| /* |
| * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org> |
| * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com> |
| * Copyright (c) 2007-2008 Matthew W. S. Bell <mentor@madwifi.org> |
| * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu> |
| * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org> |
| * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com> |
| * |
| * Permission to use, copy, modify, and distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| * |
| */ |
| |
| /*********************************\ |
| * Protocol Control Unit Functions * |
| \*********************************/ |
| |
| #include "ath5k.h" |
| #include "reg.h" |
| #include "debug.h" |
| #include "base.h" |
| |
| /*******************\ |
| * Generic functions * |
| \*******************/ |
| |
| /** |
| * ath5k_hw_set_opmode - Set PCU operating mode |
| * |
| * @ah: The &struct ath5k_hw |
| * |
| * Initialize PCU for the various operating modes (AP/STA etc) |
| * |
| * NOTE: ah->ah_op_mode must be set before calling this. |
| */ |
| int ath5k_hw_set_opmode(struct ath5k_hw *ah) |
| { |
| u32 pcu_reg, beacon_reg, low_id, high_id; |
| |
| |
| /* Preserve rest settings */ |
| pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000; |
| pcu_reg &= ~(AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_AP |
| | AR5K_STA_ID1_KEYSRCH_MODE |
| | (ah->ah_version == AR5K_AR5210 ? |
| (AR5K_STA_ID1_PWR_SV | AR5K_STA_ID1_NO_PSPOLL) : 0)); |
| |
| beacon_reg = 0; |
| |
| ATH5K_TRACE(ah->ah_sc); |
| |
| switch (ah->ah_op_mode) { |
| case NL80211_IFTYPE_ADHOC: |
| pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_KEYSRCH_MODE; |
| beacon_reg |= AR5K_BCR_ADHOC; |
| if (ah->ah_version == AR5K_AR5210) |
| pcu_reg |= AR5K_STA_ID1_NO_PSPOLL; |
| else |
| AR5K_REG_ENABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS); |
| break; |
| |
| case NL80211_IFTYPE_AP: |
| case NL80211_IFTYPE_MESH_POINT: |
| pcu_reg |= AR5K_STA_ID1_AP | AR5K_STA_ID1_KEYSRCH_MODE; |
| beacon_reg |= AR5K_BCR_AP; |
| if (ah->ah_version == AR5K_AR5210) |
| pcu_reg |= AR5K_STA_ID1_NO_PSPOLL; |
| else |
| AR5K_REG_DISABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS); |
| break; |
| |
| case NL80211_IFTYPE_STATION: |
| pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE |
| | (ah->ah_version == AR5K_AR5210 ? |
| AR5K_STA_ID1_PWR_SV : 0); |
| case NL80211_IFTYPE_MONITOR: |
| pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE |
| | (ah->ah_version == AR5K_AR5210 ? |
| AR5K_STA_ID1_NO_PSPOLL : 0); |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| /* |
| * Set PCU registers |
| */ |
| low_id = AR5K_LOW_ID(ah->ah_sta_id); |
| high_id = AR5K_HIGH_ID(ah->ah_sta_id); |
| ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0); |
| ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1); |
| |
| /* |
| * Set Beacon Control Register on 5210 |
| */ |
| if (ah->ah_version == AR5K_AR5210) |
| ath5k_hw_reg_write(ah, beacon_reg, AR5K_BCR); |
| |
| return 0; |
| } |
| |
| /** |
| * ath5k_hw_update - Update mib counters (mac layer statistics) |
| * |
| * @ah: The &struct ath5k_hw |
| * @stats: The &struct ieee80211_low_level_stats we use to track |
| * statistics on the driver |
| * |
| * Reads MIB counters from PCU and updates sw statistics. Must be |
| * called after a MIB interrupt. |
| */ |
| void ath5k_hw_update_mib_counters(struct ath5k_hw *ah, |
| struct ieee80211_low_level_stats *stats) |
| { |
| ATH5K_TRACE(ah->ah_sc); |
| |
| /* Read-And-Clear */ |
| stats->dot11ACKFailureCount += ath5k_hw_reg_read(ah, AR5K_ACK_FAIL); |
| stats->dot11RTSFailureCount += ath5k_hw_reg_read(ah, AR5K_RTS_FAIL); |
| stats->dot11RTSSuccessCount += ath5k_hw_reg_read(ah, AR5K_RTS_OK); |
| stats->dot11FCSErrorCount += ath5k_hw_reg_read(ah, AR5K_FCS_FAIL); |
| |
| /* XXX: Should we use this to track beacon count ? |
| * -we read it anyway to clear the register */ |
| ath5k_hw_reg_read(ah, AR5K_BEACON_CNT); |
| |
| /* Reset profile count registers on 5212*/ |
| if (ah->ah_version == AR5K_AR5212) { |
| ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_TX); |
| ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RX); |
| ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RXCLR); |
| ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_CYCLE); |
| } |
| |
| /* TODO: Handle ANI stats */ |
| } |
| |
| /** |
| * ath5k_hw_set_ack_bitrate - set bitrate for ACKs |
| * |
| * @ah: The &struct ath5k_hw |
| * @high: Flag to determine if we want to use high transmition rate |
| * for ACKs or not |
| * |
| * If high flag is set, we tell hw to use a set of control rates based on |
| * the current transmition rate (check out control_rates array inside reset.c). |
| * If not hw just uses the lowest rate available for the current modulation |
| * scheme being used (1Mbit for CCK and 6Mbits for OFDM). |
| */ |
| void ath5k_hw_set_ack_bitrate_high(struct ath5k_hw *ah, bool high) |
| { |
| if (ah->ah_version != AR5K_AR5212) |
| return; |
| else { |
| u32 val = AR5K_STA_ID1_BASE_RATE_11B | AR5K_STA_ID1_ACKCTS_6MB; |
| if (high) |
| AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, val); |
| else |
| AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, val); |
| } |
| } |
| |
| |
| /******************\ |
| * ACK/CTS Timeouts * |
| \******************/ |
| |
| /** |
| * ath5k_hw_het_ack_timeout - Get ACK timeout from PCU in usec |
| * |
| * @ah: The &struct ath5k_hw |
| */ |
| unsigned int ath5k_hw_get_ack_timeout(struct ath5k_hw *ah) |
| { |
| ATH5K_TRACE(ah->ah_sc); |
| |
| return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah, |
| AR5K_TIME_OUT), AR5K_TIME_OUT_ACK), ah->ah_turbo); |
| } |
| |
| /** |
| * ath5k_hw_set_ack_timeout - Set ACK timeout on PCU |
| * |
| * @ah: The &struct ath5k_hw |
| * @timeout: Timeout in usec |
| */ |
| int ath5k_hw_set_ack_timeout(struct ath5k_hw *ah, unsigned int timeout) |
| { |
| ATH5K_TRACE(ah->ah_sc); |
| if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK), |
| ah->ah_turbo) <= timeout) |
| return -EINVAL; |
| |
| AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_ACK, |
| ath5k_hw_htoclock(timeout, ah->ah_turbo)); |
| |
| return 0; |
| } |
| |
| /** |
| * ath5k_hw_get_cts_timeout - Get CTS timeout from PCU in usec |
| * |
| * @ah: The &struct ath5k_hw |
| */ |
| unsigned int ath5k_hw_get_cts_timeout(struct ath5k_hw *ah) |
| { |
| ATH5K_TRACE(ah->ah_sc); |
| return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah, |
| AR5K_TIME_OUT), AR5K_TIME_OUT_CTS), ah->ah_turbo); |
| } |
| |
| /** |
| * ath5k_hw_set_cts_timeout - Set CTS timeout on PCU |
| * |
| * @ah: The &struct ath5k_hw |
| * @timeout: Timeout in usec |
| */ |
| int ath5k_hw_set_cts_timeout(struct ath5k_hw *ah, unsigned int timeout) |
| { |
| ATH5K_TRACE(ah->ah_sc); |
| if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS), |
| ah->ah_turbo) <= timeout) |
| return -EINVAL; |
| |
| AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_CTS, |
| ath5k_hw_htoclock(timeout, ah->ah_turbo)); |
| |
| return 0; |
| } |
| |
| |
| /****************\ |
| * BSSID handling * |
| \****************/ |
| |
| /** |
| * ath5k_hw_get_lladdr - Get station id |
| * |
| * @ah: The &struct ath5k_hw |
| * @mac: The card's mac address |
| * |
| * Initialize ah->ah_sta_id using the mac address provided |
| * (just a memcpy). |
| * |
| * TODO: Remove it once we merge ath5k_softc and ath5k_hw |
| */ |
| void ath5k_hw_get_lladdr(struct ath5k_hw *ah, u8 *mac) |
| { |
| ATH5K_TRACE(ah->ah_sc); |
| memcpy(mac, ah->ah_sta_id, ETH_ALEN); |
| } |
| |
| /** |
| * ath5k_hw_set_lladdr - Set station id |
| * |
| * @ah: The &struct ath5k_hw |
| * @mac: The card's mac address |
| * |
| * Set station id on hw using the provided mac address |
| */ |
| int ath5k_hw_set_lladdr(struct ath5k_hw *ah, const u8 *mac) |
| { |
| u32 low_id, high_id; |
| u32 pcu_reg; |
| |
| ATH5K_TRACE(ah->ah_sc); |
| /* Set new station ID */ |
| memcpy(ah->ah_sta_id, mac, ETH_ALEN); |
| |
| pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000; |
| |
| low_id = AR5K_LOW_ID(mac); |
| high_id = AR5K_HIGH_ID(mac); |
| |
| ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0); |
| ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1); |
| |
| return 0; |
| } |
| |
| /** |
| * ath5k_hw_set_associd - Set BSSID for association |
| * |
| * @ah: The &struct ath5k_hw |
| * @bssid: BSSID |
| * @assoc_id: Assoc id |
| * |
| * Sets the BSSID which trigers the "SME Join" operation |
| */ |
