| /* |
| * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| #include <linux/skbuff.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/if_vlan.h> |
| #include <linux/ip.h> |
| #include <linux/tcp.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/slab.h> |
| #include <linux/prefetch.h> |
| #include <net/arp.h> |
| #include "common.h" |
| #include "regs.h" |
| #include "sge_defs.h" |
| #include "t3_cpl.h" |
| #include "firmware_exports.h" |
| #include "cxgb3_offload.h" |
| |
| #define USE_GTS 0 |
| |
| #define SGE_RX_SM_BUF_SIZE 1536 |
| |
| #define SGE_RX_COPY_THRES 256 |
| #define SGE_RX_PULL_LEN 128 |
| |
| #define SGE_PG_RSVD SMP_CACHE_BYTES |
| /* |
| * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks. |
| * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs |
| * directly. |
| */ |
| #define FL0_PG_CHUNK_SIZE 2048 |
| #define FL0_PG_ORDER 0 |
| #define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER) |
| #define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192) |
| #define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1) |
| #define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER) |
| |
| #define SGE_RX_DROP_THRES 16 |
| #define RX_RECLAIM_PERIOD (HZ/4) |
| |
| /* |
| * Max number of Rx buffers we replenish at a time. |
| */ |
| #define MAX_RX_REFILL 16U |
| /* |
| * Period of the Tx buffer reclaim timer. This timer does not need to run |
| * frequently as Tx buffers are usually reclaimed by new Tx packets. |
| */ |
| #define TX_RECLAIM_PERIOD (HZ / 4) |
| #define TX_RECLAIM_TIMER_CHUNK 64U |
| #define TX_RECLAIM_CHUNK 16U |
| |
| /* WR size in bytes */ |
| #define WR_LEN (WR_FLITS * 8) |
| |
| /* |
| * Types of Tx queues in each queue set. Order here matters, do not change. |
| */ |
| enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL }; |
| |
| /* Values for sge_txq.flags */ |
| enum { |
| TXQ_RUNNING = 1 << 0, /* fetch engine is running */ |
| TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */ |
| }; |
| |
| struct tx_desc { |
| __be64 flit[TX_DESC_FLITS]; |
| }; |
| |
| struct rx_desc { |
| __be32 addr_lo; |
| __be32 len_gen; |
| __be32 gen2; |
| __be32 addr_hi; |
| }; |
| |
| struct tx_sw_desc { /* SW state per Tx descriptor */ |
| struct sk_buff *skb; |
| u8 eop; /* set if last descriptor for packet */ |
| u8 addr_idx; /* buffer index of first SGL entry in descriptor */ |
| u8 fragidx; /* first page fragment associated with descriptor */ |
| s8 sflit; /* start flit of first SGL entry in descriptor */ |
| }; |
| |
| struct rx_sw_desc { /* SW state per Rx descriptor */ |
| union { |
| struct sk_buff *skb; |
| struct fl_pg_chunk pg_chunk; |
| }; |
| DEFINE_DMA_UNMAP_ADDR(dma_addr); |
| }; |
| |
| struct rsp_desc { /* response queue descriptor */ |
| struct rss_header rss_hdr; |
| __be32 flags; |
| __be32 len_cq; |
| u8 imm_data[47]; |
| u8 intr_gen; |
| }; |
| |
| /* |
| * Holds unmapping information for Tx packets that need deferred unmapping. |
| * This structure lives at skb->head and must be allocated by callers. |
| */ |
| struct deferred_unmap_info { |
| struct pci_dev *pdev; |
| dma_addr_t addr[MAX_SKB_FRAGS + 1]; |
| }; |
| |
| /* |
| * Maps a number of flits to the number of Tx descriptors that can hold them. |
| * The formula is |
| * |
| * desc = 1 + (flits - 2) / (WR_FLITS - 1). |
| * |
| * HW allows up to 4 descriptors to be combined into a WR. |
| */ |
| static u8 flit_desc_map[] = { |
| 0, |
| #if SGE_NUM_GENBITS == 1 |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
| 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, |
| 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 |
| #elif SGE_NUM_GENBITS == 2 |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
| 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, |
| 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
| #else |
| # error "SGE_NUM_GENBITS must be 1 or 2" |
| #endif |
| }; |
| |
| static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx) |
| { |
| return container_of(q, struct sge_qset, fl[qidx]); |
| } |
| |
| static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q) |
| { |
| return container_of(q, struct sge_qset, rspq); |
| } |
| |
| static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx) |
| { |
| return container_of(q, struct sge_qset, txq[qidx]); |
| } |
| |
| /** |
| * refill_rspq - replenish an SGE response queue |
| * @adapter: the adapter |
| * @q: the response queue to replenish |
| * @credits: how many new responses to make available |
| * |
| * Replenishes a response queue by making the supplied number of responses |
| * available to HW. |
| */ |
| static inline void refill_rspq(struct adapter *adapter, |
| const struct sge_rspq *q, unsigned int credits) |
| { |
| rmb(); |
| t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN, |
| V_RSPQ(q->cntxt_id) | V_CREDITS(credits)); |
| } |
| |
| /** |
| * need_skb_unmap - does the platform need unmapping of sk_buffs? |
| * |
| * Returns true if the platform needs sk_buff unmapping. The compiler |
| * optimizes away unnecessary code if this returns true. |
| */ |
| static inline int need_skb_unmap(void) |
| { |
| #ifdef CONFIG_NEED_DMA_MAP_STATE |
| return 1; |
| #else |
| return 0; |
| #endif |
| } |
| |
| /** |
| * unmap_skb - unmap a packet main body and its page fragments |
| * @skb: the packet |
| * @q: the Tx queue containing Tx descriptors for the packet |
| * @cidx: index of Tx descriptor |
| * @pdev: the PCI device |
| * |
| * Unmap the main body of an sk_buff and its page fragments, if any. |
| * Because of the fairly complicated structure of our SGLs and the desire |
| * to conserve space for metadata, the information necessary to unmap an |
| * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx |
| * descriptors (the physical addresses of the various data buffers), and |
| * the SW descriptor state (assorted indices). The send functions |
| * initialize the indices for the first packet descriptor so we can unmap |
| * the buffers held in the first Tx descriptor here, and we have enough |
| * information at this point to set the state for the next Tx descriptor. |
| * |
| * Note that it is possible to clean up the first descriptor of a packet |
| * before the send routines have written the next descriptors, but this |
| * race does not cause any problem. We just end up writing the unmapping |
| * info for the descriptor first. |
| */ |
| static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q, |
| unsigned int cidx, struct pci_dev *pdev) |
| { |
| const struct sg_ent *sgp; |
| struct tx_sw_desc *d = &q->sdesc[cidx]; |
| int nfrags, frag_idx, curflit, j = d->addr_idx; |
| |
| sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit]; |
| frag_idx = d->fragidx; |
| |
| if (frag_idx == 0 && skb_headlen(skb)) { |
| pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]), |
| skb_headlen(skb), PCI_DMA_TODEVICE); |
| j = 1; |
| } |
| |
| curflit = d->sflit + 1 + j; |
| nfrags = skb_shinfo(skb)->nr_frags; |
| |
| while (frag_idx < nfrags && curflit < WR_FLITS) { |
| pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]), |
| skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]), |
| PCI_DMA_TODEVICE); |
| j ^= 1; |
| if (j == 0) { |
| sgp++; |
| curflit++; |
| } |
| curflit++; |
| frag_idx++; |
| } |
| |
| if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */ |
| d = cidx + 1 == q->size ? q->sdesc : d + 1; |
| d->fragidx = frag_idx; |
| d->addr_idx = j; |
| d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */ |
| } |
| } |
| |
| /** |
| * free_tx_desc - reclaims Tx descriptors and their buffers |
| * @adapter: the adapter |
| * @q: the Tx queue to reclaim descriptors from |
| * @n: the number of descriptors to reclaim |
| * |
| * Reclaims Tx descriptors from an SGE Tx queue and frees the associated |
| * Tx buffers. Called with the Tx queue lock held. |
| */ |
| static void free_tx_desc(struct adapter *adapter, struct sge_txq *q, |
| unsigned int n) |
| { |
| struct tx_sw_desc *d; |
| struct pci_dev *pdev = adapter->pdev; |
| unsigned int cidx = q->cidx; |
| |
| const int need_unmap = need_skb_unmap() && |
| q->cntxt_id >= FW_TUNNEL_SGEEC_START; |
| |
| d = &q->sdesc[cidx]; |
| while (n--) { |
| if (d->skb) { /* an SGL is present */ |
| if (need_unmap) |
| unmap_skb(d->skb, q, cidx, pdev); |
| if (d->eop) { |
| dev_consume_skb_any(d->skb); |
| d->skb = NULL; |
| } |
| } |
| ++d; |
| if (++cidx == q->size) { |
| cidx = 0; |
| d = q->sdesc; |
| } |
| } |
| q->cidx = cidx; |
| } |
| |
| /** |
| * reclaim_completed_tx - reclaims completed Tx descriptors |
| * @adapter: the adapter |
| * @q: the Tx queue to reclaim completed descriptors from |
| * @chunk: maximum number of descriptors to reclaim |
| * |
| * Reclaims Tx descriptors that the SGE has indicated it has processed, |
| * and frees the associated buffers if possible. Called with the Tx |
| * queue's lock held. |
| */ |
| static inline unsigned int reclaim_completed_tx(struct adapter *adapter, |
| struct sge_txq *q, |
| unsigned int chunk) |
| { |
| unsigned int reclaim = q->processed - q->cleaned; |
| |
| reclaim = min(chunk, reclaim); |
| if (reclaim) { |
| free_tx_desc(adapter, q, reclaim); |
| q->cleaned += reclaim; |
| q->in_use -= reclaim; |
| } |
| return q->processed - q->cleaned; |
| } |
| |
| /** |
| * should_restart_tx - are there enough resources to restart a Tx queue? |
| * @q: the Tx queue |
| * |
| * Checks if there are enough descriptors to restart a suspended Tx queue. |
| */ |
| static inline int should_restart_tx(const struct sge_txq *q) |
| { |
| unsigned int r = q->processed - q->cleaned; |
| |
| return q->in_use - r < (q->size >> 1); |
| } |
| |
| static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q, |
| struct rx_sw_desc *d) |
| { |
| if (q->use_pages && d->pg_chunk.page) { |
| (*d->pg_chunk.p_cnt)--; |
| if (!*d->pg_chunk.p_cnt) |
| pci_unmap_page(pdev, |
| d->pg_chunk.mapping, |
| q->alloc_size, PCI_DMA_FROMDEVICE); |
| |
| put_page(d->pg_chunk.page); |
| d->pg_chunk.page = NULL; |
| } else { |
| pci_unmap_single(pdev, dma_unmap_addr(d, dma_addr), |
| q->buf_size, PCI_DMA_FROMDEVICE); |
| kfree_skb(d->skb); |
| d->skb = NULL; |
| } |
| } |
| |
| /** |
| * free_rx_bufs - free the Rx buffers on an SGE free list |
| * @pdev: the PCI device associated with the adapter |
| * @rxq: the SGE free list to clean up |
| * |
