desc *bau_desc, |
| struct cpumask *flush_mask, |
| struct bau_control *bcp) |
| { |
| int right_shift; |
| int uvhub; |
| int bit; |
| int completion_status = 0; |
| int seq_number = 0; |
| long try = 0; |
| int cpu = bcp->uvhub_cpu; |
| int this_cpu = bcp->cpu; |
| int this_uvhub = bcp->uvhub; |
| unsigned long mmr_offset; |
| unsigned long index; |
| cycles_t time1; |
| cycles_t time2; |
| struct ptc_stats *stat = &per_cpu(ptcstats, bcp->cpu); |
| struct bau_control *smaster = bcp->socket_master; |
| struct bau_control *hmaster = bcp->uvhub_master; |
| |
| /* |
| * Spin here while there are hmaster->max_concurrent or more active |
| * descriptors. This is the per-uvhub 'throttle'. |
| */ |
| if (!atomic_inc_unless_ge(&hmaster->uvhub_lock, |
| &hmaster->active_descriptor_count, |
| hmaster->max_concurrent)) { |
| stat->s_throttles++; |
| do { |
| cpu_relax(); |
| } while (!atomic_inc_unless_ge(&hmaster->uvhub_lock, |
| &hmaster->active_descriptor_count, |
| hmaster->max_concurrent)); |
| } |
| |
| while (hmaster->uvhub_quiesce) |
| cpu_relax(); |
| |
| if (cpu < UV_CPUS_PER_ACT_STATUS) { |
| mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0; |
| right_shift = cpu * UV_ACT_STATUS_SIZE; |
| } else { |
| mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1; |
| right_shift = |
| ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE); |
| } |
| time1 = get_cycles(); |
| do { |
| /* |
| * Every message from any given cpu gets a unique message |
| * sequence number. But retries use that same number. |
| * Our message may have timed out at the destination because |
| * all sw-ack resources are in use and there is a timeout |
| * pending there. In that case, our last send never got |
| * placed into the queue and we need to persist until it |
| * does. |
| * |
| * Make any retry a type MSG_RETRY so that the destination will |
| * free any resource held by a previous message from this cpu. |
| */ |
| if (try == 0) { |
| /* use message type set by the caller the first time */ |
| seq_number = bcp->message_number++; |
| } else { |
| /* use RETRY type on all the rest; same sequence */ |
| bau_desc->header.msg_type = MSG_RETRY; |
| stat->s_retry_messages++; |
| } |
| bau_desc->header.sequence = seq_number; |
| index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) | |
| bcp->uvhub_cpu; |
| bcp->send_message = get_cycles(); |
| |
| uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index); |
| |
| try++; |
| completion_status = uv_wait_completion(bau_desc, mmr_offset, |
| right_shift, this_cpu, bcp, smaster, try); |
| |
| if (completion_status == FLUSH_RETRY_PLUGGED) { |
| /* |
| * Our retries may be blocked by all destination swack |
| * resources being consumed, and a timeout pending. In |
| * that case hardware immediately returns the ERROR |
| * that looks like a destination timeout. |
| */ |
| udelay(TIMEOUT_DELAY); |
| bcp->plugged_tries++; |
| if (bcp->plugged_tries >= PLUGSB4RESET) { |
| bcp->plugged_tries = 0; |
| quiesce_local_uvhub(hmaster); |
| spin_lock(&hmaster->queue_lock); |
| uv_reset_with_ipi(&bau_desc->distribution, |
| this_cpu); |
| spin_unlock(&hmaster->queue_lock); |
| end_uvhub_quiesce(hmaster); |
| bcp->ipi_attempts++; |
| stat->s_resets_plug++; |
| } |
| } else if (completion_status == FLUSH_RETRY_TIMEOUT) { |
| hmaster->max_concurrent = 1; |
| bcp->timeout_tries++; |
| udelay(TIMEOUT_DELAY); |
| if (bcp->timeout_tries >= TIMEOUTSB4RESET) { |
