| /* |
| * Performance events ring-buffer code: |
| * |
| * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> |
| * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar |
| * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> |
| * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> |
| * |
| * For licensing details see kernel-base/COPYING |
| */ |
| |
| #include <linux/perf_event.h> |
| #include <linux/vmalloc.h> |
| #include <linux/slab.h> |
| #include <linux/circ_buf.h> |
| #include <linux/poll.h> |
| |
| #include "internal.h" |
| |
| static void perf_output_wakeup(struct perf_output_handle *handle) |
| { |
| atomic_set(&handle->rb->poll, POLLIN); |
| |
| handle->event->pending_wakeup = 1; |
| irq_work_queue(&handle->event->pending); |
| } |
| |
| /* |
| * We need to ensure a later event_id doesn't publish a head when a former |
| * event isn't done writing. However since we need to deal with NMIs we |
| * cannot fully serialize things. |
| * |
| * We only publish the head (and generate a wakeup) when the outer-most |
| * event completes. |
| */ |
| static void perf_output_get_handle(struct perf_output_handle *handle) |
| { |
| struct ring_buffer *rb = handle->rb; |
| |
| preempt_disable(); |
| local_inc(&rb->nest); |
| handle->wakeup = local_read(&rb->wakeup); |
| } |
| |
| static void perf_output_put_handle(struct perf_output_handle *handle) |
| { |
| struct ring_buffer *rb = handle->rb; |
| unsigned long head; |
| |
| again: |
| head = local_read(&rb->head); |
| |
| /* |
| * IRQ/NMI can happen here, which means we can miss a head update. |
| */ |
| |
| if (!local_dec_and_test(&rb->nest)) |
| goto out; |
| |
| /* |
| * Since the mmap() consumer (userspace) can run on a different CPU: |
| * |
| * kernel user |
| * |
| * if (LOAD ->data_tail) { LOAD ->data_head |
| * (A) smp_rmb() (C) |
| * STORE $data LOAD $data |
| * smp_wmb() (B) smp_mb() (D) |
| * STORE ->data_head STORE ->data_tail |
| * } |
| * |
| * Where A pairs with D, and B pairs with C. |
| * |
| * In our case (A) is a control dependency that separates the load of |
| * the ->data_tail and the stores of $data. In case ->data_tail |
| * indicates there is no room in the buffer to store $data we do not. |
| * |
| * D needs to be a full barrier since it separates the data READ |
| * from the tail WRITE. |
| * |
| * For B a WMB is sufficient since it separates two WRITEs, and for C |
| * an RMB is sufficient since it separates two READs. |
| * |
| * See perf_output_begin(). |
| */ |
| smp_wmb(); /* B, matches C */ |
| rb->user_page->data_head = head; |
| |
| /* |
| * Now check if we missed an update -- rely on previous implied |
| * compiler barriers to force a re-read. |
| */ |
| if (unlikely(head != local_read(&rb->head))) { |
| local_inc(&rb->nest); |
| goto again; |
| } |
| |
| if (handle->wakeup != local_read(&rb->wakeup)) |
| perf_output_wakeup(handle); |
| |
| out: |
| preempt_enable(); |
| } |
| |
| int perf_output_begin(struct perf_output_handle *handle, |
| struct perf_event *event, unsigned int size) |
| { |
| struct ring_buffer *rb; |
| unsigned long tail, offset, head; |
| int have_lost, page_shift; |
| struct { |
| struct perf_event_header header; |
| u64 id; |
| u64 lost; |
| } lost_event; |
| |
| rcu_read_lock(); |
| /* |
| * For inherited events we send all the output towards the parent. |
| */ |
| if (event->parent) |
| event = event->parent; |
| |
| rb = rcu_dereference(event->rb); |
| if (unlikely(!rb)) |
| goto out; |
| |
| if (unlikely(!rb->nr_pages)) |
| goto out; |
| |
| handle->rb = rb; |
| handle->event = event; |
| |
| have_lost = local_read(&rb->lost); |
| if (unlikely(have_lost)) { |
| size += sizeof(lost_event); |
| if (event->attr.sample_id_all) |
| size += event->id_header_size; |
| } |
| |
| perf_output_get_handle(handle); |
| |
| do { |