| * Release the buffers on an SGE free-buffer Rx queue. HW fetching from |
| * this queue should be stopped before calling this function. |
| */ |
| static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q) |
| { |
| unsigned int cidx = q->cidx; |
| |
| while (q->credits--) { |
| struct rx_sw_desc *d = &q->sdesc[cidx]; |
| |
| |
| clear_rx_desc(pdev, q, d); |
| if (++cidx == q->size) |
| cidx = 0; |
| } |
| |
| if (q->pg_chunk.page) { |
| __free_pages(q->pg_chunk.page, q->order); |
| q->pg_chunk.page = NULL; |
| } |
| } |
| |
| /** |
| * add_one_rx_buf - add a packet buffer to a free-buffer list |
| * @va: buffer start VA |
| * @len: the buffer length |
| * @d: the HW Rx descriptor to write |
| * @sd: the SW Rx descriptor to write |
| * @gen: the generation bit value |
| * @pdev: the PCI device associated with the adapter |
| * |
| * Add a buffer of the given length to the supplied HW and SW Rx |
| * descriptors. |
| */ |
| static inline int add_one_rx_buf(void *va, unsigned int len, |
| struct rx_desc *d, struct rx_sw_desc *sd, |
| unsigned int gen, struct pci_dev *pdev) |
| { |
| dma_addr_t mapping; |
| |
| mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE); |
| if (unlikely(pci_dma_mapping_error(pdev, mapping))) |
| return -ENOMEM; |
| |
| dma_unmap_addr_set(sd, dma_addr, mapping); |
| |
| d->addr_lo = cpu_to_be32(mapping); |
| d->addr_hi = cpu_to_be32((u64) mapping >> 32); |
| dma_wmb(); |
| d->len_gen = cpu_to_be32(V_FLD_GEN1(gen)); |
| d->gen2 = cpu_to_be32(V_FLD_GEN2(gen)); |
| return 0; |
| } |
| |
| static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d, |
| unsigned int gen) |
| { |
| d->addr_lo = cpu_to_be32(mapping); |
| d->addr_hi = cpu_to_be32((u64) mapping >> 32); |
| dma_wmb(); |
| d->len_gen = cpu_to_be32(V_FLD_GEN1(gen)); |
| d->gen2 = cpu_to_be32(V_FLD_GEN2(gen)); |
| return 0; |
| } |
| |
| static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q, |
| struct rx_sw_desc *sd, gfp_t gfp, |
| unsigned int order) |
| { |
| if (!q->pg_chunk.page) { |
| dma_addr_t mapping; |
| |
| q->pg_chunk.page = alloc_pages(gfp, order); |
| if (unlikely(!q->pg_chunk.page)) |
| return -ENOMEM; |
| q->pg_chunk.va = page_address(q->pg_chunk.page); |
| q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) - |
| SGE_PG_RSVD; |
| q->pg_chunk.offset = 0; |
| mapping = pci_map_page(adapter->pdev, q->pg_chunk.page, |
| 0, q->alloc_size, PCI_DMA_FROMDEVICE); |
| q->pg_chunk.mapping = mapping; |
| } |
| sd->pg_chunk = q->pg_chunk; |
| |
| prefetch(sd->pg_chunk.p_cnt); |
| |
| q->pg_chunk.offset += q->buf_size; |
| if (q->pg_chunk.offset == (PAGE_SIZE << order)) |
| q->pg_chunk.page = NULL; |
| else { |
| q->pg_chunk.va += q->buf_size; |
| get_page(q->pg_chunk.page); |
| } |
| |
| if (sd->pg_chunk.offset == 0) |
| *sd->pg_chunk.p_cnt = 1; |
| else |
| *sd->pg_chunk.p_cnt += 1; |
| |
| return 0; |
| } |
| |
| static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) |
| { |
| if (q->pend_cred >= q->credits / 4) { |
| q->pend_cred = 0; |
| wmb(); |
| t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id)); |
| } |
| } |
| |
| /** |
| * refill_fl - refill an SGE free-buffer list |
| * @adapter: the adapter |
| * @q: the free-list to refill |
| * @n: the number of new buffers to allocate |
| * @gfp: the gfp flags for allocating new buffers |
| * |
| * (Re)populate an SGE free-buffer list with up to @n new packet buffers, |
| * allocated with the supplied gfp flags. The caller must assure that |
| * @n does not exceed the queue's capacity. |
| */ |
| static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp) |
| { |
| struct rx_sw_desc *sd = &q->sdesc[q->pidx]; |
| struct rx_desc *d = &q->desc[q->pidx]; |
| unsigned int count = 0; |
| |
| while (n--) { |
| dma_addr_t mapping; |
| int err; |
| |
| if (q->use_pages) { |
| if (unlikely(alloc_pg_chunk(adap, q, sd, gfp, |
| q->order))) { |
| nomem: q->alloc_failed++; |
| break; |
| } |
| mapping = sd->pg_chunk.mapping + sd->pg_chunk.offset; |
| dma_unmap_addr_set(sd, dma_addr, mapping); |
| |
| add_one_rx_chunk(mapping, d, q->gen); |
| pci_dma_sync_single_for_device(adap->pdev, mapping, |
| q->buf_size - SGE_PG_RSVD, |
| PCI_DMA_FROMDEVICE); |
| } else { |
| void *buf_start; |
| |
| struct sk_buff *skb = alloc_skb(q->buf_size, gfp); |
| if (!skb) |
| goto nomem; |
| |
| sd->skb = skb; |
| buf_start = skb->data; |
| err = add_one_rx_buf(buf_start, q->buf_size, d, sd, |
| q->gen, adap->pdev); |
| if (unlikely(err)) { |
| clear_rx_desc(adap->pdev, q, sd); |
| break; |
| } |
| } |
| |
| d++; |
| sd++; |
| if (++q->pidx == q->size) { |
| q->pidx = 0; |
| q->gen ^= 1; |
| sd = q->sdesc; |
| d = q->desc; |
| } |
| count++; |
| } |
| |
| q->credits += count; |
| q->pend_cred += count; |
| ring_fl_db(adap, q); |
| |
| return count; |
| } |
| |
| static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) |
| { |
| refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits), |
| GFP_ATOMIC | __GFP_COMP); |
| } |
| |
| /** |
| * recycle_rx_buf - recycle a receive buffer |
| * @adapter: the adapter |
| * @q: the SGE free list |
| * @idx: index of buffer to recycle |
| * |
| * Recycles the specified buffer on the given free list by adding it at |
| * the next available slot on the list. |
| */ |
| static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q, |
| unsigned int idx) |
| { |
| struct rx_desc *from = &q->desc[idx]; |
| struct rx_desc *to = &q->desc[q->pidx]; |
| |
| q->sdesc[q->pidx] = q->sdesc[idx]; |
| to->addr_lo = from->addr_lo; /* already big endian */ |
| to->addr_hi = from->addr_hi; /* likewise */ |
| dma_wmb(); |
| to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen)); |
| to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen)); |
| |
| if (++q->pidx == q->size) { |
| q->pidx = 0; |
| q->gen ^= 1; |
| } |
| |
| q->credits++; |
| q->pend_cred++; |
| ring_fl_db(adap, q); |
| } |
| |
| /** |
| * alloc_ring - allocate resources for an SGE descriptor ring |
| * @pdev: the PCI device |
| * @nelem: the number of descriptors |
| * @elem_size: the size of each descriptor |
| * @sw_size: the size of the SW state associated with each ring element |
| * @phys: the physical address of the allocated ring |
| * @metadata: address of the array holding the SW state for the ring |
| * |
| * Allocates resources for an SGE descriptor ring, such as Tx queues, |
| * free buffer lists, or response queues. Each SGE ring requires |
| * space for its HW descriptors plus, optionally, space for the SW state |
| * associated with each HW entry (the metadata). The function returns |
| * three values: the virtual address for the HW ring (the return value |
| * of the function), the physical address of the HW ring, and the address |
| * of the SW ring. |
| */ |
| static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size, |
| size_t sw_size, dma_addr_t * phys, void *metadata) |
| { |
| size_t len = nelem * elem_size; |
| void *s = NULL; |
| void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL); |
| |
| if (!p) |
| return NULL; |
| if (sw_size && metadata) { |
| s = kcalloc(nelem, sw_size, GFP_KERNEL); |
| |
| if (!s) { |
| dma_free_coherent(&pdev->dev, len, p, *phys); |
| return NULL; |
| } |
| *(void **)metadata = s; |
| } |
| memset(p, 0, len); |
| return p; |
| } |
| |
| /** |
| * t3_reset_qset - reset a sge qset |
| * @q: the queue set |
| * |
| * Reset the qset structure. |
| * the NAPI structure is preserved in the event of |
| * the qset's reincarnation, for example during EEH recovery. |
| */ |
| static void t3_reset_qset(struct sge_qset *q) |
| { |
| if (q->adap && |
| !(q->adap->flags & NAPI_INIT)) { |
| memset(q, 0, sizeof(*q)); |
| return; |
| } |
| |
| q->adap = NULL; |
| memset(&q->rspq, 0, sizeof(q->rspq)); |
| memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET); |
| memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET); |
| q->txq_stopped = 0; |
| q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */ |
| q->rx_reclaim_timer.function = NULL; |
| q->nomem = 0; |
| napi_free_frags(&q->napi); |
| } |
| |
| |
| /** |
| * free_qset - free the resources of an SGE queue set |
| * @adapter: the adapter owning the queue set |
| * @q: the queue set |
| * |
| * Release the HW and SW resources associated with an SGE queue set, such |
| * as HW contexts, packet buffers, and descriptor rings. Traffic to the |
| * queue set must be quiesced prior to calling this. |
| */ |
| static void t3_free_qset(struct adapter *adapter, struct sge_qset *q) |
| { |
| int i; |
| struct pci_dev *pdev = adapter->pdev; |
| |
| for (i = 0; i < SGE_RXQ_PER_SET; ++i) |
| if (q->fl[i].desc) { |
| spin_lock_irq(&adapter->sge.reg_lock); |
| t3_sge_disable_fl(adapter, q->fl[i].cntxt_id); |
| spin_unlock_irq(&adapter->sge.reg_lock); |
| free_rx_bufs(pdev, &q->fl[i]); |
| kfree(q->fl[i].sdesc); |
| dma_free_coherent(&pdev->dev, |
| q->fl[i].size * |
| sizeof(struct rx_desc), q->fl[i].desc, |
| q->fl[i].phys_addr); |
| } |
| |
| for (i = 0; i < SGE_TXQ_PER_SET; ++i) |
| if (q->txq[i].desc) { |
| spin_lock_irq(&adapter->sge.reg_lock); |
| t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0); |
| spin_unlock_irq(&adapter->sge.reg_lock); |
| if (q->txq[i].sdesc) { |
| free_tx_desc(adapter, &q->txq[i], |
| q->txq[i].in_use); |
| kfree(q->txq[i].sdesc); |
| } |
| dma_free_coherent(&pdev->dev, |
| q->txq[i].size * |
| sizeof(struct tx_desc), |
| q->txq[i].desc, q->txq[i].phys_addr); |
| __skb_queue_purge(&q->txq[i].sendq); |
| } |
| |
| if (q->rspq.desc) { |
| spin_lock_irq(&adapter->sge.reg_lock); |
| t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id); |
| spin_unlock_irq(&adapter->sge.reg_lock); |
| dma_free_coherent(&pdev->dev, |
| q->rspq.size * sizeof(struct rsp_desc), |
| q->rspq.desc, q->rspq.phys_addr); |
| } |
| |
| t3_reset_qset(q); |
| } |
| |
| /** |
| * init_qset_cntxt - initialize an SGE queue set context info |
| * @qs: the queue set |
| * @id: the queue set id |
| * |
| * Initializes the TIDs and context ids for the queues of a queue set. |
| */ |
| static void init_qset_cntxt(struct sge_qset *qs, unsigned int id) |
| { |
| qs->rspq.cntxt_id = id; |
| qs->fl[0].cntxt_id = 2 * id; |
| qs->fl[1].cntxt_id = 2 * id + 1; |
| qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id; |
| qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id; |
| qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id; |
| qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id; |
| qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id; |
| } |
| |
| /** |
| * sgl_len - calculates the size of an SGL of the given capacity |
| * @n: the number of SGL entries |
| * |
| * Calculates the number of flits needed for a scatter/gather list that |
| * can hold the given number of entries. |
| */ |
| static inline unsigned int sgl_len(unsigned int n) |
| { |
| /* alternatively: 3 * (n / 2) + 2 * (n & 1) */ |
| return (3 * n) / 2 + (n & 1); |
| } |
| |
| /** |
| * flits_to_desc - returns the num of Tx descriptors for the given flits |
| * @n: the number of flits |
| * |
| * Calculates the number of Tx descriptors needed for the supplied number |
| * of flits. |
| */ |
| static inline unsigned int flits_to_desc(unsigned int n) |
| { |
| BUG_ON(n >= ARRAY_SIZE(flit_desc_map)); |
| return flit_desc_map[n]; |
| } |
| |
| /** |
| * get_packet - return the next ingress packet buffer from a free list |
| * @adap: the adapter that received the packet |
| * @fl: the SGE free list holding the packet |
| * @len: the packet length including any SGE padding |
| * @drop_thres: # of remaining buffers before we start dropping packets |
| * |
| * Get the next packet from a free list and complete setup of the |
| * sk_buff. If the packet is small we make a copy and recycle the |
| * original buffer, otherwise we use the original buffer itself. If a |
| * positive drop threshold is supplied packets are dropped and their |
| * buffers recycled if (a) the number of remaining buffers is under the |
| * threshold and the packet is too big to copy, or (b) the packet should |
| * be copied but there is no memory for the copy. |
| */ |
| static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl, |
| unsigned int len, unsigned int drop_thres) |
| { |
| struct sk_buff *skb = NULL; |
| struct rx_sw_desc *sd = &fl->sdesc[fl->cidx]; |
| |
| prefetch(sd->skb->data); |
| fl->credits--; |
| |
| if (len <= SGE_RX_COPY_THRES) { |
| skb = alloc_skb(len, GFP_ATOMIC); |
| if (likely(skb != NULL)) { |
| __skb_put(skb, len); |
| pci_dma_sync_single_for_cpu(adap->pdev, |
| dma_unmap_addr(sd, dma_addr), len, |
| PCI_DMA_FROMDEVICE); |
| memcpy(skb->data, sd->skb->data, len); |
| pci_dma_sync_single_for_device(adap->pdev, |
| dma_unmap_addr(sd, dma_addr), len, |
| PCI_DMA_FROMDEVICE); |
| } else if (!drop_thres) |
| goto use_orig_buf; |
| recycle: |
| recycle_rx_buf(adap, fl, fl->cidx); |
| return skb; |
| } |
| |
| if (unlikely(fl->credits < drop_thres) && |
| refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1), |
| GFP_ATOMIC | __GFP_COMP) == 0) |
| goto recycle; |
| |
| use_orig_buf: |
| pci_unmap_single(adap->pdev, dma_unmap_addr(sd, dma_addr), |
| fl->buf_size, PCI_DMA_FROMDEVICE); |
| skb = sd->skb; |
| skb_put(skb, len); |
| __refill_fl(adap, fl); |
| return skb; |
| } |
| |
| /** |
| * get_packet_pg - return the next ingress packet buffer from a free list |
| * @adap: the adapter that received the packet |
| * @fl: the SGE free list holding the packet |
| * @len: the packet length including any SGE padding |
| * @drop_thres: # of remaining buffers before we start dropping packets |
| * |
| * Get the next packet from a free list populated with page chunks. |
| * If the packet is small we make a copy and recycle the original buffer, |
| * otherwise we attach the original buffer as a page fragment to a fresh |
| * sk_buff. If a positive drop threshold is supplied packets are dropped |
| * and their buffers recycled if (a) the number of remaining buffers is |
| * under the threshold and the packet is too big to copy, or (b) there's |
| * no system memory. |
| * |
| * Note: this function is similar to @get_packet but deals with Rx buffers |
| * that are page chunks rather than sk_buffs. |
| */ |
| static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl, |
| struct sge_rspq *q, unsigned int len, |
| unsigned int drop_thres) |
| { |
| struct sk_buff *newskb, *skb; |
| struct rx_sw_desc *sd = &fl->sdesc[fl->cidx]; |
| |
| dma_addr_t dma_addr = dma_unmap_addr(sd, dma_addr); |
| |
| newskb = skb = q->pg_skb; |
| if (!skb && (len <= SGE_RX_COPY_THRES)) { |
| newskb = alloc_skb(len, GFP_ATOMIC); |
| if (likely(newskb != NULL)) { |
| __skb_put(newskb, len); |
| pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len, |
| PCI_DMA_FROMDEVICE); |
| memcpy(newskb->data, sd->pg_chunk.va, len); |
| pci_dma_sync_single_for_device(adap->pdev, dma_addr, |
| len, |
| PCI_DMA_FROMDEVICE); |
| } else if (!drop_thres) |
| return NULL; |
| recycle: |
| fl->credits--; |
| recycle_rx_buf(adap, fl, fl->cidx); |
| q->rx_recycle_buf++; |
| return newskb; |
| } |
| |
| if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres))) |
| goto recycle; |
| |
| prefetch(sd->pg_chunk.p_cnt); |
| |
| if (!skb) |
| newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC); |
| |
| if (unlikely(!newskb)) { |
| if (!drop_thres) |
| return NULL; |
| goto recycle; |
| } |
| |
| pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len, |
| PCI_DMA_FROMDEVICE); |
| (*sd->pg_chunk.p_cnt)--; |
| if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page) |
| pci_unmap_page(adap->pdev, |
| sd->pg_chunk.mapping, |
| fl->alloc_size, |
| PCI_DMA_FROMDEVICE); |
| if (!skb) { |
| __skb_put(newskb, SGE_RX_PULL_LEN); |
| memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN); |
| skb_fill_page_desc(newskb, 0, sd->pg_chunk.page, |
| sd->pg_chunk.offset + SGE_RX_PULL_LEN, |
| len - SGE_RX_PULL_LEN); |
| newskb->len = len; |
| newskb->data_len = len - SGE_RX_PULL_LEN; |
| newskb->truesize += newskb->data_len; |
| } else { |
| skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags, |
| sd->pg_chunk.page, |
| sd->pg_chunk.offset, len); |
| newskb->len += len; |
| newskb->data_len += len; |
| newskb->truesize += len; |
| } |
| |
| fl->credits--; |
| /* |
| * We do not refill FLs here, we let the caller do it to overlap a |
| * prefetch. |
| */ |
| return newskb; |
| } |
| |
| /** |
| * get_imm_packet - return the next ingress packet buffer from a response |
| * @resp: the response descriptor containing the packet data |
| * |
| * Return a packet containing the immediate data of the given response. |
| */ |
| static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp) |
| { |
| struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC); |
| |
| if (skb) { |
| __skb_put(skb, IMMED_PKT_SIZE); |
| skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE); |
| } |
| return skb; |
| } |
| |
| /** |
| * calc_tx_descs - calculate the number of Tx descriptors for a packet |
| * @skb: the packet |
| * |
| * Returns the number of Tx descriptors needed for the given Ethernet |
| * packet. Ethernet packets require addition of WR and CPL headers. |
| */ |
| static inline unsigned int calc_tx_descs(const struct sk_buff *skb) |
| { |
| unsigned int flits; |
| |
| if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt)) |
| return 1; |
| |
| flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2; |
| if (skb_shinfo(skb)->gso_size) |
| flits++; |
| return flits_to_desc(flits); |
| } |
| |
| /** |
| * make_sgl - populate a scatter/gather list for a packet |
| * @skb: the packet |
| * @sgp: the SGL to populate |
| * @start: start address of skb main body data to include in the SGL |
| * @len: length of skb main body data to include in the SGL |
| * @pdev: the PCI device |
| * |
| * Generates a scatter/gather list for the buffers that make up a packet |
| * and returns the SGL size in 8-byte words. The caller must size the SGL |
| * appropriately. |
| */ |
| static inline unsigned int make_sgl(const struct sk_buff *skb, |
| struct sg_ent *sgp, unsigned char *start, |
| unsigned int len, struct pci_dev *pdev) |
| { |
| dma_addr_t mapping; |
| unsigned int i, j = 0, nfrags; |
| |
| if (len) { |
| mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE); |
| sgp->len[0] = cpu_to_be32(len); |
| sgp->addr[0] = cpu_to_be64(mapping); |
| j = 1; |
| } |
| |
| nfrags = skb_shinfo(skb)->nr_frags; |
| for (i = 0; i < nfrags; i++) { |
| const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
| |
| mapping = skb_frag_dma_map(&pdev->dev, frag, 0, skb_frag_size(frag), |
| DMA_TO_DEVICE); |
| sgp->len[j] = cpu_to_be32(skb_frag_size(frag)); |
| sgp->addr[j] = cpu_to_be64(mapping); |
| j ^= 1; |
| if (j == 0) |
| ++sgp; |
| } |
| if (j) |
| sgp->len[j] = 0; |
| return ((nfrags + (len != 0)) * 3) / 2 + j; |
| } |
| |
| /** |
| * check_ring_tx_db - check and potentially ring a Tx queue's doorbell |
| * @adap: the adapter |
| * @q: the Tx queue |
| * |
| * Ring the doorbel if a Tx queue is asleep. There is a natural race, |
| * where the HW is going to sleep just after we checked, however, |
| * then the interrupt handler will detect the outstanding TX packet |
| * and ring the doorbell for us. |
| * |
| * When GTS is disabled we unconditionally ring the doorbell. |
| */ |
| static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q) |
| { |
| #if USE_GTS |
| clear_bit(TXQ_LAST_PKT_DB, &q->flags); |
| if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) { |
| set_bit(TXQ_LAST_PKT_DB, &q->flags); |
| t3_write_reg(adap, A_SG_KDOORBELL, |
| F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); |
| } |
| #else |
| wmb(); /* write descriptors before telling HW */ |
| t3_write_reg(adap, A_SG_KDOORBELL, |
| F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); |
| #endif |
| } |
| |
| static inline void wr_gen2(struct tx_desc *d, unsigned int gen) |
| { |
| #if SGE_NUM_GENBITS == 2 |
| d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen); |
| #endif |
| } |
| |
| /** |
| * write_wr_hdr_sgl - write a WR header and, optionally, SGL |
| * @ndesc: number of Tx descriptors spanned by the SGL |
| * @skb: the packet corresponding to the WR |
| * @d: first Tx descriptor to be written |
| * @pidx: index of above descriptors |
| * @q: the SGE Tx queue |
| * @sgl: the SGL |
| * @flits: number of flits to the start of the SGL in the first descriptor |
| * @sgl_flits: the SGL size in flits |
| * @gen: the Tx descriptor generation |
| * @wr_hi: top 32 bits of WR header based on WR type (big endian) |
| * @wr_lo: low 32 bits of WR header based on WR type (big endian) |
| * |
| * Write a work request header and an associated SGL. If the SGL is |
