blob: f2d1f936dd667afa4fb71186949a1e2fbd5d90a8 [file] [log] [blame]
/**
* eCryptfs: Linux filesystem encryption layer
*
* Copyright (C) 1997-2003 Erez Zadok
* Copyright (C) 2001-2003 Stony Brook University
* Copyright (C) 2004-2006 International Business Machines Corp.
* Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
* Michael C. Thompson <mcthomps@us.ibm.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
* 02111-1307, USA.
*/
#include <linux/fs.h>
#include <linux/mount.h>
#include <linux/key.h>
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/file.h>
#include <linux/crypto.h>
#include <linux/statfs.h>
#include <linux/magic.h>
#include "ecryptfs_kernel.h"
#ifdef CONFIG_SDP
#include "ecryptfs_dek.h"
#endif
struct kmem_cache *ecryptfs_inode_info_cache;
/**
* ecryptfs_alloc_inode - allocate an ecryptfs inode
* @sb: Pointer to the ecryptfs super block
*
* Called to bring an inode into existence.
*
* Only handle allocation, setting up structures should be done in
* ecryptfs_read_inode. This is because the kernel, between now and
* then, will 0 out the private data pointer.
*
* Returns a pointer to a newly allocated inode, NULL otherwise
*/
static struct inode *ecryptfs_alloc_inode(struct super_block *sb)
{
struct ecryptfs_inode_info *inode_info;
struct inode *inode = NULL;
inode_info = kmem_cache_alloc(ecryptfs_inode_info_cache, GFP_KERNEL);
if (unlikely(!inode_info))
goto out;
ecryptfs_init_crypt_stat(&inode_info->crypt_stat);
mutex_init(&inode_info->lower_file_mutex);
atomic_set(&inode_info->lower_file_count, 0);
inode_info->lower_file = NULL;
#ifdef CONFIG_SDP
// get userid from super block
inode_info->crypt_stat.engine_id = -1;
#endif
inode = &inode_info->vfs_inode;
out:
return inode;
}
static void ecryptfs_i_callback(struct rcu_head *head)
{
struct inode *inode = container_of(head, struct inode, i_rcu);
struct ecryptfs_inode_info *inode_info;
inode_info = ecryptfs_inode_to_private(inode);
kmem_cache_free(ecryptfs_inode_info_cache, inode_info);
}
/**
* ecryptfs_destroy_inode
* @inode: The ecryptfs inode
*
* This is used during the final destruction of the inode. All
* allocation of memory related to the inode, including allocated
* memory in the crypt_stat struct, will be released here.
* There should be no chance that this deallocation will be missed.
*/
static void ecryptfs_destroy_inode(struct inode *inode)
{
struct ecryptfs_inode_info *inode_info;
inode_info = ecryptfs_inode_to_private(inode);
BUG_ON(inode_info->lower_file);
ecryptfs_destroy_crypt_stat(&inode_info->crypt_stat);
call_rcu(&inode->i_rcu, ecryptfs_i_callback);
}
/**
* ecryptfs_statfs
* @sb: The ecryptfs super block
* @buf: The struct kstatfs to fill in with stats
*
* Get the filesystem statistics. Currently, we let this pass right through
* to the lower filesystem and take no action ourselves.
*/
static int ecryptfs_statfs(struct dentry *dentry, struct kstatfs *buf)
{
struct dentry *lower_dentry = ecryptfs_dentry_to_lower(dentry);
int rc;
if (!lower_dentry->d_sb->s_op->statfs)
return -ENOSYS;
rc = lower_dentry->d_sb->s_op->statfs(lower_dentry, buf);
if (rc)
return rc;
buf->f_type = ECRYPTFS_SUPER_MAGIC;
rc = ecryptfs_set_f_namelen(&buf->f_namelen, buf->f_namelen,
&ecryptfs_superblock_to_private(dentry->d_sb)->mount_crypt_stat);
return rc;
}
/**
* ecryptfs_evict_inode
* @inode - The ecryptfs inode
*
* Called by iput() when the inode reference count reached zero
* and the inode is not hashed anywhere. Used to clear anything
* that needs to be, before the inode is completely destroyed and put
* on the inode free list. We use this to drop out reference to the
* lower inode.
*/
static void ecryptfs_evict_inode(struct inode *inode)
{
truncate_inode_pages_final(&inode->i_data);
clear_inode(inode);
iput(ecryptfs_inode_to_lower(inode));
}
/**
* ecryptfs_show_options
*
* Prints the mount options for a given superblock.
* Returns zero; does not fail.