| bcp->timeout_tries = 0; |
| quiesce_local_uvhub(hmaster); |
| spin_lock(&hmaster->queue_lock); |
| uv_reset_with_ipi(&bau_desc->distribution, |
| this_cpu); |
| spin_unlock(&hmaster->queue_lock); |
| end_uvhub_quiesce(hmaster); |
| bcp->ipi_attempts++; |
| stat->s_resets_timeout++; |
| } |
| } |
| if (bcp->ipi_attempts >= 3) { |
| bcp->ipi_attempts = 0; |
| completion_status = FLUSH_GIVEUP; |
| break; |
| } |
| cpu_relax(); |
| } while ((completion_status == FLUSH_RETRY_PLUGGED) || |
| (completion_status == FLUSH_RETRY_TIMEOUT)); |
| time2 = get_cycles(); |
| |
| if ((completion_status == FLUSH_COMPLETE) && (bcp->conseccompletes > 5) |
| && (hmaster->max_concurrent < hmaster->max_concurrent_constant)) |
| hmaster->max_concurrent++; |
| |
| /* |
| * hold any cpu not timing out here; no other cpu currently held by |
| * the 'throttle' should enter the activation code |
| */ |
| while (hmaster->uvhub_quiesce) |
| cpu_relax(); |
| atomic_dec(&hmaster->active_descriptor_count); |
| |
| /* guard against cycles wrap */ |
| if (time2 > time1) |
| stat->s_time += (time2 - time1); |
| else |
| stat->s_requestor--; /* don't count this one */ |
| if (completion_status == FLUSH_COMPLETE && try > 1) |
| stat->s_retriesok++; |
| else if (completion_status == FLUSH_GIVEUP) { |
| /* |
| * Cause the caller to do an IPI-style TLB shootdown on |
| * the target cpu's, all of which are still in the mask. |
| */ |
| stat->s_giveup++; |
| return flush_mask; |
| } |
| |
| /* |
| * Success, so clear the remote cpu's from the mask so we don't |
| * use the IPI method of shootdown on them. |
| */ |
| for_each_cpu(bit, flush_mask) { |
| uvhub = uv_cpu_to_blade_id(bit); |
| if (uvhub == this_uvhub) |
| continue; |
| cpumask_clear_cpu(bit, flush_mask); |
| } |
| if (!cpumask_empty(flush_mask)) |
| return flush_mask; |
| |
| return NULL; |
| } |
| |
| /** |
| * uv_flush_tlb_others - globally purge translation cache of a virtual |
| * address or all TLB's |
| * @cpumask: mask of all cpu's in which the address is to be removed |
| * @mm: mm_struct containing virtual address range |
| * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu) |
| * @cpu: the current cpu |
| * |
| * This is the entry point for initiating any UV global TLB shootdown. |
| * |
| * Purges the translation caches of all specified processors of the given |
| * virtual address, or purges all TLB's on specified processors. |
| * |
| * The caller has derived the cpumask from the mm_struct. This function |
| * is called only if there are bits set in the mask. (e.g. flush_tlb_page()) |
| * |
| * The cpumask is converted into a uvhubmask of the uvhubs containing |
| * those cpus. |
| * |
| * Note that this function should be called with preemption disabled. |
| * |
| * Returns NULL if all remote flushing was done. |
| * Returns pointer to cpumask if some remote flushing remains to be |
| * done. The returned pointer is valid till preemption is re-enabled. |
| */ |
| const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask, |
| struct mm_struct *mm, |
| unsigned long va, unsigned int cpu) |
| { |
| int remotes; |
| int tcpu; |
| int uvhub; |
| int locals = 0; |
| struct bau_desc *bau_desc; |
| struct cpumask *flush_mask; |
| struct ptc_stats *stat; |
| struct bau_control *bcp; |
| |
| if (nobau) |
| return cpumask; |
| |
| bcp = &per_cpu(bau_control, cpu); |
| /* |
| * Each sending cpu has a per-cpu mask which it fills from the caller's |