| tail = ACCESS_ONCE(rb->user_page->data_tail); |
| offset = head = local_read(&rb->head); |
| if (!rb->overwrite && |
| unlikely(CIRC_SPACE(head, tail, perf_data_size(rb)) < size)) |
| goto fail; |
| |
| /* |
| * The above forms a control dependency barrier separating the |
| * @tail load above from the data stores below. Since the @tail |
| * load is required to compute the branch to fail below. |
| * |
| * A, matches D; the full memory barrier userspace SHOULD issue |
| * after reading the data and before storing the new tail |
| * position. |
| * |
| * See perf_output_put_handle(). |
| */ |
| |
| head += size; |
| } while (local_cmpxchg(&rb->head, offset, head) != offset); |
| |
| /* |
| * We rely on the implied barrier() by local_cmpxchg() to ensure |
| * none of the data stores below can be lifted up by the compiler. |
| */ |
| |
| if (unlikely(head - local_read(&rb->wakeup) > rb->watermark)) |
| local_add(rb->watermark, &rb->wakeup); |
| |
| page_shift = PAGE_SHIFT + page_order(rb); |
| |
| handle->page = (offset >> page_shift) & (rb->nr_pages - 1); |
| offset &= (1UL << page_shift) - 1; |
| handle->addr = rb->data_pages[handle->page] + offset; |
| handle->size = (1UL << page_shift) - offset; |
| |
| if (unlikely(have_lost)) { |
| struct perf_sample_data sample_data; |
| |
| lost_event.header.size = sizeof(lost_event); |
| lost_event.header.type = PERF_RECORD_LOST; |
| lost_event.header.misc = 0; |
| lost_event.id = event->id; |
| lost_event.lost = local_xchg(&rb->lost, 0); |
| |
| perf_event_header__init_id(&lost_event.header, |
| &sample_data, event); |
| perf_output_put(handle, lost_event); |
| perf_event__output_id_sample(event, handle, &sample_data); |
| } |
| |
| return 0; |
| |
| fail: |
| local_inc(&rb->lost); |
| perf_output_put_handle(handle); |
| out: |
| rcu_read_unlock(); |
| |
| return -ENOSPC; |
| } |
| |
| unsigned int perf_output_copy(struct perf_output_handle *handle, |
| const void *buf, unsigned int len) |
| { |
| return __output_copy(handle, buf, len); |
| } |
| |
| unsigned int perf_output_skip(struct perf_output_handle *handle, |
| unsigned int len) |
| { |
| return __output_skip(handle, NULL, len); |
| } |
| |
| void perf_output_end(struct perf_output_handle *handle) |
| { |
| perf_output_put_handle(handle); |
| rcu_read_unlock(); |
| } |
| |
| static void |
| ring_buffer_init(struct ring_buffer *rb, long watermark, int flags) |
| { |
| long max_size = perf_data_size(rb); |
| |
| if (watermark) |
| rb->watermark = min(max_size, watermark); |
| |
| if (!rb->watermark) |
| rb->watermark = max_size / 2; |
| |
| if (flags & RING_BUFFER_WRITABLE) |
| rb->overwrite = 0; |
| else |
| rb->overwrite = 1; |
| |
| atomic_set(&rb->refcount, 1); |
| |
| INIT_LIST_HEAD(&rb->event_list); |
| spin_lock_init(&rb->event_lock); |
| } |
| |
| /* |
| * This is called before hardware starts writing to the AUX area to |
| * obtain an output handle and make sure there's room in the buffer. |
| * When the capture completes, call perf_aux_output_end() to commit |
| * the recorded data to the buffer. |
| * |
| * The ordering is similar to that of perf_output_{begin,end}, with |
| * the exception of (B), which should be taken care of by the pmu |
| * driver, since ordering rules will differ depending on hardware. |
| */ |
| void *perf_aux_output_begin(struct perf_output_handle *handle, |
| struct perf_event *event) |
| { |
| struct perf_event *output_event = event; |
| unsigned long aux_head, aux_tail; |
| struct ring_buffer *rb; |
| |
| if (output_event->parent) |
| output_event = output_event->parent; |
| |
| /* |
| * Since this will typically be open across pmu::add/pmu::del, we |
| * grab ring_buffer's refcount instead of holding rcu read lock |
| * to make sure it doesn't disappear under us. |
| */ |
| rb = ring_buffer_get(output_event); |