| void ath5k_hw_set_associd(struct ath5k_hw *ah, const u8 *bssid, u16 assoc_id) |
| { |
| u32 low_id, high_id; |
| u16 tim_offset = 0; |
| |
| /* |
| * Set simple BSSID mask on 5212 |
| */ |
| if (ah->ah_version == AR5K_AR5212) { |
| ath5k_hw_reg_write(ah, AR5K_LOW_ID(ah->ah_bssid_mask), |
| AR5K_BSS_IDM0); |
| ath5k_hw_reg_write(ah, AR5K_HIGH_ID(ah->ah_bssid_mask), |
| AR5K_BSS_IDM1); |
| } |
| |
| /* |
| * Set BSSID which triggers the "SME Join" operation |
| */ |
| low_id = AR5K_LOW_ID(bssid); |
| high_id = AR5K_HIGH_ID(bssid); |
| ath5k_hw_reg_write(ah, low_id, AR5K_BSS_ID0); |
| ath5k_hw_reg_write(ah, high_id | ((assoc_id & 0x3fff) << |
| AR5K_BSS_ID1_AID_S), AR5K_BSS_ID1); |
| |
| if (assoc_id == 0) { |
| ath5k_hw_disable_pspoll(ah); |
| return; |
| } |
| |
| AR5K_REG_WRITE_BITS(ah, AR5K_BEACON, AR5K_BEACON_TIM, |
| tim_offset ? tim_offset + 4 : 0); |
| |
| ath5k_hw_enable_pspoll(ah, NULL, 0); |
| } |
| |
| /** |
| * ath5k_hw_set_bssid_mask - filter out bssids we listen |
| * |
| * @ah: the &struct ath5k_hw |
| * @mask: the bssid_mask, a u8 array of size ETH_ALEN |
| * |
| * BSSID masking is a method used by AR5212 and newer hardware to inform PCU |
| * which bits of the interface's MAC address should be looked at when trying |
| * to decide which packets to ACK. In station mode and AP mode with a single |
| * BSS every bit matters since we lock to only one BSS. In AP mode with |
| * multiple BSSes (virtual interfaces) not every bit matters because hw must |
| * accept frames for all BSSes and so we tweak some bits of our mac address |
| * in order to have multiple BSSes. |
| * |
| * NOTE: This is a simple filter and does *not* filter out all |
| * relevant frames. Some frames that are not for us might get ACKed from us |
| * by PCU because they just match the mask. |
| * |
| * When handling multiple BSSes you can get the BSSID mask by computing the |
| * set of ~ ( MAC XOR BSSID ) for all bssids we handle. |
| * |
| * When you do this you are essentially computing the common bits of all your |
| * BSSes. Later it is assumed the harware will "and" (&) the BSSID mask with |
| * the MAC address to obtain the relevant bits and compare the result with |
| * (frame's BSSID & mask) to see if they match. |
| */ |
| /* |
| * Simple example: on your card you have have two BSSes you have created with |
| * BSSID-01 and BSSID-02. Lets assume BSSID-01 will not use the MAC address. |
| * There is another BSSID-03 but you are not part of it. For simplicity's sake, |
| * assuming only 4 bits for a mac address and for BSSIDs you can then have: |
| * |
| * \ |
| * MAC: 0001 | |
| * BSSID-01: 0100 | --> Belongs to us |
| * BSSID-02: 1001 | |
| * / |
| * ------------------- |
| * BSSID-03: 0110 | --> External |
| * ------------------- |
| * |
| * Our bssid_mask would then be: |
| * |
| * On loop iteration for BSSID-01: |
| * ~(0001 ^ 0100) -> ~(0101) |
| * -> 1010 |
| * bssid_mask = 1010 |
| * |
| * On loop iteration for BSSID-02: |
| * bssid_mask &= ~(0001 ^ 1001) |
| * bssid_mask = (1010) & ~(0001 ^ 1001) |
| * bssid_mask = (1010) & ~(1001) |
| * bssid_mask = (1010) & (0110) |
| * bssid_mask = 0010 |
| * |
| * A bssid_mask of 0010 means "only pay attention to the second least |
| * significant bit". This is because its the only bit common |
| * amongst the MAC and all BSSIDs we support. To findout what the real |
| * common bit is we can simply "&" the bssid_mask now with any BSSID we have |
| * or our MAC address (we assume the hardware uses the MAC address). |
| * |
| * Now, suppose there's an incoming frame for BSSID-03: |
| * |
| * IFRAME-01: 0110 |
| * |
| * An easy eye-inspeciton of this already should tell you that this frame |
| * will not pass our check. This is beacuse the bssid_mask tells the |
| * hardware to only look at the second least significant bit and the |
| * common bit amongst the MAC and BSSIDs is 0, this frame has the 2nd LSB |
| * as 1, which does not match 0. |
| * |
| * So with IFRAME-01 we *assume* the hardware will do: |
| * |
| * allow = (IFRAME-01 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0; |
| * --> allow = (0110 & 0010) == (0010 & 0001) ? 1 : 0; |
| * --> allow = (0010) == 0000 ? 1 : 0; |
| * --> allow = 0 |
| * |