| * cpu mask. Only remote cpus are converted to uvhubs and copied. |
| */ |
| flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu); |
| /* |
| * copy cpumask to flush_mask, removing current cpu |
| * (current cpu should already have been flushed by the caller and |
| * should never be returned if we return flush_mask) |
| */ |
| cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu)); |
| if (cpu_isset(cpu, *cpumask)) |
| locals++; /* current cpu was targeted */ |
| |
| bau_desc = bcp->descriptor_base; |
| bau_desc += UV_ITEMS_PER_DESCRIPTOR * bcp->uvhub_cpu; |
| |
| bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE); |
| remotes = 0; |
| for_each_cpu(tcpu, flush_mask) { |
| uvhub = uv_cpu_to_blade_id(tcpu); |
| if (uvhub == bcp->uvhub) { |
| locals++; |
| continue; |
| } |
| bau_uvhub_set(uvhub, &bau_desc->distribution); |
| remotes++; |
| } |
| if (remotes == 0) { |
| /* |
| * No off_hub flushing; return status for local hub. |
| * Return the caller's mask if all were local (the current |
| * cpu may be in that mask). |
| */ |
| if (locals) |
| return cpumask; |
| else |
| return NULL; |
| } |
| stat = &per_cpu(ptcstats, cpu); |
| stat->s_requestor++; |
| stat->s_ntargcpu += remotes; |
| remotes = bau_uvhub_weight(&bau_desc->distribution); |
| stat->s_ntarguvhub += remotes; |
| if (remotes >= 16) |
| stat->s_ntarguvhub16++; |
| else if (remotes >= 8) |
| stat->s_ntarguvhub8++; |
| else if (remotes >= 4) |
| stat->s_ntarguvhub4++; |
| else if (remotes >= 2) |
| stat->s_ntarguvhub2++; |
| else |
| stat->s_ntarguvhub1++; |
| |
| bau_desc->payload.address = va; |
| bau_desc->payload.sending_cpu = cpu; |
| |
| /* |
| * uv_flush_send_and_wait returns null if all cpu's were messaged, or |
| * the adjusted flush_mask if any cpu's were not messaged. |
| */ |
| return uv_flush_send_and_wait(bau_desc, flush_mask, bcp); |
| } |
| |
| /* |
| * The BAU message interrupt comes here. (registered by set_intr_gate) |
| * See entry_64.S |
| * |
| * We received a broadcast assist message. |
| * |
| * Interrupts are disabled; this interrupt could represent |
| * the receipt of several messages. |
| * |
| * All cores/threads on this hub get this interrupt. |
| * The last one to see it does the software ack. |
| * (the resource will not be freed until noninterruptable cpus see this |
| * interrupt; hardware may timeout the s/w ack and reply ERROR) |
| */ |
| void uv_bau_message_interrupt(struct pt_regs *regs) |
| { |
| int count = 0; |
| cycles_t time_start; |
| struct bau_payload_queue_entry *msg; |
| struct bau_control *bcp; |
| struct ptc_stats *stat; |
| struct msg_desc msgdesc; |
| |
| time_start = get_cycles(); |
| bcp = &per_cpu(bau_control, smp_processor_id()); |
| stat = &per_cpu(ptcstats, smp_processor_id()); |
| msgdesc.va_queue_first = bcp->va_queue_first; |
| msgdesc.va_queue_last = bcp->va_queue_last; |
| msg = bcp->bau_msg_head; |
| while (msg->sw_ack_vector) { |
| count++; |
| msgdesc.msg_slot = msg - msgdesc.va_queue_first; |
| msgdesc.sw_ack_slot = ffs(msg->sw_ack_vector) - 1; |
| msgdesc.msg = msg; |
| uv_bau_process_message(&msgdesc, bcp); |
| msg++; |
| if (msg > msgdesc.va_queue_last) |
| msg = msgdesc.va_queue_first; |
| bcp->bau_msg_head = msg; |
| } |
| stat->d_time += (get_cycles() - time_start); |
| if (!count) |
| stat->d_nomsg++; |
| else if (count > 1) |
| stat->d_multmsg++; |
| ack_APIC_irq(); |
| } |
| |