| if (!rb) |
| return NULL; |
| |
| if (!rb_has_aux(rb) || !atomic_inc_not_zero(&rb->aux_refcount)) |
| goto err; |
| |
| /* |
| * Nesting is not supported for AUX area, make sure nested |
| * writers are caught early |
| */ |
| if (WARN_ON_ONCE(local_xchg(&rb->aux_nest, 1))) |
| goto err_put; |
| |
| aux_head = local_read(&rb->aux_head); |
| |
| handle->rb = rb; |
| handle->event = event; |
| handle->head = aux_head; |
| handle->size = 0; |
| |
| /* |
| * In overwrite mode, AUX data stores do not depend on aux_tail, |
| * therefore (A) control dependency barrier does not exist. The |
| * (B) <-> (C) ordering is still observed by the pmu driver. |
| */ |
| if (!rb->aux_overwrite) { |
| aux_tail = ACCESS_ONCE(rb->user_page->aux_tail); |
| handle->wakeup = local_read(&rb->aux_wakeup) + rb->aux_watermark; |
| if (aux_head - aux_tail < perf_aux_size(rb)) |
| handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb)); |
| |
| /* |
| * handle->size computation depends on aux_tail load; this forms a |
| * control dependency barrier separating aux_tail load from aux data |
| * store that will be enabled on successful return |
| */ |
| if (!handle->size) { /* A, matches D */ |
| event->pending_disable = 1; |
| perf_output_wakeup(handle); |
| local_set(&rb->aux_nest, 0); |
| goto err_put; |
| } |
| } |
| |
| return handle->rb->aux_priv; |
| |
| err_put: |
| rb_free_aux(rb); |
| |
| err: |
| ring_buffer_put(rb); |
| handle->event = NULL; |
| |
| return NULL; |
| } |
| |
| /* |
| * Commit the data written by hardware into the ring buffer by adjusting |
| * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the |
| * pmu driver's responsibility to observe ordering rules of the hardware, |
| * so that all the data is externally visible before this is called. |
| */ |
| void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size, |
| bool truncated) |
| { |
| struct ring_buffer *rb = handle->rb; |
| unsigned long aux_head; |
| u64 flags = 0; |
| |
| if (truncated) |
| flags |= PERF_AUX_FLAG_TRUNCATED; |
| |
| /* in overwrite mode, driver provides aux_head via handle */ |
| if (rb->aux_overwrite) { |
| flags |= PERF_AUX_FLAG_OVERWRITE; |
| |
| aux_head = handle->head; |
| local_set(&rb->aux_head, aux_head); |
| } else { |
| aux_head = local_read(&rb->aux_head); |
| local_add(size, &rb->aux_head); |
| } |
| |
| if (size || flags) { |
| /* |
| * Only send RECORD_AUX if we have something useful to communicate |
| */ |
| |
| perf_event_aux_event(handle->event, aux_head, size, flags); |
| } |
| |
| aux_head = rb->user_page->aux_head = local_read(&rb->aux_head); |
| |
| if (aux_head - local_read(&rb->aux_wakeup) >= rb->aux_watermark) { |
| perf_output_wakeup(handle); |
| local_add(rb->aux_watermark, &rb->aux_wakeup); |
| } |
| handle->event = NULL; |
| |
| local_set(&rb->aux_nest, 0); |
| rb_free_aux(rb); |
| ring_buffer_put(rb); |
| } |
| |
| /* |
| * Skip over a given number of bytes in the AUX buffer, due to, for example, |
| * hardware's alignment constraints. |
| */ |
| int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size) |
| { |
| struct ring_buffer *rb = handle->rb; |
| unsigned long aux_head; |
| |
| if (size > handle->size) |
| return -ENOSPC; |
| |
| local_add(size, &rb->aux_head); |
| |
| aux_head = rb->user_page->aux_head = local_read(&rb->aux_head); |
| if (aux_head - local_read(&rb->aux_wakeup) >= rb->aux_watermark) { |
| perf_output_wakeup(handle); |
| local_add(rb->aux_watermark, &rb->aux_wakeup); |
| handle->wakeup = local_read(&rb->aux_wakeup) + |
| rb->aux_watermark; |
| } |
| |
| handle->head = aux_head; |
| handle->size -= size; |
| |
| return 0; |
| } |
| |
| void *perf_get_aux(struct perf_output_handle *handle) |
| { |
| /* this is only valid between perf_aux_output_begin and *_end */ |
| if (!handle->event) |