| * Lets now test a frame that should work: |
| * |
| * IFRAME-02: 0001 (we should allow) |
| * |
| * allow = (0001 & 1010) == 1010 |
| * |
| * allow = (IFRAME-02 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0; |
| * --> allow = (0001 & 0010) == (0010 & 0001) ? 1 :0; |
| * --> allow = (0010) == (0010) |
| * --> allow = 1 |
| * |
| * Other examples: |
| * |
| * IFRAME-03: 0100 --> allowed |
| * IFRAME-04: 1001 --> allowed |
| * IFRAME-05: 1101 --> allowed but its not for us!!! |
| * |
| */ |
| int ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask) |
| { |
| u32 low_id, high_id; |
| ATH5K_TRACE(ah->ah_sc); |
| |
| /* Cache bssid mask so that we can restore it |
| * on reset */ |
| memcpy(ah->ah_bssid_mask, mask, ETH_ALEN); |
| if (ah->ah_version == AR5K_AR5212) { |
| low_id = AR5K_LOW_ID(mask); |
| high_id = AR5K_HIGH_ID(mask); |
| |
| ath5k_hw_reg_write(ah, low_id, AR5K_BSS_IDM0); |
| ath5k_hw_reg_write(ah, high_id, AR5K_BSS_IDM1); |
| |
| return 0; |
| } |
| |
| return -EIO; |
| } |
| |
| |
| /************\ |
| * RX Control * |
| \************/ |
| |
| /** |
| * ath5k_hw_start_rx_pcu - Start RX engine |
| * |
| * @ah: The &struct ath5k_hw |
| * |
| * Starts RX engine on PCU so that hw can process RXed frames |
| * (ACK etc). |
| * |
| * NOTE: RX DMA should be already enabled using ath5k_hw_start_rx_dma |
| * TODO: Init ANI here |
| */ |
| void ath5k_hw_start_rx_pcu(struct ath5k_hw *ah) |
| { |
| ATH5K_TRACE(ah->ah_sc); |
| AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX); |
| } |
| |
| /** |
| * at5k_hw_stop_rx_pcu - Stop RX engine |
| * |
| * @ah: The &struct ath5k_hw |
| * |
| * Stops RX engine on PCU |
| * |
| * TODO: Detach ANI here |
| */ |
| void ath5k_hw_stop_rx_pcu(struct ath5k_hw *ah) |
| { |
| ATH5K_TRACE(ah->ah_sc); |
| AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX); |
| } |
| |
| /* |
| * Set multicast filter |
| */ |
| void ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1) |
| { |
| ATH5K_TRACE(ah->ah_sc); |
| /* Set the multicat filter */ |
| ath5k_hw_reg_write(ah, filter0, AR5K_MCAST_FILTER0); |
| ath5k_hw_reg_write(ah, filter1, AR5K_MCAST_FILTER1); |
| } |
| |
| /* |
| * Set multicast filter by index |
| */ |
| int ath5k_hw_set_mcast_filter_idx(struct ath5k_hw *ah, u32 index) |
| { |
| |
| ATH5K_TRACE(ah->ah_sc); |
| if (index >= 64) |
| return -EINVAL; |
| else if (index >= 32) |
| AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER1, |
| (1 << (index - 32))); |
| else |
| AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index)); |
| |
| return 0; |
| } |
| |
| /* |
| * Clear Multicast filter by index |
| */ |
| int ath5k_hw_clear_mcast_filter_idx(struct ath5k_hw *ah, u32 index) |
| { |
| |
| ATH5K_TRACE(ah->ah_sc); |
| if (index >= 64) |
| return -EINVAL; |
| else if (index >= 32) |
| AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER1, |
| (1 << (index - 32))); |
| else |
| AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index)); |
| |
| return 0; |
| } |
| |
| /** |
| * ath5k_hw_get_rx_filter - Get current rx filter |
| * |
| * @ah: The &struct ath5k_hw |
| * |
| * Returns the RX filter by reading rx filter and |
| * phy error filter registers. RX filter is used |
| * to set the allowed frame types that PCU will accept |
| * and pass to the driver. For a list of frame types |
| * check out reg.h. |
| */ |
| u32 ath5k_hw_get_rx_filter(struct ath5k_hw *ah) |
| { |
| u32 data, filter = 0; |
| |
| ATH5K_TRACE(ah->ah_sc); |
| filter = ath5k_hw_reg_read(ah, AR5K_RX_FILTER); |
| |
| /*Radar detection for 5212*/ |
| if (ah->ah_version == AR5K_AR5212) { |
| data = ath5k_hw_reg_read(ah, AR5K_PHY_ERR_FIL); |
| |
| if (data & AR5K_PHY_ERR_FIL_RADAR) |
| filter |= AR5K_RX_FILTER_RADARERR; |
| if (data & (AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK)) |
| filter |= AR5K_RX_FILTER_PHYERR; |
| } |
| |
| return filter; |
| } |
| |
| /** |
| * ath5k_hw_set_rx_filter - Set rx filter |
| * |
| * @ah: The &struct ath5k_hw |
| * @filter: RX filter mask (see reg.h) |
| * |
| * Sets RX filter register and also handles PHY error filter |
| * register on 5212 and newer chips so that we have proper PHY |
| * error reporting. |
| */ |
| void ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter) |