| /* |
| * uv_enable_timeouts |
| * |
| * Each target uvhub (i.e. a uvhub that has no cpu's) needs to have |
| * shootdown message timeouts enabled. The timeout does not cause |
| * an interrupt, but causes an error message to be returned to |
| * the sender. |
| */ |
| static void uv_enable_timeouts(void) |
| { |
| int uvhub; |
| int nuvhubs; |
| int pnode; |
| unsigned long mmr_image; |
| |
| nuvhubs = uv_num_possible_blades(); |
| |
| for (uvhub = 0; uvhub < nuvhubs; uvhub++) { |
| if (!uv_blade_nr_possible_cpus(uvhub)) |
| continue; |
| |
| pnode = uv_blade_to_pnode(uvhub); |
| mmr_image = |
| uv_read_global_mmr64(pnode, UVH_LB_BAU_MISC_CONTROL); |
| /* |
| * Set the timeout period and then lock it in, in three |
| * steps; captures and locks in the period. |
| * |
| * To program the period, the SOFT_ACK_MODE must be off. |
| */ |
| mmr_image &= ~((unsigned long)1 << |
| UVH_LB_BAU_MISC_CONTROL_ENABLE_INTD_SOFT_ACK_MODE_SHFT); |
| uv_write_global_mmr64 |
| (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image); |
| /* |
| * Set the 4-bit period. |
| */ |
| mmr_image &= ~((unsigned long)0xf << |
| UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT); |
| mmr_image |= (UV_INTD_SOFT_ACK_TIMEOUT_PERIOD << |
| UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT); |
| uv_write_global_mmr64 |
| (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image); |
| /* |
| * Subsequent reversals of the timebase bit (3) cause an |
| * immediate timeout of one or all INTD resources as |
| * indicated in bits 2:0 (7 causes all of them to timeout). |
| */ |
| mmr_image |= ((unsigned long)1 << |
| UVH_LB_BAU_MISC_CONTROL_ENABLE_INTD_SOFT_ACK_MODE_SHFT); |
| uv_write_global_mmr64 |
| (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image); |
| } |
| } |
| |
| static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset) |
| { |
| if (*offset < num_possible_cpus()) |
| return offset; |
| return NULL; |
| } |
| |
| static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset) |
| { |
| (*offset)++; |
| if (*offset < num_possible_cpus()) |
| return offset; |
| return NULL; |
| } |
| |
| static void uv_ptc_seq_stop(struct seq_file *file, void *data) |
| { |
| } |
| |
| static inline unsigned long long |
| millisec_2_cycles(unsigned long millisec) |
| { |
| unsigned long ns; |
| unsigned long long cyc; |
| |
| ns = millisec * 1000; |
| cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id())); |
| return cyc; |
| } |
| |
| /* |
| * Display the statistics thru /proc. |
| * 'data' points to the cpu number |
| */ |
| static int uv_ptc_seq_show(struct seq_file *file, void *data) |
| { |
| struct ptc_stats *stat; |
| int cpu; |
| |
| cpu = *(loff_t *)data; |
| |
| if (!cpu) { |
| seq_printf(file, |
| "# cpu sent stime numuvhubs numuvhubs16 numuvhubs8 "); |
| seq_printf(file, |
| "numuvhubs4 numuvhubs2 numuvhubs1 numcpus dto "); |
| seq_printf(file, |
| "retries rok resetp resett giveup sto bz throt "); |
| seq_printf(file, |
| "sw_ack recv rtime all "); |
| seq_printf(file, |
| "one mult none retry canc nocan reset rcan\n"); |
| } |
| if (cpu < num_possible_cpus() && cpu_online(cpu)) { |
| stat = &per_cpu(ptcstats, cpu); |
| /* source side statistics */ |
| seq_printf(file, |
| "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ", |
| cpu, stat->s_requestor, cycles_2_us(stat->s_time), |
| stat->s_ntarguvhub, stat->s_ntarguvhub16, |
| stat->s_ntarguvhub8, stat->s_ntarguvhub4, |