| * small enough to fit into one Tx descriptor it has already been written |
| * and we just need to write the WR header. Otherwise we distribute the |
| * SGL across the number of descriptors it spans. |
| */ |
| static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb, |
| struct tx_desc *d, unsigned int pidx, |
| const struct sge_txq *q, |
| const struct sg_ent *sgl, |
| unsigned int flits, unsigned int sgl_flits, |
| unsigned int gen, __be32 wr_hi, |
| __be32 wr_lo) |
| { |
| struct work_request_hdr *wrp = (struct work_request_hdr *)d; |
| struct tx_sw_desc *sd = &q->sdesc[pidx]; |
| |
| sd->skb = skb; |
| if (need_skb_unmap()) { |
| sd->fragidx = 0; |
| sd->addr_idx = 0; |
| sd->sflit = flits; |
| } |
| |
| if (likely(ndesc == 1)) { |
| sd->eop = 1; |
| wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) | |
| V_WR_SGLSFLT(flits)) | wr_hi; |
| dma_wmb(); |
| wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) | |
| V_WR_GEN(gen)) | wr_lo; |
| wr_gen2(d, gen); |
| } else { |
| unsigned int ogen = gen; |
| const u64 *fp = (const u64 *)sgl; |
| struct work_request_hdr *wp = wrp; |
| |
| wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) | |
| V_WR_SGLSFLT(flits)) | wr_hi; |
| |
| while (sgl_flits) { |
| unsigned int avail = WR_FLITS - flits; |
| |
| if (avail > sgl_flits) |
| avail = sgl_flits; |
| memcpy(&d->flit[flits], fp, avail * sizeof(*fp)); |
| sgl_flits -= avail; |
| ndesc--; |
| if (!sgl_flits) |
| break; |
| |
| fp += avail; |
| d++; |
| sd->eop = 0; |
| sd++; |
| if (++pidx == q->size) { |
| pidx = 0; |
| gen ^= 1; |
| d = q->desc; |
| sd = q->sdesc; |
| } |
| |
| sd->skb = skb; |
| wrp = (struct work_request_hdr *)d; |
| wrp->wr_hi = htonl(V_WR_DATATYPE(1) | |
| V_WR_SGLSFLT(1)) | wr_hi; |
| wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS, |
| sgl_flits + 1)) | |
| V_WR_GEN(gen)) | wr_lo; |
| wr_gen2(d, gen); |
| flits = 1; |
| } |
| sd->eop = 1; |
| wrp->wr_hi |= htonl(F_WR_EOP); |
| dma_wmb(); |
| wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo; |
| wr_gen2((struct tx_desc *)wp, ogen); |
| WARN_ON(ndesc != 0); |
| } |
| } |
| |
| /** |
| * write_tx_pkt_wr - write a TX_PKT work request |
| * @adap: the adapter |
| * @skb: the packet to send |
| * @pi: the egress interface |
| * @pidx: index of the first Tx descriptor to write |
| * @gen: the generation value to use |
| * @q: the Tx queue |
| * @ndesc: number of descriptors the packet will occupy |
| * @compl: the value of the COMPL bit to use |
| * |
| * Generate a TX_PKT work request to send the supplied packet. |
| */ |
| static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb, |
| const struct port_info *pi, |
| unsigned int pidx, unsigned int gen, |
| struct sge_txq *q, unsigned int ndesc, |
| unsigned int compl) |
| { |
| unsigned int flits, sgl_flits, cntrl, tso_info; |
| struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1]; |
| struct tx_desc *d = &q->desc[pidx]; |
| struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d; |
| |
| cpl->len = htonl(skb->len); |
| cntrl = V_TXPKT_INTF(pi->port_id); |
| |
| if (skb_vlan_tag_present(skb)) |
| cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(skb_vlan_tag_get(skb)); |
| |
| tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size); |
| if (tso_info) { |
| int eth_type; |
| struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl; |
| |
| d->flit[2] = 0; |
| cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO); |
| hdr->cntrl = htonl(cntrl); |
| eth_type = skb_network_offset(skb) == ETH_HLEN ? |
| CPL_ETH_II : CPL_ETH_II_VLAN; |
| tso_info |= V_LSO_ETH_TYPE(eth_type) | |
| V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) | |
| V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff); |
| hdr->lso_info = htonl(tso_info); |
| flits = 3; |
| } else { |
| cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT); |
| cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */ |
| cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL); |
| cpl->cntrl = htonl(cntrl); |
| |
| if (skb->len <= WR_LEN - sizeof(*cpl)) { |
| q->sdesc[pidx].skb = NULL; |
| if (!skb->data_len) |
| skb_copy_from_linear_data(skb, &d->flit[2], |
| skb->len); |
| else |
| skb_copy_bits(skb, 0, &d->flit[2], skb->len); |
| |
| flits = (skb->len + 7) / 8 + 2; |
| cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) | |
| V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) |
| | F_WR_SOP | F_WR_EOP | compl); |
| dma_wmb(); |
| cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) | |
| V_WR_TID(q->token)); |
| wr_gen2(d, gen); |
| dev_consume_skb_any(skb); |
| return; |
| } |
| |
| flits = 2; |
| } |
| |
| sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl; |
| sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev); |
| |
| write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen, |
| htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl), |
| htonl(V_WR_TID(q->token))); |
| } |
| |
| static inline void t3_stop_tx_queue(struct netdev_queue *txq, |
| struct sge_qset *qs, struct sge_txq *q) |
| { |
| netif_tx_stop_queue(txq); |
| set_bit(TXQ_ETH, &qs->txq_stopped); |
| q->stops++; |
| } |
| |
| /** |
| * eth_xmit - add a packet to the Ethernet Tx queue |
| * @skb: the packet |
| * @dev: the egress net device |
| * |
| * Add a packet to an SGE Tx queue. Runs with softirqs disabled. |
| */ |
| netdev_tx_t t3_eth_xmit(struct sk_buff *skb, struct net_device *dev) |
| { |
| int qidx; |
| unsigned int ndesc, pidx, credits, gen, compl; |
| const struct port_info *pi = netdev_priv(dev); |
| struct adapter *adap = pi->adapter; |
| struct netdev_queue *txq; |
| struct sge_qset *qs; |
| struct sge_txq *q; |
| |
| /* |
| * The chip min packet length is 9 octets but play safe and reject |
| * anything shorter than an Ethernet header. |
| */ |
| if (unlikely(skb->len < ETH_HLEN)) { |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| qidx = skb_get_queue_mapping(skb); |
| qs = &pi->qs[qidx]; |
| q = &qs->txq[TXQ_ETH]; |
| txq = netdev_get_tx_queue(dev, qidx); |
| |
| reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK); |
| |
| credits = q->size - q->in_use; |
| ndesc = calc_tx_descs(skb); |
| |
| if (unlikely(credits < ndesc)) { |
| t3_stop_tx_queue(txq, qs, q); |
| dev_err(&adap->pdev->dev, |
| "%s: Tx ring %u full while queue awake!\n", |
| dev->name, q->cntxt_id & 7); |
| return NETDEV_TX_BUSY; |
| } |
| |
| q->in_use += ndesc; |
| if (unlikely(credits - ndesc < q->stop_thres)) { |
| t3_stop_tx_queue(txq, qs, q); |
| |
| if (should_restart_tx(q) && |
| test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) { |
| q->restarts++; |
| netif_tx_start_queue(txq); |
| } |
| } |
| |
| gen = q->gen; |
| q->unacked += ndesc; |
| compl = (q->unacked & 8) << (S_WR_COMPL - 3); |
| q->unacked &= 7; |
| pidx = q->pidx; |
| q->pidx += ndesc; |
| if (q->pidx >= q->size) { |
| q->pidx -= q->size; |
| q->gen ^= 1; |
| } |
| |
| /* update port statistics */ |
| if (skb->ip_summed == CHECKSUM_PARTIAL) |
| qs->port_stats[SGE_PSTAT_TX_CSUM]++; |
| if (skb_shinfo(skb)->gso_size) |
| qs->port_stats[SGE_PSTAT_TSO]++; |
| if (skb_vlan_tag_present(skb)) |
| qs->port_stats[SGE_PSTAT_VLANINS]++; |
| |
| /* |
| * We do not use Tx completion interrupts to free DMAd Tx packets. |
| * This is good for performance but means that we rely on new Tx |
| * packets arriving to run the destructors of completed packets, |
| * which open up space in their sockets' send queues. Sometimes |
| * we do not get such new packets causing Tx to stall. A single |
| * UDP transmitter is a good example of this situation. We have |
| * a clean up timer that periodically reclaims completed packets |
| * but it doesn't run often enough (nor do we want it to) to prevent |
| * lengthy stalls. A solution to this problem is to run the |
| * destructor early, after the packet is queued but before it's DMAd. |
| * A cons is that we lie to socket memory accounting, but the amount |
| * of extra memory is reasonable (limited by the number of Tx |
| * descriptors), the packets do actually get freed quickly by new |
| * packets almost always, and for protocols like TCP that wait for |
| * acks to really free up the data the extra memory is even less. |
| * On the positive side we run the destructors on the sending CPU |
| * rather than on a potentially different completing CPU, usually a |
| * good thing. We also run them without holding our Tx queue lock, |
| * unlike what reclaim_completed_tx() would otherwise do. |
| * |
| * Run the destructor before telling the DMA engine about the packet |
| * to make sure it doesn't complete and get freed prematurely. |
| */ |
| if (likely(!skb_shared(skb))) |
| skb_orphan(skb); |
| |
| write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl); |
| check_ring_tx_db(adap, q); |
| return NETDEV_TX_OK; |
| } |
| |
| /** |
| * write_imm - write a packet into a Tx descriptor as immediate data |
| * @d: the Tx descriptor to write |
| * @skb: the packet |
| * @len: the length of packet data to write as immediate data |
| * @gen: the generation bit value to write |
| * |
| * Writes a packet as immediate data into a Tx descriptor. The packet |
| * contains a work request at its beginning. We must write the packet |
| * carefully so the SGE doesn't read it accidentally before it's written |
| * in its entirety. |
| */ |
| static inline void write_imm(struct tx_desc *d, struct sk_buff *skb, |
| unsigned int len, unsigned int gen) |
| { |
| struct work_request_hdr *from = (struct work_request_hdr *)skb->data; |
| struct work_request_hdr *to = (struct work_request_hdr *)d; |
| |
| if (likely(!skb->data_len)) |
| memcpy(&to[1], &from[1], len - sizeof(*from)); |
| else |
| skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from)); |
| |
| to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP | |
| V_WR_BCNTLFLT(len & 7)); |
| dma_wmb(); |
| to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) | |
| V_WR_LEN((len + 7) / 8)); |
| wr_gen2(d, gen); |
| kfree_skb(skb); |
| } |
| |
| /** |
| * check_desc_avail - check descriptor availability on a send queue |
| * @adap: the adapter |
| * @q: the send queue |
| * @skb: the packet needing the descriptors |
| * @ndesc: the number of Tx descriptors needed |
| * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL) |
| * |
| * Checks if the requested number of Tx descriptors is available on an |