| { |
| u32 data = 0; |
| |
| ATH5K_TRACE(ah->ah_sc); |
| |
| /* Set PHY error filter register on 5212*/ |
| if (ah->ah_version == AR5K_AR5212) { |
| if (filter & AR5K_RX_FILTER_RADARERR) |
| data |= AR5K_PHY_ERR_FIL_RADAR; |
| if (filter & AR5K_RX_FILTER_PHYERR) |
| data |= AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK; |
| } |
| |
| /* |
| * The AR5210 uses promiscous mode to detect radar activity |
| */ |
| if (ah->ah_version == AR5K_AR5210 && |
| (filter & AR5K_RX_FILTER_RADARERR)) { |
| filter &= ~AR5K_RX_FILTER_RADARERR; |
| filter |= AR5K_RX_FILTER_PROM; |
| } |
| |
| /*Zero length DMA (phy error reporting) */ |
| if (data) |
| AR5K_REG_ENABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA); |
| else |
| AR5K_REG_DISABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA); |
| |
| /*Write RX Filter register*/ |
| ath5k_hw_reg_write(ah, filter & 0xff, AR5K_RX_FILTER); |
| |
| /*Write PHY error filter register on 5212*/ |
| if (ah->ah_version == AR5K_AR5212) |
| ath5k_hw_reg_write(ah, data, AR5K_PHY_ERR_FIL); |
| |
| } |
| |
| |
| /****************\ |
| * Beacon control * |
| \****************/ |
| |
| /** |
| * ath5k_hw_get_tsf32 - Get a 32bit TSF |
| * |
| * @ah: The &struct ath5k_hw |
| * |
| * Returns lower 32 bits of current TSF |
| */ |
| u32 ath5k_hw_get_tsf32(struct ath5k_hw *ah) |
| { |
| ATH5K_TRACE(ah->ah_sc); |
| return ath5k_hw_reg_read(ah, AR5K_TSF_L32); |
| } |
| |
| /** |
| * ath5k_hw_get_tsf64 - Get the full 64bit TSF |
| * |
| * @ah: The &struct ath5k_hw |
| * |
| * Returns the current TSF |
| */ |
| u64 ath5k_hw_get_tsf64(struct ath5k_hw *ah) |
| { |
| u64 tsf = ath5k_hw_reg_read(ah, AR5K_TSF_U32); |
| ATH5K_TRACE(ah->ah_sc); |
| |
| return ath5k_hw_reg_read(ah, AR5K_TSF_L32) | (tsf << 32); |
| } |
| |
| /** |
| * ath5k_hw_set_tsf64 - Set a new 64bit TSF |
| * |
| * @ah: The &struct ath5k_hw |
| * @tsf64: The new 64bit TSF |
| * |
| * Sets the new TSF |
| */ |
| void ath5k_hw_set_tsf64(struct ath5k_hw *ah, u64 tsf64) |
| { |
| ATH5K_TRACE(ah->ah_sc); |
| |
| ath5k_hw_reg_write(ah, tsf64 & 0xffffffff, AR5K_TSF_L32); |
| ath5k_hw_reg_write(ah, (tsf64 >> 32) & 0xffffffff, AR5K_TSF_U32); |
| } |
| |
| /** |
| * ath5k_hw_reset_tsf - Force a TSF reset |
| * |
| * @ah: The &struct ath5k_hw |
| * |
| * Forces a TSF reset on PCU |
| */ |
| void ath5k_hw_reset_tsf(struct ath5k_hw *ah) |
| { |
| u32 val; |
| |
| ATH5K_TRACE(ah->ah_sc); |
| |
| val = ath5k_hw_reg_read(ah, AR5K_BEACON) | AR5K_BEACON_RESET_TSF; |
| |
| /* |
| * Each write to the RESET_TSF bit toggles a hardware internal |
| * signal to reset TSF, but if left high it will cause a TSF reset |
| * on the next chip reset as well. Thus we always write the value |
| * twice to clear the signal. |
| */ |
| ath5k_hw_reg_write(ah, val, AR5K_BEACON); |
| ath5k_hw_reg_write(ah, val, AR5K_BEACON); |
| } |
| |
| /* |
| * Initialize beacon timers |
| */ |
| void ath5k_hw_init_beacon(struct ath5k_hw *ah, u32 next_beacon, u32 interval) |
| { |
| u32 timer1, timer2, timer3; |
| |
| ATH5K_TRACE(ah->ah_sc); |
| /* |
| * Set the additional timers by mode |
| */ |
| switch (ah->ah_op_mode) { |
| case NL80211_IFTYPE_MONITOR: |
| case NL80211_IFTYPE_STATION: |
| /* In STA mode timer1 is used as next wakeup |
| * timer and timer2 as next CFP duration start |
| * timer. Both in 1/8TUs. */ |
| /* TODO: PCF handling */ |
| if (ah->ah_version == AR5K_AR5210) { |
| timer1 = 0xffffffff; |
| timer2 = 0xffffffff; |
| } else { |
| timer1 = 0x0000ffff; |
| timer2 = 0x0007ffff; |
| } |
| /* Mark associated AP as PCF incapable for now */ |
| AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PCF); |
| break; |
| case NL80211_IFTYPE_ADHOC: |
| AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_ADHOC_BCN_ATIM); |
| default: |
| /* On non-STA modes timer1 is used as next DMA |
| * beacon alert (DBA) timer and timer2 as next |
| * software beacon alert. Both in 1/8TUs. */ |
| timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) << 3; |
| timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) << 3; |
| break; |
| } |
| |
| /* Timer3 marks the end of our ATIM window |
| * a zero length window is not allowed because |
| * we 'll get no beacons */ |