| stat->s_ntarguvhub2, stat->s_ntarguvhub1, |
| stat->s_ntargcpu, stat->s_dtimeout); |
| seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ", |
| stat->s_retry_messages, stat->s_retriesok, |
| stat->s_resets_plug, stat->s_resets_timeout, |
| stat->s_giveup, stat->s_stimeout, |
| stat->s_busy, stat->s_throttles); |
| /* destination side statistics */ |
| seq_printf(file, |
| "%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n", |
| uv_read_global_mmr64(uv_cpu_to_pnode(cpu), |
| UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE), |
| stat->d_requestee, cycles_2_us(stat->d_time), |
| stat->d_alltlb, stat->d_onetlb, stat->d_multmsg, |
| stat->d_nomsg, stat->d_retries, stat->d_canceled, |
| stat->d_nocanceled, stat->d_resets, |
| stat->d_rcanceled); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * -1: resetf the statistics |
| * 0: display meaning of the statistics |
| * >0: maximum concurrent active descriptors per uvhub (throttle) |
| */ |
| static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user, |
| size_t count, loff_t *data) |
| { |
| int cpu; |
| long input_arg; |
| char optstr[64]; |
| struct ptc_stats *stat; |
| struct bau_control *bcp; |
| |
| if (count == 0 || count > sizeof(optstr)) |
| return -EINVAL; |
| if (copy_from_user(optstr, user, count)) |
| return -EFAULT; |
| optstr[count - 1] = '\0'; |
| if (strict_strtol(optstr, 10, &input_arg) < 0) { |
| printk(KERN_DEBUG "%s is invalid\n", optstr); |
| return -EINVAL; |
| } |
| |
| if (input_arg == 0) { |
| printk(KERN_DEBUG "# cpu: cpu number\n"); |
| printk(KERN_DEBUG "Sender statistics:\n"); |
| printk(KERN_DEBUG |
| "sent: number of shootdown messages sent\n"); |
| printk(KERN_DEBUG |
| "stime: time spent sending messages\n"); |
| printk(KERN_DEBUG |
| "numuvhubs: number of hubs targeted with shootdown\n"); |
| printk(KERN_DEBUG |
| "numuvhubs16: number times 16 or more hubs targeted\n"); |
| printk(KERN_DEBUG |
| "numuvhubs8: number times 8 or more hubs targeted\n"); |
| printk(KERN_DEBUG |
| "numuvhubs4: number times 4 or more hubs targeted\n"); |
| printk(KERN_DEBUG |
| "numuvhubs2: number times 2 or more hubs targeted\n"); |
| printk(KERN_DEBUG |
| "numuvhubs1: number times 1 hub targeted\n"); |
| printk(KERN_DEBUG |
| "numcpus: number of cpus targeted with shootdown\n"); |
| printk(KERN_DEBUG |
| "dto: number of destination timeouts\n"); |
| printk(KERN_DEBUG |
| "retries: destination timeout retries sent\n"); |
| printk(KERN_DEBUG |
| "rok: : destination timeouts successfully retried\n"); |
| printk(KERN_DEBUG |
| "resetp: ipi-style resource resets for plugs\n"); |
| printk(KERN_DEBUG |
| "resett: ipi-style resource resets for timeouts\n"); |
| printk(KERN_DEBUG |
| "giveup: fall-backs to ipi-style shootdowns\n"); |
| printk(KERN_DEBUG |
| "sto: number of source timeouts\n"); |
| printk(KERN_DEBUG |
| "bz: number of stay-busy's\n"); |
| printk(KERN_DEBUG |
| "throt: number times spun in throttle\n"); |
| printk(KERN_DEBUG "Destination side statistics:\n"); |
| printk(KERN_DEBUG |
| "sw_ack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n"); |
| printk(KERN_DEBUG |
| "recv: shootdown messages received\n"); |
| printk(KERN_DEBUG |
| "rtime: time spent processing messages\n"); |
| printk(KERN_DEBUG |
| "all: shootdown all-tlb messages\n"); |
| printk(KERN_DEBUG |
| "one: shootdown one-tlb messages\n"); |
| printk(KERN_DEBUG |