| * SGE send queue. If the queue is already suspended or not enough |
| * descriptors are available the packet is queued for later transmission. |
| * Must be called with the Tx queue locked. |
| * |
| * Returns 0 if enough descriptors are available, 1 if there aren't |
| * enough descriptors and the packet has been queued, and 2 if the caller |
| * needs to retry because there weren't enough descriptors at the |
| * beginning of the call but some freed up in the mean time. |
| */ |
| static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q, |
| struct sk_buff *skb, unsigned int ndesc, |
| unsigned int qid) |
| { |
| if (unlikely(!skb_queue_empty(&q->sendq))) { |
| addq_exit:__skb_queue_tail(&q->sendq, skb); |
| return 1; |
| } |
| if (unlikely(q->size - q->in_use < ndesc)) { |
| struct sge_qset *qs = txq_to_qset(q, qid); |
| |
| set_bit(qid, &qs->txq_stopped); |
| smp_mb__after_atomic(); |
| |
| if (should_restart_tx(q) && |
| test_and_clear_bit(qid, &qs->txq_stopped)) |
| return 2; |
| |
| q->stops++; |
| goto addq_exit; |
| } |
| return 0; |
| } |
| |
| /** |
| * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs |
| * @q: the SGE control Tx queue |
| * |
| * This is a variant of reclaim_completed_tx() that is used for Tx queues |
| * that send only immediate data (presently just the control queues) and |
| * thus do not have any sk_buffs to release. |
| */ |
| static inline void reclaim_completed_tx_imm(struct sge_txq *q) |
| { |
| unsigned int reclaim = q->processed - q->cleaned; |
| |
| q->in_use -= reclaim; |
| q->cleaned += reclaim; |
| } |
| |
| static inline int immediate(const struct sk_buff *skb) |
| { |
| return skb->len <= WR_LEN; |
| } |
| |
| /** |
| * ctrl_xmit - send a packet through an SGE control Tx queue |
| * @adap: the adapter |
| * @q: the control queue |
| * @skb: the packet |
| * |
| * Send a packet through an SGE control Tx queue. Packets sent through |
| * a control queue must fit entirely as immediate data in a single Tx |
| * descriptor and have no page fragments. |
| */ |
| static int ctrl_xmit(struct adapter *adap, struct sge_txq *q, |
| struct sk_buff *skb) |
| { |
| int ret; |
| struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data; |
| |
| if (unlikely(!immediate(skb))) { |
| WARN_ON(1); |
| dev_kfree_skb(skb); |
| return NET_XMIT_SUCCESS; |
| } |
| |
| wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP); |
| wrp->wr_lo = htonl(V_WR_TID(q->token)); |
| |
| spin_lock(&q->lock); |
| again:reclaim_completed_tx_imm(q); |
| |
| ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL); |
| if (unlikely(ret)) { |
| if (ret == 1) { |
| spin_unlock(&q->lock); |
| return NET_XMIT_CN; |
| } |
| goto again; |
| } |
| |
| write_imm(&q->desc[q->pidx], skb, skb->len, q->gen); |
| |
| q->in_use++; |
| if (++q->pidx >= q->size) { |
| q->pidx = 0; |
| q->gen ^= 1; |
| } |
| spin_unlock(&q->lock); |
| wmb(); |
| t3_write_reg(adap, A_SG_KDOORBELL, |
| F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); |
| return NET_XMIT_SUCCESS; |
| } |
| |
| /** |
| * restart_ctrlq - restart a suspended control queue |
| * @qs: the queue set cotaining the control queue |
| * |
| * Resumes transmission on a suspended Tx control queue. |
| */ |
| static void restart_ctrlq(unsigned long data) |
| { |
| struct sk_buff *skb; |
| struct sge_qset *qs = (struct sge_qset *)data; |
| struct sge_txq *q = &qs->txq[TXQ_CTRL]; |
| |
| spin_lock(&q->lock); |
| again:reclaim_completed_tx_imm(q); |
| |
| while (q->in_use < q->size && |
| (skb = __skb_dequeue(&q->sendq)) != NULL) { |
| |
| write_imm(&q->desc[q->pidx], skb, skb->len, q->gen); |
| |
| if (++q->pidx >= q->size) { |
| q->pidx = 0; |
| q->gen ^= 1; |
| } |
| q->in_use++; |
| } |
| |
| if (!skb_queue_empty(&q->sendq)) { |
| set_bit(TXQ_CTRL, &qs->txq_stopped); |
| smp_mb__after_atomic(); |
| |
| if (should_restart_tx(q) && |
| test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) |
| goto again; |
| q->stops++; |
| } |
| |
| spin_unlock(&q->lock); |
| wmb(); |
| t3_write_reg(qs->adap, A_SG_KDOORBELL, |
| F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); |
| } |
| |
| /* |
| * Send a management message through control queue 0 |
| */ |
| int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb) |
| { |
| int ret; |
| local_bh_disable(); |
| ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb); |
| local_bh_enable(); |
| |
| return ret; |
| } |
| |
| /** |
| * deferred_unmap_destructor - unmap a packet when it is freed |
| * @skb: the packet |
| * |
| * This is the packet destructor used for Tx packets that need to remain |
| * mapped until they are freed rather than until their Tx descriptors are |
| * freed. |
| */ |
| static void deferred_unmap_destructor(struct sk_buff *skb) |
| { |
| int i; |
| const dma_addr_t *p; |
| const struct skb_shared_info *si; |
| const struct deferred_unmap_info *dui; |
| |
| dui = (struct deferred_unmap_info *)skb->head; |
| p = dui->addr; |
| |
| if (skb_tail_pointer(skb) - skb_transport_header(skb)) |
| pci_unmap_single(dui->pdev, *p++, skb_tail_pointer(skb) - |
| skb_transport_header(skb), PCI_DMA_TODEVICE); |
| |
| si = skb_shinfo(skb); |
| for (i = 0; i < si->nr_frags; i++) |
| pci_unmap_page(dui->pdev, *p++, skb_frag_size(&si->frags[i]), |
| PCI_DMA_TODEVICE); |
| } |
| |
| static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev, |
| const struct sg_ent *sgl, int sgl_flits) |
| { |
| dma_addr_t *p; |
| struct deferred_unmap_info *dui; |
| |
| dui = (struct deferred_unmap_info *)skb->head; |
| dui->pdev = pdev; |
| for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) { |
| *p++ = be64_to_cpu(sgl->addr[0]); |
| *p++ = be64_to_cpu(sgl->addr[1]); |
| } |
| if (sgl_flits) |
| *p = be64_to_cpu(sgl->addr[0]); |
| } |
| |
| /** |
| * write_ofld_wr - write an offload work request |
| * @adap: the adapter |
| * @skb: the packet to send |
| * @q: the Tx queue |
| * @pidx: index of the first Tx descriptor to write |
| * @gen: the generation value to use |
| * @ndesc: number of descriptors the packet will occupy |
| * |
| * Write an offload work request to send the supplied packet. The packet |
| * data already carry the work request with most fields populated. |
| */ |
| static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb, |
| struct sge_txq *q, unsigned int pidx, |
| unsigned int gen, unsigned int ndesc) |
| { |
| unsigned int sgl_flits, flits; |
| struct work_request_hdr *from; |
| struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1]; |
| struct tx_desc *d = &q->desc[pidx]; |
| |
| if (immediate(skb)) { |
| q->sdesc[pidx].skb = NULL; |
| write_imm(d, skb, skb->len, gen); |
| return; |
| } |
| |
| /* Only TX_DATA builds SGLs */ |
| |
| from = (struct work_request_hdr *)skb->data; |
| memcpy(&d->flit[1], &from[1], |
| skb_transport_offset(skb) - sizeof(*from)); |
| |
| flits = skb_transport_offset(skb) / 8; |
| sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl; |
| sgl_flits = make_sgl(skb, sgp, skb_transport_header(skb), |
| skb_tail_pointer(skb) - |
| skb_transport_header(skb), |
| adap->pdev); |
| if (need_skb_unmap()) { |
| setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits); |
| skb->destructor = deferred_unmap_destructor; |
| } |
| |
| write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, |
| gen, from->wr_hi, from->wr_lo); |
| } |
| |
| /** |
| * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet |
| * @skb: the packet |
| * |
| * Returns the number of Tx descriptors needed for the given offload |
| * packet. These packets are already fully constructed. |
| */ |
| static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb) |
| { |
| unsigned int flits, cnt; |
| |
| if (skb->len <= WR_LEN) |
| return 1; /* packet fits as immediate data */ |
| |
| flits = skb_transport_offset(skb) / 8; /* headers */ |
| cnt = skb_shinfo(skb)->nr_frags; |
| if (skb_tail_pointer(skb) != skb_transport_header(skb)) |
| cnt++; |
| return flits_to_desc(flits + sgl_len(cnt)); |
| } |
| |
| /** |
| * ofld_xmit - send a packet through an offload queue |
| * @adap: the adapter |
| * @q: the Tx offload queue |
| * @skb: the packet |
| * |
| * Send an offload packet through an SGE offload queue. |
| */ |
| static int ofld_xmit(struct adapter *adap, struct sge_txq *q, |
| struct sk_buff *skb) |
| { |
| int ret; |
| unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen; |
| |
| spin_lock(&q->lock); |
| again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK); |
| |
| ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD); |
| if (unlikely(ret)) { |
| if (ret == 1) { |
| skb->priority = ndesc; /* save for restart */ |
| spin_unlock(&q->lock); |
| return NET_XMIT_CN; |
| } |
| goto again; |
| } |
| |
| gen = q->gen; |
| q->in_use += ndesc; |
| pidx = q->pidx; |
| q->pidx += ndesc; |
| if (q->pidx >= q->size) { |
| q->pidx -= q->size; |
| q->gen ^= 1; |
| } |
| spin_unlock(&q->lock); |
| |
| write_ofld_wr(adap, skb, q, pidx, gen, ndesc); |
| check_ring_tx_db(adap, q); |
| return NET_XMIT_SUCCESS; |
| } |
| |
| /** |
| * restart_offloadq - restart a suspended offload queue |
| * @qs: the queue set cotaining the offload queue |
| * |
| * Resumes transmission on a suspended Tx offload queue. |
| */ |
| static void restart_offloadq(unsigned long data) |
| { |
| struct sk_buff *skb; |
| struct sge_qset *qs = (struct sge_qset *)data; |
| struct sge_txq *q = &qs->txq[TXQ_OFLD]; |
| const struct port_info *pi = netdev_priv(qs->netdev); |
| struct adapter *adap = pi->adapter; |
| |
| spin_lock(&q->lock); |
| again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK); |
| |
| while ((skb = skb_peek(&q->sendq)) != NULL) { |
| unsigned int gen, pidx; |
| unsigned int ndesc = skb->priority; |
| |
| if (unlikely(q->size - q->in_use < ndesc)) { |
| set_bit(TXQ_OFLD, &qs->txq_stopped); |
| smp_mb__after_atomic(); |
| |
| if (should_restart_tx(q) && |
| test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) |
| goto again; |
| q->stops++; |
| break; |
| } |
| |
| gen = q->gen; |
| q->in_use += ndesc; |
| pidx = q->pidx; |
| q->pidx += ndesc; |
| if (q->pidx >= q->size) { |
| q->pidx -= q->size; |
| q->gen ^= 1; |
| } |
| __skb_unlink(skb, &q->sendq); |
| spin_unlock(&q->lock); |
| |
| write_ofld_wr(adap, skb, q, pidx, gen, ndesc); |
| spin_lock(&q->lock); |
| } |
| spin_unlock(&q->lock); |
| |
| #if USE_GTS |
| set_bit(TXQ_RUNNING, &q->flags); |