| timer3 = next_beacon + (ah->ah_atim_window ? ah->ah_atim_window : 1); |
| |
| /* |
| * Set the beacon register and enable all timers. |
| */ |
| /* When in AP mode zero timer0 to start TSF */ |
| if (ah->ah_op_mode == NL80211_IFTYPE_AP) |
| ath5k_hw_reg_write(ah, 0, AR5K_TIMER0); |
| else |
| ath5k_hw_reg_write(ah, next_beacon, AR5K_TIMER0); |
| ath5k_hw_reg_write(ah, timer1, AR5K_TIMER1); |
| ath5k_hw_reg_write(ah, timer2, AR5K_TIMER2); |
| ath5k_hw_reg_write(ah, timer3, AR5K_TIMER3); |
| |
| /* Force a TSF reset if requested and enable beacons */ |
| if (interval & AR5K_BEACON_RESET_TSF) |
| ath5k_hw_reset_tsf(ah); |
| |
| ath5k_hw_reg_write(ah, interval & (AR5K_BEACON_PERIOD | |
| AR5K_BEACON_ENABLE), |
| AR5K_BEACON); |
| |
| /* Flush any pending BMISS interrupts on ISR by |
| * performing a clear-on-write operation on PISR |
| * register for the BMISS bit (writing a bit on |
| * ISR togles a reset for that bit and leaves |
| * the rest bits intact) */ |
| if (ah->ah_version == AR5K_AR5210) |
| ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_ISR); |
| else |
| ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_PISR); |
| |
| /* TODO: Set enchanced sleep registers on AR5212 |
| * based on vif->bss_conf params, until then |
| * disable power save reporting.*/ |
| AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PWR_SV); |
| |
| } |
| |
| #if 0 |
| /* |
| * Set beacon timers |
| */ |
| int ath5k_hw_set_beacon_timers(struct ath5k_hw *ah, |
| const struct ath5k_beacon_state *state) |
| { |
| u32 cfp_period, next_cfp, dtim, interval, next_beacon; |
| |
| /* |
| * TODO: should be changed through *state |
| * review struct ath5k_beacon_state struct |
| * |
| * XXX: These are used for cfp period bellow, are they |
| * ok ? Is it O.K. for tsf here to be 0 or should we use |
| * get_tsf ? |
| */ |
| u32 dtim_count = 0; /* XXX */ |
| u32 cfp_count = 0; /* XXX */ |
| u32 tsf = 0; /* XXX */ |
| |
| ATH5K_TRACE(ah->ah_sc); |
| /* Return on an invalid beacon state */ |
| if (state->bs_interval < 1) |
| return -EINVAL; |
| |
| interval = state->bs_interval; |
| dtim = state->bs_dtim_period; |
| |
| /* |
| * PCF support? |
| */ |
| if (state->bs_cfp_period > 0) { |
| /* |
| * Enable PCF mode and set the CFP |
| * (Contention Free Period) and timer registers |
| */ |
| cfp_period = state->bs_cfp_period * state->bs_dtim_period * |
| state->bs_interval; |
| next_cfp = (cfp_count * state->bs_dtim_period + dtim_count) * |
| state->bs_interval; |
| |
| AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, |
| AR5K_STA_ID1_DEFAULT_ANTENNA | |
| AR5K_STA_ID1_PCF); |
| ath5k_hw_reg_write(ah, cfp_period, AR5K_CFP_PERIOD); |
| ath5k_hw_reg_write(ah, state->bs_cfp_max_duration, |
| AR5K_CFP_DUR); |
| ath5k_hw_reg_write(ah, (tsf + (next_cfp == 0 ? cfp_period : |
| next_cfp)) << 3, AR5K_TIMER2); |
| } else { |
| /* Disable PCF mode */ |
| AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, |
| AR5K_STA_ID1_DEFAULT_ANTENNA | |
| AR5K_STA_ID1_PCF); |
| } |
| |
| /* |
| * Enable the beacon timer register |
| */ |
| ath5k_hw_reg_write(ah, state->bs_next_beacon, AR5K_TIMER0); |
| |
| /* |
| * Start the beacon timers |
| */ |
| ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, AR5K_BEACON) & |
| ~(AR5K_BEACON_PERIOD | AR5K_BEACON_TIM)) | |
| AR5K_REG_SM(state->bs_tim_offset ? state->bs_tim_offset + 4 : 0, |
| AR5K_BEACON_TIM) | AR5K_REG_SM(state->bs_interval, |
| AR5K_BEACON_PERIOD), AR5K_BEACON); |
| |
| /* |
| * Write new beacon miss threshold, if it appears to be valid |
| * XXX: Figure out right values for min <= bs_bmiss_threshold <= max |
| * and return if its not in range. We can test this by reading value and |
| * setting value to a largest value and seeing which values register. |
| */ |
| |
| AR5K_REG_WRITE_BITS(ah, AR5K_RSSI_THR, AR5K_RSSI_THR_BMISS, |
| state->bs_bmiss_threshold); |
| |
| /* |
| * Set sleep control register |
| * XXX: Didn't find this in 5210 code but since this register |
| * exists also in ar5k's 5210 headers i leave it as common code. |
| */ |
| AR5K_REG_WRITE_BITS(ah, AR5K_SLEEP_CTL, AR5K_SLEEP_CTL_SLDUR, |
| (state->bs_sleep_duration - 3) << 3); |
| |
| /* |
| * Set enhanced sleep registers on 5212 |
| */ |
| if (ah->ah_version == AR5K_AR5212) { |