| return NULL; |
| |
| return handle->rb->aux_priv; |
| } |
| |
| #define PERF_AUX_GFP (GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY) |
| |
| static struct page *rb_alloc_aux_page(int node, int order) |
| { |
| struct page *page; |
| |
| if (order > MAX_ORDER) |
| order = MAX_ORDER; |
| |
| do { |
| page = alloc_pages_node(node, PERF_AUX_GFP, order); |
| } while (!page && order--); |
| |
| if (page && order) { |
| /* |
| * Communicate the allocation size to the driver |
| */ |
| split_page(page, order); |
| SetPagePrivate(page); |
| set_page_private(page, order); |
| } |
| |
| return page; |
| } |
| |
| static void rb_free_aux_page(struct ring_buffer *rb, int idx) |
| { |
| struct page *page = virt_to_page(rb->aux_pages[idx]); |
| |
| ClearPagePrivate(page); |
| page->mapping = NULL; |
| __free_page(page); |
| } |
| |
| int rb_alloc_aux(struct ring_buffer *rb, struct perf_event *event, |
| pgoff_t pgoff, int nr_pages, long watermark, int flags) |
| { |
| bool overwrite = !(flags & RING_BUFFER_WRITABLE); |
| int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu); |
| int ret = -ENOMEM, max_order = 0; |
| |
| if (!has_aux(event)) |
| return -ENOTSUPP; |
| |
| if (event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) { |
| /* |
| * We need to start with the max_order that fits in nr_pages, |
| * not the other way around, hence ilog2() and not get_order. |
| */ |
| max_order = ilog2(nr_pages); |
| |
| /* |
| * PMU requests more than one contiguous chunks of memory |
| * for SW double buffering |
| */ |
| if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_SW_DOUBLEBUF) && |
| !overwrite) { |
| if (!max_order) |
| return -EINVAL; |
| |
| max_order--; |
| } |
| } |
| |
| rb->aux_pages = kzalloc_node(nr_pages * sizeof(void *), GFP_KERNEL, node); |
| if (!rb->aux_pages) |
| return -ENOMEM; |
| |
| rb->free_aux = event->pmu->free_aux; |
| for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) { |
| struct page *page; |
| int last, order; |
| |
| order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages)); |
| page = rb_alloc_aux_page(node, order); |
| if (!page) |
| goto out; |
| |
| for (last = rb->aux_nr_pages + (1 << page_private(page)); |
| last > rb->aux_nr_pages; rb->aux_nr_pages++) |
| rb->aux_pages[rb->aux_nr_pages] = page_address(page++); |
| } |
| |
| rb->aux_priv = event->pmu->setup_aux(event->cpu, rb->aux_pages, nr_pages, |
| overwrite); |
| if (!rb->aux_priv) |
| goto out; |
| |
| ret = 0; |
| |
| /* |
| * aux_pages (and pmu driver's private data, aux_priv) will be |
| * referenced in both producer's and consumer's contexts, thus |
| * we keep a refcount here to make sure either of the two can |
| * reference them safely. |
| */ |
| atomic_set(&rb->aux_refcount, 1); |
| |
| rb->aux_overwrite = overwrite; |
| rb->aux_watermark = watermark; |
| |
| if (!rb->aux_watermark && !rb->aux_overwrite) |
| rb->aux_watermark = nr_pages << (PAGE_SHIFT - 1); |
| |
| out: |
| if (!ret) |
| rb->aux_pgoff = pgoff; |
| else |
| rb_free_aux(rb); |
| |
| return ret; |
| } |
| |
| static void __rb_free_aux(struct ring_buffer *rb) |
| { |
| int pg; |
| |
| if (rb->aux_priv) { |
| rb->free_aux(rb->aux_priv); |
| rb->free_aux = NULL; |
| rb->aux_priv = NULL; |
| } |
| |
| for (pg = 0; pg < rb->aux_nr_pages; pg++) |
| rb_free_aux_page(rb, pg); |
| |
| kfree(rb->aux_pages); |
| rb->aux_nr_pages = 0; |
| } |
| |
| void rb_free_aux(struct ring_buffer *rb) |
| { |
| if (atomic_dec_and_test(&rb->aux_refcount)) |
| __rb_free_aux(rb); |
| } |
| |
| #ifndef CONFIG_PERF_USE_VMALLOC |
| |
| /* |
| * Back perf_mmap() with regular GFP_KERNEL-0 pages. |
| */ |
| |
| static struct page * |
| __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff) |
| { |
| if (pgoff > rb->nr_pages) |
| return NULL; |
| |
| if (pgoff == 0) |