| "mult: interrupts that found multiple messages\n"); |
| printk(KERN_DEBUG |
| "none: interrupts that found no messages\n"); |
| printk(KERN_DEBUG |
| "retry: number of retry messages processed\n"); |
| printk(KERN_DEBUG |
| "canc: number messages canceled by retries\n"); |
| printk(KERN_DEBUG |
| "nocan: number retries that found nothing to cancel\n"); |
| printk(KERN_DEBUG |
| "reset: number of ipi-style reset requests processed\n"); |
| printk(KERN_DEBUG |
| "rcan: number messages canceled by reset requests\n"); |
| } else if (input_arg == -1) { |
| for_each_present_cpu(cpu) { |
| stat = &per_cpu(ptcstats, cpu); |
| memset(stat, 0, sizeof(struct ptc_stats)); |
| } |
| } else { |
| uv_bau_max_concurrent = input_arg; |
| bcp = &per_cpu(bau_control, smp_processor_id()); |
| if (uv_bau_max_concurrent < 1 || |
| uv_bau_max_concurrent > bcp->cpus_in_uvhub) { |
| printk(KERN_DEBUG |
| "Error: BAU max concurrent %d; %d is invalid\n", |
| bcp->max_concurrent, uv_bau_max_concurrent); |
| return -EINVAL; |
| } |
| printk(KERN_DEBUG "Set BAU max concurrent:%d\n", |
| uv_bau_max_concurrent); |
| for_each_present_cpu(cpu) { |
| bcp = &per_cpu(bau_control, cpu); |
| bcp->max_concurrent = uv_bau_max_concurrent; |
| } |
| } |
| |
| return count; |
| } |
| |
| static const struct seq_operations uv_ptc_seq_ops = { |
| .start = uv_ptc_seq_start, |
| .next = uv_ptc_seq_next, |
| .stop = uv_ptc_seq_stop, |
| .show = uv_ptc_seq_show |
| }; |
| |
| static int uv_ptc_proc_open(struct inode *inode, struct file *file) |
| { |
| return seq_open(file, &uv_ptc_seq_ops); |
| } |
| |
| static const struct file_operations proc_uv_ptc_operations = { |
| .open = uv_ptc_proc_open, |
| .read = seq_read, |
| .write = uv_ptc_proc_write, |
| .llseek = seq_lseek, |
| .release = seq_release, |
| }; |
| |
| static int __init uv_ptc_init(void) |
| { |
| struct proc_dir_entry *proc_uv_ptc; |
| |
| if (!is_uv_system()) |
| return 0; |
| |
| proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL, |
| &proc_uv_ptc_operations); |
| if (!proc_uv_ptc) { |
| printk(KERN_ERR "unable to create %s proc entry\n", |
| UV_PTC_BASENAME); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| /* |
| * initialize the sending side's sending buffers |
| */ |
| static void |
| uv_activation_descriptor_init(int node, int pnode) |
| { |
| int i; |
| int cpu; |
| unsigned long pa; |
| unsigned long m; |
| unsigned long n; |
| struct bau_desc *bau_desc; |
| struct bau_desc *bd2; |
| struct bau_control *bcp; |
| |
| /* |
| * each bau_desc is 64 bytes; there are 8 (UV_ITEMS_PER_DESCRIPTOR) |
| * per cpu; and up to 32 (UV_ADP_SIZE) cpu's per uvhub |
| */ |
| bau_desc = (struct bau_desc *)kmalloc_node(sizeof(struct bau_desc)* |
| UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR, GFP_KERNEL, node); |
| BUG_ON(!bau_desc); |
| |
| pa = uv_gpa(bau_desc); /* need the real nasid*/ |
| n = pa >> uv_nshift; |
| m = pa & uv_mmask; |
| |
| uv_write_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE, |
| (n << UV_DESC_BASE_PNODE_SHIFT | m)); |
| |
| /* |
| * initializing all 8 (UV_ITEMS_PER_DESCRIPTOR) descriptors for each |
| * cpu even though we only use the first one; one descriptor can |
| * describe a broadcast to 256 uv hubs. |
| */ |
| for (i = 0, bd2 = bau_desc; i < (UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR); |
| i++, bd2++) { |
| memset(bd2, 0, sizeof(struct bau_desc)); |
| bd2->header.sw_ack_flag = 1; |
| /* |