| set_bit(TXQ_LAST_PKT_DB, &q->flags); |
| #endif |
| wmb(); |
| t3_write_reg(adap, A_SG_KDOORBELL, |
| F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); |
| } |
| |
| /** |
| * queue_set - return the queue set a packet should use |
| * @skb: the packet |
| * |
| * Maps a packet to the SGE queue set it should use. The desired queue |
| * set is carried in bits 1-3 in the packet's priority. |
| */ |
| static inline int queue_set(const struct sk_buff *skb) |
| { |
| return skb->priority >> 1; |
| } |
| |
| /** |
| * is_ctrl_pkt - return whether an offload packet is a control packet |
| * @skb: the packet |
| * |
| * Determines whether an offload packet should use an OFLD or a CTRL |
| * Tx queue. This is indicated by bit 0 in the packet's priority. |
| */ |
| static inline int is_ctrl_pkt(const struct sk_buff *skb) |
| { |
| return skb->priority & 1; |
| } |
| |
| /** |
| * t3_offload_tx - send an offload packet |
| * @tdev: the offload device to send to |
| * @skb: the packet |
| * |
| * Sends an offload packet. We use the packet priority to select the |
| * appropriate Tx queue as follows: bit 0 indicates whether the packet |
| * should be sent as regular or control, bits 1-3 select the queue set. |
| */ |
| int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb) |
| { |
| struct adapter *adap = tdev2adap(tdev); |
| struct sge_qset *qs = &adap->sge.qs[queue_set(skb)]; |
| |
| if (unlikely(is_ctrl_pkt(skb))) |
| return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb); |
| |
| return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb); |
| } |
| |
| /** |
| * offload_enqueue - add an offload packet to an SGE offload receive queue |
| * @q: the SGE response queue |
| * @skb: the packet |
| * |
| * Add a new offload packet to an SGE response queue's offload packet |
| * queue. If the packet is the first on the queue it schedules the RX |
| * softirq to process the queue. |
| */ |
| static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb) |
| { |
| int was_empty = skb_queue_empty(&q->rx_queue); |
| |
| __skb_queue_tail(&q->rx_queue, skb); |
| |
| if (was_empty) { |
| struct sge_qset *qs = rspq_to_qset(q); |
| |
| napi_schedule(&qs->napi); |
| } |
| } |
| |
| /** |
| * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts |
| * @tdev: the offload device that will be receiving the packets |
| * @q: the SGE response queue that assembled the bundle |
| * @skbs: the partial bundle |
| * @n: the number of packets in the bundle |
| * |
| * Delivers a (partial) bundle of Rx offload packets to an offload device. |
| */ |
| static inline void deliver_partial_bundle(struct t3cdev *tdev, |
| struct sge_rspq *q, |
| struct sk_buff *skbs[], int n) |
| { |
| if (n) { |
| q->offload_bundles++; |
| tdev->recv(tdev, skbs, n); |
| } |
| } |
| |
| /** |
| * ofld_poll - NAPI handler for offload packets in interrupt mode |
| * @dev: the network device doing the polling |
| * @budget: polling budget |
| * |
| * The NAPI handler for offload packets when a response queue is serviced |
| * by the hard interrupt handler, i.e., when it's operating in non-polling |
| * mode. Creates small packet batches and sends them through the offload |
| * receive handler. Batches need to be of modest size as we do prefetches |
| * on the packets in each. |
| */ |
| static int ofld_poll(struct napi_struct *napi, int budget) |
| { |
| struct sge_qset *qs = container_of(napi, struct sge_qset, napi); |
| struct sge_rspq *q = &qs->rspq; |
| struct adapter *adapter = qs->adap; |
| int work_done = 0; |
| |
| while (work_done < budget) { |
| struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE]; |
| struct sk_buff_head queue; |
| int ngathered; |
| |
| spin_lock_irq(&q->lock); |
| __skb_queue_head_init(&queue); |
| skb_queue_splice_init(&q->rx_queue, &queue); |
| if (skb_queue_empty(&queue)) { |
| napi_complete(napi); |
| spin_unlock_irq(&q->lock); |
| return work_done; |
| } |
| spin_unlock_irq(&q->lock); |
| |
| ngathered = 0; |
| skb_queue_walk_safe(&queue, skb, tmp) { |
| if (work_done >= budget) |
| break; |
| work_done++; |
| |
| __skb_unlink(skb, &queue); |
| prefetch(skb->data); |
| skbs[ngathered] = skb; |
| if (++ngathered == RX_BUNDLE_SIZE) { |
| q->offload_bundles++; |
| adapter->tdev.recv(&adapter->tdev, skbs, |
| ngathered); |
| ngathered = 0; |
| } |
| } |
| if (!skb_queue_empty(&queue)) { |
| /* splice remaining packets back onto Rx queue */ |
| spin_lock_irq(&q->lock); |
| skb_queue_splice(&queue, &q->rx_queue); |
| spin_unlock_irq(&q->lock); |
| } |
| deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered); |
| } |
| |
| return work_done; |
| } |
| |
| /** |
| * rx_offload - process a received offload packet |
| * @tdev: the offload device receiving the packet |
| * @rq: the response queue that received the packet |
| * @skb: the packet |
| * @rx_gather: a gather list of packets if we are building a bundle |
| * @gather_idx: index of the next available slot in the bundle |
| * |
| * Process an ingress offload pakcet and add it to the offload ingress |
| * queue. Returns the index of the next available slot in the bundle. |
| */ |
| static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq, |
| struct sk_buff *skb, struct sk_buff *rx_gather[], |
| unsigned int gather_idx) |
| { |
| skb_reset_mac_header(skb); |
| skb_reset_network_header(skb); |
| skb_reset_transport_header(skb); |
| |
| if (rq->polling) { |
| rx_gather[gather_idx++] = skb; |
| if (gather_idx == RX_BUNDLE_SIZE) { |
| tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE); |
| gather_idx = 0; |
| rq->offload_bundles++; |
| } |
| } else |
| offload_enqueue(rq, skb); |
| |
| return gather_idx; |
| } |
| |
| /** |
| * restart_tx - check whether to restart suspended Tx queues |
| * @qs: the queue set to resume |
| * |
| * Restarts suspended Tx queues of an SGE queue set if they have enough |
| * free resources to resume operation. |
| */ |
| static void restart_tx(struct sge_qset *qs) |
| { |
| if (test_bit(TXQ_ETH, &qs->txq_stopped) && |
| should_restart_tx(&qs->txq[TXQ_ETH]) && |
| test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) { |
| qs->txq[TXQ_ETH].restarts++; |
| if (netif_running(qs->netdev)) |
| netif_tx_wake_queue(qs->tx_q); |
| } |
| |
| if (test_bit(TXQ_OFLD, &qs->txq_stopped) && |
| should_restart_tx(&qs->txq[TXQ_OFLD]) && |
| test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) { |
| qs->txq[TXQ_OFLD].restarts++; |
| tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk); |
| } |
| if (test_bit(TXQ_CTRL, &qs->txq_stopped) && |
| should_restart_tx(&qs->txq[TXQ_CTRL]) && |
| test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) { |
| qs->txq[TXQ_CTRL].restarts++; |
| tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk); |
| } |
| } |
| |
| /** |
| * cxgb3_arp_process - process an ARP request probing a private IP address |
| * @adapter: the adapter |
| * @skb: the skbuff containing the ARP request |
| * |
| * Check if the ARP request is probing the private IP address |
| * dedicated to iSCSI, generate an ARP reply if so. |
| */ |
| static void cxgb3_arp_process(struct port_info *pi, struct sk_buff *skb) |
| { |
| struct net_device *dev = skb->dev; |
| struct arphdr *arp; |
| unsigned char *arp_ptr; |
| unsigned char *sha; |
| __be32 sip, tip; |
| |
| if (!dev) |
| return; |
| |
| skb_reset_network_header(skb); |
| arp = arp_hdr(skb); |
| |
| if (arp->ar_op != htons(ARPOP_REQUEST)) |
| return; |
| |
| arp_ptr = (unsigned char *)(arp + 1); |
| sha = arp_ptr; |
| arp_ptr += dev->addr_len; |
| memcpy(&sip, arp_ptr, sizeof(sip)); |
| arp_ptr += sizeof(sip); |
| arp_ptr += dev->addr_len; |
| memcpy(&tip, arp_ptr, sizeof(tip)); |
| |
| if (tip != pi->iscsi_ipv4addr) |
| return; |
| |
| arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha, |
| pi->iscsic.mac_addr, sha); |
| |
| } |
| |
| static inline int is_arp(struct sk_buff *skb) |
| { |
| return skb->protocol == htons(ETH_P_ARP); |
| } |
| |
| static void cxgb3_process_iscsi_prov_pack(struct port_info *pi, |
| struct sk_buff *skb) |
| { |
| if (is_arp(skb)) { |
| cxgb3_arp_process(pi, skb); |
| return; |
| } |
| |
| if (pi->iscsic.recv) |
| pi->iscsic.recv(pi, skb); |
| |
| } |
| |
| /** |
| * rx_eth - process an ingress ethernet packet |
| * @adap: the adapter |
| * @rq: the response queue that received the packet |
| * @skb: the packet |
| * @pad: amount of padding at the start of the buffer |
| * |
| * Process an ingress ethernet pakcet and deliver it to the stack. |
| * The padding is 2 if the packet was delivered in an Rx buffer and 0 |
| * if it was immediate data in a response. |
| */ |
| static void rx_eth(struct adapter *adap, struct sge_rspq *rq, |
| struct sk_buff *skb, int pad, int lro) |
| { |
| struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad); |
| struct sge_qset *qs = rspq_to_qset(rq); |
| struct port_info *pi; |
| |
| skb_pull(skb, sizeof(*p) + pad); |
| skb->protocol = eth_type_trans(skb, adap->port[p->iff]); |
| pi = netdev_priv(skb->dev); |
| if ((skb->dev->features & NETIF_F_RXCSUM) && p->csum_valid && |
| p->csum == htons(0xffff) && !p->fragment) { |
| qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++; |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| } else |
| skb_checksum_none_assert(skb); |
| skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]); |
| |
| if (p->vlan_valid) { |
| qs->port_stats[SGE_PSTAT_VLANEX]++; |
| __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan)); |
| } |
| if (rq->polling) { |
| if (lro) |
| napi_gro_receive(&qs->napi, skb); |
| else { |
| if (unlikely(pi->iscsic.flags)) |
| cxgb3_process_iscsi_prov_pack(pi, skb); |
| netif_receive_skb(skb); |
| } |
| } else |
| netif_rx(skb); |
| } |
| |
| static inline int is_eth_tcp(u32 rss) |
| { |
| return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE; |
| } |
| |
| /** |
| * lro_add_page - add a page chunk to an LRO session |
| * @adap: the adapter |
| * @qs: the associated queue set |
| * @fl: the free list containing the page chunk to add |
| * @len: packet length |
| * @complete: Indicates the last fragment of a frame |
| * |
| * Add a received packet contained in a page chunk to an existing LRO |
| * session. |
| */ |
| static void lro_add_page(struct adapter *adap, struct sge_qset *qs, |
| struct sge_fl *fl, int len, int complete) |
| { |