| if (state->bs_sleep_duration > state->bs_interval && |
| roundup(state->bs_sleep_duration, interval) == |
| state->bs_sleep_duration) |
| interval = state->bs_sleep_duration; |
| |
| if (state->bs_sleep_duration > dtim && (dtim == 0 || |
| roundup(state->bs_sleep_duration, dtim) == |
| state->bs_sleep_duration)) |
| dtim = state->bs_sleep_duration; |
| |
| if (interval > dtim) |
| return -EINVAL; |
| |
| next_beacon = interval == dtim ? state->bs_next_dtim : |
| state->bs_next_beacon; |
| |
| ath5k_hw_reg_write(ah, |
| AR5K_REG_SM((state->bs_next_dtim - 3) << 3, |
| AR5K_SLEEP0_NEXT_DTIM) | |
| AR5K_REG_SM(10, AR5K_SLEEP0_CABTO) | |
| AR5K_SLEEP0_ENH_SLEEP_EN | |
| AR5K_SLEEP0_ASSUME_DTIM, AR5K_SLEEP0); |
| |
| ath5k_hw_reg_write(ah, AR5K_REG_SM((next_beacon - 3) << 3, |
| AR5K_SLEEP1_NEXT_TIM) | |
| AR5K_REG_SM(10, AR5K_SLEEP1_BEACON_TO), AR5K_SLEEP1); |
| |
| ath5k_hw_reg_write(ah, |
| AR5K_REG_SM(interval, AR5K_SLEEP2_TIM_PER) | |
| AR5K_REG_SM(dtim, AR5K_SLEEP2_DTIM_PER), AR5K_SLEEP2); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Reset beacon timers |
| */ |
| void ath5k_hw_reset_beacon(struct ath5k_hw *ah) |
| { |
| ATH5K_TRACE(ah->ah_sc); |
| /* |
| * Disable beacon timer |
| */ |
| ath5k_hw_reg_write(ah, 0, AR5K_TIMER0); |
| |
| /* |
| * Disable some beacon register values |
| */ |
| AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, |
| AR5K_STA_ID1_DEFAULT_ANTENNA | AR5K_STA_ID1_PCF); |
| ath5k_hw_reg_write(ah, AR5K_BEACON_PERIOD, AR5K_BEACON); |
| } |
| |
| /* |
| * Wait for beacon queue to finish |
| */ |
| int ath5k_hw_beaconq_finish(struct ath5k_hw *ah, unsigned long phys_addr) |
| { |
| unsigned int i; |
| int ret; |
| |
| ATH5K_TRACE(ah->ah_sc); |
| |
| /* 5210 doesn't have QCU*/ |
| if (ah->ah_version == AR5K_AR5210) { |
| /* |
| * Wait for beaconn queue to finish by checking |
| * Control Register and Beacon Status Register. |
| */ |
| for (i = AR5K_TUNE_BEACON_INTERVAL / 2; i > 0; i--) { |
| if (!(ath5k_hw_reg_read(ah, AR5K_BSR) & AR5K_BSR_TXQ1F) |
| || |
| !(ath5k_hw_reg_read(ah, AR5K_CR) & AR5K_BSR_TXQ1F)) |
| break; |
| udelay(10); |
| } |
| |
| /* Timeout... */ |
| if (i <= 0) { |
| /* |
| * Re-schedule the beacon queue |
| */ |
| ath5k_hw_reg_write(ah, phys_addr, AR5K_NOQCU_TXDP1); |
| ath5k_hw_reg_write(ah, AR5K_BCR_TQ1V | AR5K_BCR_BDMAE, |
| AR5K_BCR); |
| |
| return -EIO; |
| } |
| ret = 0; |
| } else { |
| /*5211/5212*/ |
| ret = ath5k_hw_register_timeout(ah, |
| AR5K_QUEUE_STATUS(AR5K_TX_QUEUE_ID_BEACON), |
| AR5K_QCU_STS_FRMPENDCNT, 0, false); |
| |
| if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, AR5K_TX_QUEUE_ID_BEACON)) |
| return -EIO; |
| } |
| |
| return ret; |
| } |
| #endif |
| |
| |
| /*********************\ |
| * Key table functions * |
| \*********************/ |
| |
| /* |
| * Reset a key entry on the table |
| */ |
| int ath5k_hw_reset_key(struct ath5k_hw *ah, u16 entry) |
| { |
| unsigned int i, type; |
| u16 micentry = entry + AR5K_KEYTABLE_MIC_OFFSET; |
| |
| ATH5K_TRACE(ah->ah_sc); |
| AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE); |
| |
| type = ath5k_hw_reg_read(ah, AR5K_KEYTABLE_TYPE(entry)); |
| |
| for (i = 0; i < AR5K_KEYCACHE_SIZE; i++) |
| ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_OFF(entry, i)); |
| |
| /* Reset associated MIC entry if TKIP |
| * is enabled located at offset (entry + 64) */ |
| if (type == AR5K_KEYTABLE_TYPE_TKIP) { |
| AR5K_ASSERT_ENTRY(micentry, AR5K_KEYTABLE_SIZE); |
| for (i = 0; i < AR5K_KEYCACHE_SIZE / 2 ; i++) |
| ath5k_hw_reg_write(ah, 0, |
| AR5K_KEYTABLE_OFF(micentry, i)); |
| } |
| |
| /* |
| * Set NULL encryption on AR5212+ |
| * |
| * Note: AR5K_KEYTABLE_TYPE -> AR5K_KEYTABLE_OFF(entry, 5) |
| * AR5K_KEYTABLE_TYPE_NULL -> 0x00000007 |
| * |
| * Note2: Windows driver (ndiswrapper) sets this to |
| * 0x00000714 instead of 0x00000007 |
| */ |
| if (ah->ah_version > AR5K_AR5211) { |
| ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL, |
| AR5K_KEYTABLE_TYPE(entry)); |
| |
| if (type == AR5K_KEYTABLE_TYPE_TKIP) { |
| ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL, |
| AR5K_KEYTABLE_TYPE(micentry)); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Check if a table entry is valid |
| */ |