| return virt_to_page(rb->user_page); |
| |
| return virt_to_page(rb->data_pages[pgoff - 1]); |
| } |
| |
| static void *perf_mmap_alloc_page(int cpu) |
| { |
| struct page *page; |
| int node; |
| |
| node = (cpu == -1) ? cpu : cpu_to_node(cpu); |
| page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); |
| if (!page) |
| return NULL; |
| |
| return page_address(page); |
| } |
| |
| struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags) |
| { |
| struct ring_buffer *rb; |
| unsigned long size; |
| int i; |
| |
| size = sizeof(struct ring_buffer); |
| size += nr_pages * sizeof(void *); |
| |
| rb = kzalloc(size, GFP_KERNEL); |
| if (!rb) |
| goto fail; |
| |
| rb->user_page = perf_mmap_alloc_page(cpu); |
| if (!rb->user_page) |
| goto fail_user_page; |
| |
| for (i = 0; i < nr_pages; i++) { |
| rb->data_pages[i] = perf_mmap_alloc_page(cpu); |
| if (!rb->data_pages[i]) |
| goto fail_data_pages; |
| } |
| |
| rb->nr_pages = nr_pages; |
| |
| ring_buffer_init(rb, watermark, flags); |
| |
| return rb; |
| |
| fail_data_pages: |
| for (i--; i >= 0; i--) |
| free_page((unsigned long)rb->data_pages[i]); |
| |
| free_page((unsigned long)rb->user_page); |
| |
| fail_user_page: |
| kfree(rb); |
| |
| fail: |
| return NULL; |
| } |
| |
| static void perf_mmap_free_page(unsigned long addr) |
| { |
| struct page *page = virt_to_page((void *)addr); |
| |
| page->mapping = NULL; |
| __free_page(page); |
| } |
| |
| void rb_free(struct ring_buffer *rb) |
| { |
| int i; |
| |
| perf_mmap_free_page((unsigned long)rb->user_page); |
| for (i = 0; i < rb->nr_pages; i++) |
| perf_mmap_free_page((unsigned long)rb->data_pages[i]); |
| kfree(rb); |
| } |
| |
| #else |
| static int data_page_nr(struct ring_buffer *rb) |
| { |
| return rb->nr_pages << page_order(rb); |
| } |
| |
| static struct page * |
| __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff) |
| { |
| /* The '>' counts in the user page. */ |
| if (pgoff > data_page_nr(rb)) |
| return NULL; |
| |
| return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE); |
| } |
| |
| static void perf_mmap_unmark_page(void *addr) |
| { |
| struct page *page = vmalloc_to_page(addr); |
| |
| page->mapping = NULL; |
| } |
| |
| static void rb_free_work(struct work_struct *work) |
| { |
| struct ring_buffer *rb; |
| void *base; |
| int i, nr; |
| |
| rb = container_of(work, struct ring_buffer, work); |
| nr = data_page_nr(rb); |
| |
| base = rb->user_page; |
| /* The '<=' counts in the user page. */ |
| for (i = 0; i <= nr; i++) |
| perf_mmap_unmark_page(base + (i * PAGE_SIZE)); |
| |
| vfree(base); |
| kfree(rb); |
| } |
| |
| void rb_free(struct ring_buffer *rb) |
| { |
| schedule_work(&rb->work); |
| } |
| |
| struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags) |
| { |
| struct ring_buffer *rb; |
| unsigned long size; |
| void *all_buf; |
| |
| size = sizeof(struct ring_buffer); |
| size += sizeof(void *); |
| |
| rb = kzalloc(size, GFP_KERNEL); |
| if (!rb) |
| goto fail; |
| |
| INIT_WORK(&rb->work, rb_free_work); |
| |
| all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE); |
| if (!all_buf) |
| goto fail_all_buf; |
| |
| rb->user_page = all_buf; |
| rb->data_pages[0] = all_buf + PAGE_SIZE; |
| rb->page_order = ilog2(nr_pages); |
| rb->nr_pages = !!nr_pages; |
| |
| ring_buffer_init(rb, watermark, flags); |
| |
| return rb; |
| |
| fail_all_buf: |
| kfree(rb); |
| |
| fail: |
| return NULL; |
| } |
| |
| #endif |
| |
| struct page * |
| perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff) |
| { |
| if (rb->aux_nr_pages) { |
| /* above AUX space */ |
| if (pgoff > rb->aux_pgoff + rb->aux_nr_pages) |
| return NULL; |
| |
| /* AUX space */ |
| if (pgoff >= rb->aux_pgoff) |
| return virt_to_page(rb->aux_pages[pgoff - rb->aux_pgoff]); |
| } |
| |
| return __perf_mmap_to_page(rb, pgoff); |
| } |