| struct rx_sw_desc *sd = &fl->sdesc[fl->cidx]; |
| struct port_info *pi = netdev_priv(qs->netdev); |
| struct sk_buff *skb = NULL; |
| struct cpl_rx_pkt *cpl; |
| struct skb_frag_struct *rx_frag; |
| int nr_frags; |
| int offset = 0; |
| |
| if (!qs->nomem) { |
| skb = napi_get_frags(&qs->napi); |
| qs->nomem = !skb; |
| } |
| |
| fl->credits--; |
| |
| pci_dma_sync_single_for_cpu(adap->pdev, |
| dma_unmap_addr(sd, dma_addr), |
| fl->buf_size - SGE_PG_RSVD, |
| PCI_DMA_FROMDEVICE); |
| |
| (*sd->pg_chunk.p_cnt)--; |
| if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page) |
| pci_unmap_page(adap->pdev, |
| sd->pg_chunk.mapping, |
| fl->alloc_size, |
| PCI_DMA_FROMDEVICE); |
| |
| if (!skb) { |
| put_page(sd->pg_chunk.page); |
| if (complete) |
| qs->nomem = 0; |
| return; |
| } |
| |
| rx_frag = skb_shinfo(skb)->frags; |
| nr_frags = skb_shinfo(skb)->nr_frags; |
| |
| if (!nr_frags) { |
| offset = 2 + sizeof(struct cpl_rx_pkt); |
| cpl = qs->lro_va = sd->pg_chunk.va + 2; |
| |
| if ((qs->netdev->features & NETIF_F_RXCSUM) && |
| cpl->csum_valid && cpl->csum == htons(0xffff)) { |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++; |
| } else |
| skb->ip_summed = CHECKSUM_NONE; |
| } else |
| cpl = qs->lro_va; |
| |
| len -= offset; |
| |
| rx_frag += nr_frags; |
| __skb_frag_set_page(rx_frag, sd->pg_chunk.page); |
| rx_frag->page_offset = sd->pg_chunk.offset + offset; |
| skb_frag_size_set(rx_frag, len); |
| |
| skb->len += len; |
| skb->data_len += len; |
| skb->truesize += len; |
| skb_shinfo(skb)->nr_frags++; |
| |
| if (!complete) |
| return; |
| |
| skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]); |
| |
| if (cpl->vlan_valid) { |
| qs->port_stats[SGE_PSTAT_VLANEX]++; |
| __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cpl->vlan)); |
| } |
| napi_gro_frags(&qs->napi); |
| } |
| |
| /** |
| * handle_rsp_cntrl_info - handles control information in a response |
| * @qs: the queue set corresponding to the response |
| * @flags: the response control flags |
| * |
| * Handles the control information of an SGE response, such as GTS |
| * indications and completion credits for the queue set's Tx queues. |
| * HW coalesces credits, we don't do any extra SW coalescing. |
| */ |
| static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags) |
| { |
| unsigned int credits; |
| |
| #if USE_GTS |
| if (flags & F_RSPD_TXQ0_GTS) |
| clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags); |
| #endif |
| |
| credits = G_RSPD_TXQ0_CR(flags); |
| if (credits) |
| qs->txq[TXQ_ETH].processed += credits; |
| |
| credits = G_RSPD_TXQ2_CR(flags); |
| if (credits) |
| qs->txq[TXQ_CTRL].processed += credits; |
| |
| # if USE_GTS |
| if (flags & F_RSPD_TXQ1_GTS) |
| clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags); |
| # endif |
| credits = G_RSPD_TXQ1_CR(flags); |
| if (credits) |
| qs->txq[TXQ_OFLD].processed += credits; |
| } |
| |
| /** |
| * check_ring_db - check if we need to ring any doorbells |
| * @adapter: the adapter |
| * @qs: the queue set whose Tx queues are to be examined |
| * @sleeping: indicates which Tx queue sent GTS |
| * |
| * Checks if some of a queue set's Tx queues need to ring their doorbells |
| * to resume transmission after idling while they still have unprocessed |
| * descriptors. |
| */ |
| static void check_ring_db(struct adapter *adap, struct sge_qset *qs, |
| unsigned int sleeping) |
| { |
| if (sleeping & F_RSPD_TXQ0_GTS) { |
| struct sge_txq *txq = &qs->txq[TXQ_ETH]; |
| |
| if (txq->cleaned + txq->in_use != txq->processed && |
| !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) { |
| set_bit(TXQ_RUNNING, &txq->flags); |
| t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | |
| V_EGRCNTX(txq->cntxt_id)); |
| } |
| } |
| |
| if (sleeping & F_RSPD_TXQ1_GTS) { |
| struct sge_txq *txq = &qs->txq[TXQ_OFLD]; |
| |
| if (txq->cleaned + txq->in_use != txq->processed && |
| !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) { |
| set_bit(TXQ_RUNNING, &txq->flags); |
| t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | |
| V_EGRCNTX(txq->cntxt_id)); |
| } |
| } |
| } |
| |
| /** |
| * is_new_response - check if a response is newly written |
| * @r: the response descriptor |
| * @q: the response queue |
| * |
| * Returns true if a response descriptor contains a yet unprocessed |
| * response. |
| */ |
| static inline int is_new_response(const struct rsp_desc *r, |
| const struct sge_rspq *q) |
| { |
| return (r->intr_gen & F_RSPD_GEN2) == q->gen; |
| } |
| |
| static inline void clear_rspq_bufstate(struct sge_rspq * const q) |
| { |
| q->pg_skb = NULL; |
| q->rx_recycle_buf = 0; |
| } |
| |
| #define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS) |
| #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \ |
| V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \ |
| V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \ |
| V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR)) |
| |
| /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */ |
| #define NOMEM_INTR_DELAY 2500 |
| |
| /** |
| * process_responses - process responses from an SGE response queue |
| * @adap: the adapter |
| * @qs: the queue set to which the response queue belongs |
| * @budget: how many responses can be processed in this round |
| * |
| * Process responses from an SGE response queue up to the supplied budget. |
| * Responses include received packets as well as credits and other events |
| * for the queues that belong to the response queue's queue set. |
| * A negative budget is effectively unlimited. |
| * |
| * Additionally choose the interrupt holdoff time for the next interrupt |
| * on this queue. If the system is under memory shortage use a fairly |
| * long delay to help recovery. |
| */ |
| static int process_responses(struct adapter *adap, struct sge_qset *qs, |
| int budget) |
| { |
| struct sge_rspq *q = &qs->rspq; |
| struct rsp_desc *r = &q->desc[q->cidx]; |
| int budget_left = budget; |
| unsigned int sleeping = 0; |
| struct sk_buff *offload_skbs[RX_BUNDLE_SIZE]; |
| int ngathered = 0; |
| |
| q->next_holdoff = q->holdoff_tmr; |
| |
| while (likely(budget_left && is_new_response(r, q))) { |
| int packet_complete, eth, ethpad = 2; |
| int lro = !!(qs->netdev->features & NETIF_F_GRO); |
| struct sk_buff *skb = NULL; |
| u32 len, flags; |
| __be32 rss_hi, rss_lo; |
| |
| dma_rmb(); |
| eth = r->rss_hdr.opcode == CPL_RX_PKT; |
| rss_hi = *(const __be32 *)r; |
| rss_lo = r->rss_hdr.rss_hash_val; |
| flags = ntohl(r->flags); |
| |
| if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) { |
| skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC); |
| if (!skb) |
| goto no_mem; |
| |
| memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE); |
| skb->data[0] = CPL_ASYNC_NOTIF; |
| rss_hi = htonl(CPL_ASYNC_NOTIF << 24); |
| q->async_notif++; |
| } else if (flags & F_RSPD_IMM_DATA_VALID) { |
| skb = get_imm_packet(r); |
| if (unlikely(!skb)) { |
| no_mem: |
| q->next_holdoff = NOMEM_INTR_DELAY; |
| q->nomem++; |
| /* consume one credit since we tried */ |
| budget_left--; |
| break; |
| } |
| q->imm_data++; |
| ethpad = 0; |
| } else if ((len = ntohl(r->len_cq)) != 0) { |
| struct sge_fl *fl; |
| |
| lro &= eth && is_eth_tcp(rss_hi); |
| |
| fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0]; |
| if (fl->use_pages) { |
| void *addr = fl->sdesc[fl->cidx].pg_chunk.va; |
| |
| prefetch(addr); |
| #if L1_CACHE_BYTES < 128 |
| prefetch(addr + L1_CACHE_BYTES); |
| #endif |
| __refill_fl(adap, fl); |
| if (lro > 0) { |
| lro_add_page(adap, qs, fl, |
| G_RSPD_LEN(len), |
| flags & F_RSPD_EOP); |
| goto next_fl; |
| } |
| |
| skb = get_packet_pg(adap, fl, q, |
| G_RSPD_LEN(len), |
| eth ? |
| SGE_RX_DROP_THRES : 0); |
| q->pg_skb = skb; |
| } else |
| skb = get_packet(adap, fl, G_RSPD_LEN(len), |
| eth ? SGE_RX_DROP_THRES : 0); |
| if (unlikely(!skb)) { |
| if (!eth) |
| goto no_mem; |
| q->rx_drops++; |
| } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT)) |
| __skb_pull(skb, 2); |
| next_fl: |
| if (++fl->cidx == fl->size) |
| fl->cidx = 0; |
| } else |
| q->pure_rsps++; |
| |
| if (flags & RSPD_CTRL_MASK) { |
| sleeping |= flags & RSPD_GTS_MASK; |
| handle_rsp_cntrl_info(qs, flags); |
| } |
| |
| r++; |
| if (unlikely(++q->cidx == q->size)) { |
| q->cidx = 0; |
| q->gen ^= 1; |
| r = q->desc; |
| } |
| prefetch(r); |
| |
| if (++q->credits >= (q->size / 4)) { |
| refill_rspq(adap, q, q->credits); |
| q->credits = 0; |
| } |
| |
| packet_complete = flags & |
| (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID | |
| F_RSPD_ASYNC_NOTIF); |
| |
| if (skb != NULL && packet_complete) { |
| if (eth) |
| rx_eth(adap, q, skb, ethpad, lro); |
| else { |
| q->offload_pkts++; |
| /* Preserve the RSS info in csum & priority */ |
| skb->csum = rss_hi; |
| skb->priority = rss_lo; |
| ngathered = rx_offload(&adap->tdev, q, skb, |
| offload_skbs, |
| ngathered); |
| } |
| |
| if (flags & F_RSPD_EOP) |
| clear_rspq_bufstate(q); |
| } |
| --budget_left; |
| } |
| |
| deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered); |
| |
| if (sleeping) |
| check_ring_db(adap, qs, sleeping); |
| |
| smp_mb(); /* commit Tx queue .processed updates */ |
| if (unlikely(qs->txq_stopped != 0)) |
| restart_tx(qs); |
| |
| budget -= budget_left; |
| return budget; |
| } |
| |
| static inline int is_pure_response(const struct rsp_desc *r) |
| { |
| __be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID); |
| |
| return (n | r->len_cq) == 0; |
| } |
| |
| /** |
| * napi_rx_handler - the NAPI handler for Rx processing |
| * @napi: the napi instance |
| * @budget: how many packets we can process in this round |
| * |
| * Handler for new data events when using NAPI. |
| */ |
| static int napi_rx_handler(struct napi_struct *napi, int budget) |
| { |
| struct sge_qset *qs = container_of(napi, struct sge_qset, napi); |
| struct adapter *adap = qs->adap; |
| int work_done = process_responses(adap, qs, budget); |
| |
| if (likely(work_done < budget)) { |
| napi_complete(napi); |
| |
| /* |
| * Because we don't atomically flush the following |
| * write it is possible that in very rare cases it can |
| * reach the device in a way that races with a new |
| * response being written plus an error interrupt |
| * causing the NAPI interrupt handler below to return |
| * unhandled status to the OS. To protect against |