| * base_dest_nodeid is the nasid (pnode<<1) of the first uvhub |
| * in the partition. The bit map will indicate uvhub numbers, |
| * which are 0-N in a partition. Pnodes are unique system-wide. |
| */ |
| bd2->header.base_dest_nodeid = uv_partition_base_pnode << 1; |
| bd2->header.dest_subnodeid = 0x10; /* the LB */ |
| bd2->header.command = UV_NET_ENDPOINT_INTD; |
| bd2->header.int_both = 1; |
| /* |
| * all others need to be set to zero: |
| * fairness chaining multilevel count replied_to |
| */ |
| } |
| for_each_present_cpu(cpu) { |
| if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu))) |
| continue; |
| bcp = &per_cpu(bau_control, cpu); |
| bcp->descriptor_base = bau_desc; |
| } |
| } |
| |
| /* |
| * initialize the destination side's receiving buffers |
| * entered for each uvhub in the partition |
| * - node is first node (kernel memory notion) on the uvhub |
| * - pnode is the uvhub's physical identifier |
| */ |
| static void |
| uv_payload_queue_init(int node, int pnode) |
| { |
| int pn; |
| int cpu; |
| char *cp; |
| unsigned long pa; |
| struct bau_payload_queue_entry *pqp; |
| struct bau_payload_queue_entry *pqp_malloc; |
| struct bau_control *bcp; |
| |
| pqp = (struct bau_payload_queue_entry *) kmalloc_node( |
| (DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry), |
| GFP_KERNEL, node); |
| BUG_ON(!pqp); |
| pqp_malloc = pqp; |
| |
| cp = (char *)pqp + 31; |
| pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5); |
| |
| for_each_present_cpu(cpu) { |
| if (pnode != uv_cpu_to_pnode(cpu)) |
| continue; |
| /* for every cpu on this pnode: */ |
| bcp = &per_cpu(bau_control, cpu); |
| bcp->va_queue_first = pqp; |
| bcp->bau_msg_head = pqp; |
| bcp->va_queue_last = pqp + (DEST_Q_SIZE - 1); |
| } |
| /* |
| * need the pnode of where the memory was really allocated |
| */ |
| pa = uv_gpa(pqp); |
| pn = pa >> uv_nshift; |
| uv_write_global_mmr64(pnode, |
| UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST, |
| ((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) | |
| uv_physnodeaddr(pqp)); |
| uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL, |
| uv_physnodeaddr(pqp)); |
| uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST, |
| (unsigned long) |
| uv_physnodeaddr(pqp + (DEST_Q_SIZE - 1))); |
| /* in effect, all msg_type's are set to MSG_NOOP */ |
| memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE); |
| } |
| |
| /* |
| * Initialization of each UV hub's structures |
| */ |
| static void __init uv_init_uvhub(int uvhub, int vector) |
| { |
| int node; |
| int pnode; |
| unsigned long apicid; |
| |
| node = uvhub_to_first_node(uvhub); |
| pnode = uv_blade_to_pnode(uvhub); |
| uv_activation_descriptor_init(node, pnode); |
| uv_payload_queue_init(node, pnode); |
| /* |
| * the below initialization can't be in firmware because the |
| * messaging IRQ will be determined by the OS |
| */ |
| apicid = uvhub_to_first_apicid(uvhub); |
| uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG, |
| ((apicid << 32) | vector)); |
| } |
| |
| /* |
| * initialize the bau_control structure for each cpu |
| */ |
| static void uv_init_per_cpu(int nuvhubs) |
| { |
| int i, j, k; |
| int cpu; |
| int pnode; |
| int uvhub; |
| short socket = 0; |
| struct bau_control *bcp; |
| struct uvhub_desc *bdp; |
| struct socket_desc *sdp; |
| struct bau_control *hmaster = NULL; |
| struct bau_control *smaster = NULL; |
| struct socket_desc { |