*/
static int ecryptfs_show_options(struct seq_file *m, struct dentry *root)
{
struct super_block *sb = root->d_sb;
struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
&ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
struct ecryptfs_propagate_stat *propagate_stat =
&ecryptfs_superblock_to_private(sb)->propagate_stat;
struct ecryptfs_global_auth_tok *walker;
mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
list_for_each_entry(walker,
&mount_crypt_stat->global_auth_tok_list,
mount_crypt_stat_list) {
if (walker->flags & ECRYPTFS_AUTH_TOK_FNEK)
seq_printf(m, ",ecryptfs_fnek_sig=%s", walker->sig);
else
seq_printf(m, ",ecryptfs_sig=%s", walker->sig);
}
mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
#ifdef CONFIG_SDP
seq_printf(m, ",userid=%d", mount_crypt_stat->userid);
if (mount_crypt_stat->flags & ECRYPTFS_MOUNT_SDP_ENABLED){
seq_printf(m, ",sdp_enabled");
}
if (mount_crypt_stat->partition_id >= 0){
seq_printf(m, ",partition_id=%d", mount_crypt_stat->partition_id);
}
#endif
#ifdef CONFIG_DLP
if (mount_crypt_stat->flags & ECRYPTFS_MOUNT_DLP_ENABLED){
seq_printf(m, ",dlp_enabled");
}
#endif
seq_printf(m, ",ecryptfs_cipher=%s",
mount_crypt_stat->global_default_cipher_name);
if (mount_crypt_stat->global_default_cipher_key_size)
seq_printf(m, ",ecryptfs_key_bytes=%zd",
mount_crypt_stat->global_default_cipher_key_size);
#ifdef CONFIG_WTL_ENCRYPTION_FILTER
if (mount_crypt_stat->flags & ECRYPTFS_ENABLE_FILTERING)
seq_printf(m, ",ecryptfs_enable_filtering");
#endif
#ifdef CONFIG_CRYPTO_FIPS
if (mount_crypt_stat->flags & ECRYPTFS_ENABLE_CC)
seq_printf(m, ",ecryptfs_enable_cc");
#endif
if (mount_crypt_stat->flags & ECRYPTFS_PLAINTEXT_PASSTHROUGH_ENABLED)
seq_printf(m, ",ecryptfs_passthrough");
if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
seq_printf(m, ",ecryptfs_xattr_metadata");
if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
seq_printf(m, ",ecryptfs_encrypted_view");
if (mount_crypt_stat->flags & ECRYPTFS_UNLINK_SIGS)
seq_printf(m, ",ecryptfs_unlink_sigs");
if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY)
seq_printf(m, ",ecryptfs_mount_auth_tok_only");
seq_printf(m, ",base=%s", propagate_stat->base_path);
if (propagate_stat->propagate_type == TYPE_E_DEFAULT)
seq_printf(m, ",type=default");
else if (propagate_stat->propagate_type == TYPE_E_READ)
seq_printf(m, ",type=read");
else if (propagate_stat->propagate_type == TYPE_E_WRITE)
seq_printf(m, ",type=write");
seq_printf(m, ",label=%s", propagate_stat->label);
return 0;
}
static long ecryptfs_propagate_lookup(struct super_block *sb, char *pathname){
int ret = 0;
char *propagate_path;
struct ecryptfs_sb_info *sbi;
struct ecryptfs_propagate_stat *stat;
struct path sibling_path;
const struct cred *saved_cred = NULL;
sbi = ecryptfs_superblock_to_private(sb);
stat = &sbi->propagate_stat;
ECRYPTFS_OVERRIDE_ROOT_CRED(saved_cred);
propagate_path = kmalloc(PATH_MAX, GFP_KERNEL);
if (!propagate_path) {
ECRYPTFS_REVERT_CRED(saved_cred);
return -ENOMEM;
}
if (stat->propagate_type != TYPE_E_NONE && stat->propagate_type != TYPE_E_DEFAULT) {
snprintf(propagate_path, PATH_MAX, "%s/%s/%s/%s",
stat->base_path, "default", stat->label, pathname);
ret = (long)kern_path(propagate_path, LOOKUP_FOLLOW, &sibling_path);
if (!ret) {
path_put(&sibling_path);
}
}
if (stat->propagate_type != TYPE_E_NONE && stat->propagate_type != TYPE_E_READ) {
snprintf(propagate_path, PATH_MAX, "%s/%s/%s/%s",
stat->base_path, "read", stat->label, pathname);
ret = (long)kern_path(propagate_path, LOOKUP_FOLLOW, &sibling_path);
if (!ret) {
path_put(&sibling_path);
}
}
if (stat->propagate_type != TYPE_E_NONE && stat->propagate_type != TYPE_E_WRITE) {
snprintf(propagate_path, PATH_MAX, "%s/%s/%s/%s",
stat->base_path, "write", stat->label, pathname);
ret = (long)kern_path(propagate_path, LOOKUP_FOLLOW, &sibling_path);
if (!ret) {
path_put(&sibling_path);
}
}
if (stat->propagate_type != TYPE_E_NONE) {
snprintf(propagate_path, PATH_MAX, "/storage/%s/%s",
stat->label, pathname);
ret = (long)kern_path(propagate_path, LOOKUP_FOLLOW, &sibling_path);
if (!ret) {
path_put(&sibling_path);
}
}
ECRYPTFS_REVERT_CRED(saved_cred);
kfree(propagate_path);
return ret;
}
const struct super_operations ecryptfs_sops = {
.alloc_inode = ecryptfs_alloc_inode,
.destroy_inode = ecryptfs_destroy_inode,
.statfs = ecryptfs_statfs,
.remount_fs = NULL,
.evict_inode = ecryptfs_evict_inode,
.show_options = ecryptfs_show_options,
.drop_inode = generic_delete_inode
};
const struct super_operations ecryptfs_multimount_sops = {
.alloc_inode = ecryptfs_alloc_inode,
.destroy_inode = ecryptfs_destroy_inode,
.statfs = ecryptfs_statfs,
.remount_fs = NULL,
.evict_inode = ecryptfs_evict_inode,
.show_options = ecryptfs_show_options,
.drop_inode = generic_delete_inode,
.unlink_callback = ecryptfs_propagate_lookup
};