| int ath5k_hw_is_key_valid(struct ath5k_hw *ah, u16 entry) |
| { |
| ATH5K_TRACE(ah->ah_sc); |
| AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE); |
| |
| /* Check the validation flag at the end of the entry */ |
| return ath5k_hw_reg_read(ah, AR5K_KEYTABLE_MAC1(entry)) & |
| AR5K_KEYTABLE_VALID; |
| } |
| |
| static |
| int ath5k_keycache_type(const struct ieee80211_key_conf *key) |
| { |
| switch (key->alg) { |
| case ALG_TKIP: |
| return AR5K_KEYTABLE_TYPE_TKIP; |
| case ALG_CCMP: |
| return AR5K_KEYTABLE_TYPE_CCM; |
| case ALG_WEP: |
| if (key->keylen == LEN_WEP40) |
| return AR5K_KEYTABLE_TYPE_40; |
| else if (key->keylen == LEN_WEP104) |
| return AR5K_KEYTABLE_TYPE_104; |
| return -EINVAL; |
| default: |
| return -EINVAL; |
| } |
| return -EINVAL; |
| } |
| |
| /* |
| * Set a key entry on the table |
| */ |
| int ath5k_hw_set_key(struct ath5k_hw *ah, u16 entry, |
| const struct ieee80211_key_conf *key, const u8 *mac) |
| { |
| unsigned int i; |
| int keylen; |
| __le32 key_v[5] = {}; |
| __le32 key0 = 0, key1 = 0; |
| __le32 *rxmic, *txmic; |
| int keytype; |
| u16 micentry = entry + AR5K_KEYTABLE_MIC_OFFSET; |
| bool is_tkip; |
| const u8 *key_ptr; |
| |
| ATH5K_TRACE(ah->ah_sc); |
| |
| is_tkip = (key->alg == ALG_TKIP); |
| |
| /* |
| * key->keylen comes in from mac80211 in bytes. |
| * TKIP is 128 bit + 128 bit mic |
| */ |
| keylen = (is_tkip) ? (128 / 8) : key->keylen; |
| |
| if (entry > AR5K_KEYTABLE_SIZE || |
| (is_tkip && micentry > AR5K_KEYTABLE_SIZE)) |
| return -EOPNOTSUPP; |
| |
| if (unlikely(keylen > 16)) |
| return -EOPNOTSUPP; |
| |
| keytype = ath5k_keycache_type(key); |
| if (keytype < 0) |
| return keytype; |
| |
| /* |
| * each key block is 6 bytes wide, written as pairs of |
| * alternating 32 and 16 bit le values. |
| */ |
| key_ptr = key->key; |
| for (i = 0; keylen >= 6; keylen -= 6) { |
| memcpy(&key_v[i], key_ptr, 6); |
| i += 2; |
| key_ptr += 6; |
| } |
| if (keylen) |
| memcpy(&key_v[i], key_ptr, keylen); |
| |
| /* intentionally corrupt key until mic is installed */ |
| if (is_tkip) { |
| key0 = key_v[0] = ~key_v[0]; |
| key1 = key_v[1] = ~key_v[1]; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(key_v); i++) |
| ath5k_hw_reg_write(ah, le32_to_cpu(key_v[i]), |
| AR5K_KEYTABLE_OFF(entry, i)); |
| |
| ath5k_hw_reg_write(ah, keytype, AR5K_KEYTABLE_TYPE(entry)); |
| |
| if (is_tkip) { |
| /* Install rx/tx MIC */ |
| rxmic = (__le32 *) &key->key[16]; |
| txmic = (__le32 *) &key->key[24]; |
| |
| if (ah->ah_combined_mic) { |
| key_v[0] = rxmic[0]; |
| key_v[1] = cpu_to_le32(le32_to_cpu(txmic[0]) >> 16); |
| key_v[2] = rxmic[1]; |
| key_v[3] = cpu_to_le32(le32_to_cpu(txmic[0]) & 0xffff); |
| key_v[4] = txmic[1]; |
| } else { |
| key_v[0] = rxmic[0]; |
| key_v[1] = 0; |
| key_v[2] = rxmic[1]; |
| key_v[3] = 0; |
| key_v[4] = 0; |
| } |
| for (i = 0; i < ARRAY_SIZE(key_v); i++) |
| ath5k_hw_reg_write(ah, le32_to_cpu(key_v[i]), |
| AR5K_KEYTABLE_OFF(micentry, i)); |
| |
| ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL, |
| AR5K_KEYTABLE_TYPE(micentry)); |
| ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_MAC0(micentry)); |
| ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_MAC1(micentry)); |
| |
| /* restore first 2 words of key */ |
| ath5k_hw_reg_write(ah, le32_to_cpu(~key0), |
| AR5K_KEYTABLE_OFF(entry, 0)); |
| ath5k_hw_reg_write(ah, le32_to_cpu(~key1), |
| AR5K_KEYTABLE_OFF(entry, 1)); |
| } |
| |
| return ath5k_hw_set_key_lladdr(ah, entry, mac); |
| } |
| |
| int ath5k_hw_set_key_lladdr(struct ath5k_hw *ah, u16 entry, const u8 *mac) |
| { |
| u32 low_id, high_id; |
| |
| ATH5K_TRACE(ah->ah_sc); |
| /* Invalid entry (key table overflow) */ |
| AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE); |
| |
| /* MAC may be NULL if it's a broadcast key. In this case no need to |
| * to compute AR5K_LOW_ID and AR5K_HIGH_ID as we already know it. */ |
| if (!mac) { |
| low_id = 0xffffffff; |
| high_id = 0xffff | AR5K_KEYTABLE_VALID; |
| } else { |
| low_id = AR5K_LOW_ID(mac); |
| high_id = AR5K_HIGH_ID(mac) | AR5K_KEYTABLE_VALID; |
| } |
| |
| ath5k_hw_reg_write(ah, low_id, AR5K_KEYTABLE_MAC0(entry)); |
| ath5k_hw_reg_write(ah, high_id, AR5K_KEYTABLE_MAC1(entry)); |
| |
| return 0; |
| } |
| |