| short num_cpus; |
| short cpu_number[16]; |
| }; |
| struct uvhub_desc { |
| short num_sockets; |
| short num_cpus; |
| short uvhub; |
| short pnode; |
| struct socket_desc socket[2]; |
| }; |
| struct uvhub_desc *uvhub_descs; |
| |
| uvhub_descs = (struct uvhub_desc *) |
| kmalloc(nuvhubs * sizeof(struct uvhub_desc), GFP_KERNEL); |
| memset(uvhub_descs, 0, nuvhubs * sizeof(struct uvhub_desc)); |
| for_each_present_cpu(cpu) { |
| bcp = &per_cpu(bau_control, cpu); |
| memset(bcp, 0, sizeof(struct bau_control)); |
| spin_lock_init(&bcp->masks_lock); |
| bcp->max_concurrent = uv_bau_max_concurrent; |
| pnode = uv_cpu_hub_info(cpu)->pnode; |
| uvhub = uv_cpu_hub_info(cpu)->numa_blade_id; |
| bdp = &uvhub_descs[uvhub]; |
| bdp->num_cpus++; |
| bdp->uvhub = uvhub; |
| bdp->pnode = pnode; |
| /* time interval to catch a hardware stay-busy bug */ |
| bcp->timeout_interval = millisec_2_cycles(3); |
| /* kludge: assume uv_hub.h is constant */ |
| socket = (cpu_physical_id(cpu)>>5)&1; |
| if (socket >= bdp->num_sockets) |
| bdp->num_sockets = socket+1; |
| sdp = &bdp->socket[socket]; |
| sdp->cpu_number[sdp->num_cpus] = cpu; |
| sdp->num_cpus++; |
| } |
| socket = 0; |
| for_each_possible_blade(uvhub) { |
| bdp = &uvhub_descs[uvhub]; |
| for (i = 0; i < bdp->num_sockets; i++) { |
| sdp = &bdp->socket[i]; |
| for (j = 0; j < sdp->num_cpus; j++) { |
| cpu = sdp->cpu_number[j]; |
| bcp = &per_cpu(bau_control, cpu); |
| bcp->cpu = cpu; |
| if (j == 0) { |
| smaster = bcp; |
| if (i == 0) |
| hmaster = bcp; |
| } |
| bcp->cpus_in_uvhub = bdp->num_cpus; |
| bcp->cpus_in_socket = sdp->num_cpus; |
| bcp->socket_master = smaster; |
| bcp->uvhub_master = hmaster; |
| for (k = 0; k < DEST_Q_SIZE; k++) |
| bcp->socket_acknowledge_count[k] = 0; |
| bcp->uvhub_cpu = |
| uv_cpu_hub_info(cpu)->blade_processor_id; |
| } |
| socket++; |
| } |
| } |
| kfree(uvhub_descs); |
| } |
| |
| /* |
| * Initialization of BAU-related structures |
| */ |
| static int __init uv_bau_init(void) |
| { |
| int uvhub; |
| int pnode; |
| int nuvhubs; |
| int cur_cpu; |
| int vector; |
| unsigned long mmr; |
| |
| if (!is_uv_system()) |
| return 0; |
| |
| if (nobau) |
| return 0; |
| |
| for_each_possible_cpu(cur_cpu) |
| zalloc_cpumask_var_node(&per_cpu(uv_flush_tlb_mask, cur_cpu), |
| GFP_KERNEL, cpu_to_node(cur_cpu)); |
| |
| uv_bau_max_concurrent = MAX_BAU_CONCURRENT; |
| uv_nshift = uv_hub_info->m_val; |
| uv_mmask = (1UL << uv_hub_info->m_val) - 1; |
| nuvhubs = uv_num_possible_blades(); |
| |
| uv_init_per_cpu(nuvhubs); |
| |
| uv_partition_base_pnode = 0x7fffffff; |
| for (uvhub = 0; uvhub < nuvhubs; uvhub++) |
| if (uv_blade_nr_possible_cpus(uvhub) && |
| (uv_blade_to_pnode(uvhub) < uv_partition_base_pnode)) |
| uv_partition_base_pnode = uv_blade_to_pnode(uvhub); |
| |
| vector = UV_BAU_MESSAGE; |
| for_each_possible_blade(uvhub) |
| if (uv_blade_nr_possible_cpus(uvhub)) |
| uv_init_uvhub(uvhub, vector); |
| |
| uv_enable_timeouts(); |
| alloc_intr_gate(vector, uv_bau_message_intr1); |
| |
| for_each_possible_blade(uvhub) { |
| pnode = uv_blade_to_pnode(uvhub); |
| /* INIT the bau */ |
| uv_write_global_mmr64(pnode, UVH_LB_BAU_SB_ACTIVATION_CONTROL, |
| ((unsigned long)1 << 63)); |
| mmr = 1; /* should be 1 to broadcast to both sockets */ |
| uv_write_global_mmr64(pnode, UVH_BAU_DATA_BROADCAST, mmr); |
| } |
| |
| return 0; |
| } |
| core_initcall(uv_bau_init); |
| core_initcall(uv_ptc_init); |