| * this would require flushing the write and doing |
| * both the write and the flush with interrupts off. |
| * Way too expensive and unjustifiable given the |
| * rarity of the race. |
| * |
| * The race cannot happen at all with MSI-X. |
| */ |
| t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) | |
| V_NEWTIMER(qs->rspq.next_holdoff) | |
| V_NEWINDEX(qs->rspq.cidx)); |
| } |
| return work_done; |
| } |
| |
| /* |
| * Returns true if the device is already scheduled for polling. |
| */ |
| static inline int napi_is_scheduled(struct napi_struct *napi) |
| { |
| return test_bit(NAPI_STATE_SCHED, &napi->state); |
| } |
| |
| /** |
| * process_pure_responses - process pure responses from a response queue |
| * @adap: the adapter |
| * @qs: the queue set owning the response queue |
| * @r: the first pure response to process |
| * |
| * A simpler version of process_responses() that handles only pure (i.e., |
| * non data-carrying) responses. Such respones are too light-weight to |
| * justify calling a softirq under NAPI, so we handle them specially in |
| * the interrupt handler. The function is called with a pointer to a |
| * response, which the caller must ensure is a valid pure response. |
| * |
| * Returns 1 if it encounters a valid data-carrying response, 0 otherwise. |
| */ |
| static int process_pure_responses(struct adapter *adap, struct sge_qset *qs, |
| struct rsp_desc *r) |
| { |
| struct sge_rspq *q = &qs->rspq; |
| unsigned int sleeping = 0; |
| |
| do { |
| u32 flags = ntohl(r->flags); |
| |
| r++; |
| if (unlikely(++q->cidx == q->size)) { |
| q->cidx = 0; |
| q->gen ^= 1; |
| r = q->desc; |
| } |
| prefetch(r); |
| |
| if (flags & RSPD_CTRL_MASK) { |
| sleeping |= flags & RSPD_GTS_MASK; |
| handle_rsp_cntrl_info(qs, flags); |
| } |
| |
| q->pure_rsps++; |
| if (++q->credits >= (q->size / 4)) { |
| refill_rspq(adap, q, q->credits); |
| q->credits = 0; |
| } |
| if (!is_new_response(r, q)) |
| break; |
| dma_rmb(); |
| } while (is_pure_response(r)); |
| |
| if (sleeping) |
| check_ring_db(adap, qs, sleeping); |
| |
| smp_mb(); /* commit Tx queue .processed updates */ |
| if (unlikely(qs->txq_stopped != 0)) |
| restart_tx(qs); |
| |
| return is_new_response(r, q); |
| } |
| |
| /** |
| * handle_responses - decide what to do with new responses in NAPI mode |
| * @adap: the adapter |
| * @q: the response queue |
| * |
| * This is used by the NAPI interrupt handlers to decide what to do with |
| * new SGE responses. If there are no new responses it returns -1. If |
| * there are new responses and they are pure (i.e., non-data carrying) |
| * it handles them straight in hard interrupt context as they are very |
| * cheap and don't deliver any packets. Finally, if there are any data |
| * signaling responses it schedules the NAPI handler. Returns 1 if it |
| * schedules NAPI, 0 if all new responses were pure. |
| * |
| * The caller must ascertain NAPI is not already running. |
| */ |
| static inline int handle_responses(struct adapter *adap, struct sge_rspq *q) |
| { |
| struct sge_qset *qs = rspq_to_qset(q); |
| struct rsp_desc *r = &q->desc[q->cidx]; |
| |
| if (!is_new_response(r, q)) |
| return -1; |
| dma_rmb(); |
| if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) { |
| t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | |
| V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx)); |
| return 0; |
| } |
| napi_schedule(&qs->napi); |
| return 1; |
| } |
| |
| /* |
| * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case |
| * (i.e., response queue serviced in hard interrupt). |
| */ |
| static irqreturn_t t3_sge_intr_msix(int irq, void *cookie) |
| { |
| struct sge_qset *qs = cookie; |
| struct adapter *adap = qs->adap; |
| struct sge_rspq *q = &qs->rspq; |
| |
| spin_lock(&q->lock); |
| if (process_responses(adap, qs, -1) == 0) |
| q->unhandled_irqs++; |
| t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | |
| V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx)); |
| spin_unlock(&q->lock); |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * The MSI-X interrupt handler for an SGE response queue for the NAPI case |
| * (i.e., response queue serviced by NAPI polling). |
| */ |
| static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie) |
| { |
| struct sge_qset *qs = cookie; |
| struct sge_rspq *q = &qs->rspq; |
| |
| spin_lock(&q->lock); |
| |
| if (handle_responses(qs->adap, q) < 0) |
| q->unhandled_irqs++; |
| spin_unlock(&q->lock); |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * The non-NAPI MSI interrupt handler. This needs to handle data events from |
| * SGE response queues as well as error and other async events as they all use |
| * the same MSI vector. We use one SGE response queue per port in this mode |
| * and protect all response queues with queue 0's lock. |
| */ |
| static irqreturn_t t3_intr_msi(int irq, void *cookie) |
| { |
| int new_packets = 0; |
| struct adapter *adap = cookie; |
| struct sge_rspq *q = &adap->sge.qs[0].rspq; |
| |
| spin_lock(&q->lock); |
| |
| if (process_responses(adap, &adap->sge.qs[0], -1)) { |
| t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | |
| V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx)); |
| new_packets = 1; |
| } |
| |
| if (adap->params.nports == 2 && |
| process_responses(adap, &adap->sge.qs[1], -1)) { |
| struct sge_rspq *q1 = &adap->sge.qs[1].rspq; |
| |
| t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) | |
| V_NEWTIMER(q1->next_holdoff) | |
| V_NEWINDEX(q1->cidx)); |
| new_packets = 1; |
| } |
| |
| if (!new_packets && t3_slow_intr_handler(adap) == 0) |
| q->unhandled_irqs++; |
| |
| spin_unlock(&q->lock); |
| return IRQ_HANDLED; |
| } |
| |
| static int rspq_check_napi(struct sge_qset *qs) |
| { |
| struct sge_rspq *q = &qs->rspq; |
| |
| if (!napi_is_scheduled(&qs->napi) && |
| is_new_response(&q->desc[q->cidx], q)) { |
| napi_schedule(&qs->napi); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| * The MSI interrupt handler for the NAPI case (i.e., response queues serviced |
| * by NAPI polling). Handles data events from SGE response queues as well as |
| * error and other async events as they all use the same MSI vector. We use |
| * one SGE response queue per port in this mode and protect all response |
| * queues with queue 0's lock. |
| */ |
| static irqreturn_t t3_intr_msi_napi(int irq, void *cookie) |
| { |
| int new_packets; |
| struct adapter *adap = cookie; |
| struct sge_rspq *q = &adap->sge.qs[0].rspq; |
| |
| spin_lock(&q->lock); |
| |
| new_packets = rspq_check_napi(&adap->sge.qs[0]); |
| if (adap->params.nports == 2) |
| new_packets += rspq_check_napi(&adap->sge.qs[1]); |
| if (!new_packets && t3_slow_intr_handler(adap) == 0) |
| q->unhandled_irqs++; |
| |
| spin_unlock(&q->lock); |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * A helper function that processes responses and issues GTS. |
| */ |
| static inline int process_responses_gts(struct adapter *adap, |
| struct sge_rspq *rq) |
| { |
| int work; |
| |
| work = process_responses(adap, rspq_to_qset(rq), -1); |
| t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) | |
| V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx)); |
| return work; |
| } |
| |
| /* |
| * The legacy INTx interrupt handler. This needs to handle data events from |
| * SGE response queues as well as error and other async events as they all use |
| * the same interrupt pin. We use one SGE response queue per port in this mode |
| * and protect all response queues with queue 0's lock. |
| */ |
| static irqreturn_t t3_intr(int irq, void *cookie) |
| { |
| int work_done, w0, w1; |
| struct adapter *adap = cookie; |
| struct sge_rspq *q0 = &adap->sge.qs[0].rspq; |
| struct sge_rspq *q1 = &adap->sge.qs[1].rspq; |
| |
| spin_lock(&q0->lock); |
| |
| w0 = is_new_response(&q0->desc[q0->cidx], q0); |
| w1 = adap->params.nports == 2 && |
| is_new_response(&q1->desc[q1->cidx], q1); |
| |
| if (likely(w0 | w1)) { |
| t3_write_reg(adap, A_PL_CLI, 0); |
| t3_read_reg(adap, A_PL_CLI); /* flush */ |
| |
| if (likely(w0)) |
| process_responses_gts(adap, q0); |
| |
| if (w1) |
| process_responses_gts(adap, q1); |
| |
| work_done = w0 | w1; |
| } else |
| work_done = t3_slow_intr_handler(adap); |
| |
| spin_unlock(&q0->lock); |
| return IRQ_RETVAL(work_done != 0); |
| } |
| |
| /* |
| * Interrupt handler for legacy INTx interrupts for T3B-based cards. |
| * Handles data events from SGE response queues as well as error and other |
| * async events as they all use the same interrupt pin. We use one SGE |
| * response queue per port in this mode and protect all response queues with |
| * queue 0's lock. |
| */ |
| static irqreturn_t t3b_intr(int irq, void *cookie) |
| { |
| u32 map; |
| struct adapter *adap = cookie; |
| struct sge_rspq *q0 = &adap->sge.qs[0].rspq; |
| |
| t3_write_reg(adap, A_PL_CLI, 0); |
| map = t3_read_reg(adap, A_SG_DATA_INTR); |
| |
| if (unlikely(!map)) /* shared interrupt, most likely */ |
| return IRQ_NONE; |
| |
| spin_lock(&q0->lock); |
| |
| if (unlikely(map & F_ERRINTR)) |
| t3_slow_intr_handler(adap); |
| |
| if (likely(map & 1)) |
| process_responses_gts(adap, q0); |
| |
| if (map & 2) |
| process_responses_gts(adap, &adap->sge.qs[1].rspq); |
| |
| spin_unlock(&q0->lock); |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards. |
| * Handles data events from SGE response queues as well as error and other |
| * async events as they all use the same interrupt pin. We use one SGE |
| * response queue per port in this mode and protect all response queues with |
| * queue 0's lock. |
| */ |
| static irqreturn_t t3b_intr_napi(int irq, void *cookie) |
| { |
| u32 map; |
| struct adapter *adap = cookie; |
| struct sge_qset *qs0 = &adap->sge.qs[0]; |
| struct sge_rspq *q0 = &qs0->rspq; |
| |
| t3_write_reg(adap, A_PL_CLI, 0); |
| map = t3_read_reg(adap, A_SG_DATA_INTR); |
| |
| if (unlikely(!map)) /* shared interrupt, most likely */ |
| return IRQ_NONE; |
| |
| spin_lock(&q0->lock); |
| |
| if (unlikely(map & F_ERRINTR)) |
| t3_slow_intr_handler(adap); |
| |
| if (likely(map & 1)) |
| napi_schedule(&qs0->napi); |
| |
| if (map & 2) |
| napi_schedule(&adap->sge.qs[1].napi); |
| |
| spin_unlock(&q0->lock); |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * t3_intr_handler - select the top-level interrupt handler |
| * @adap: the adapter |
| * @polling: whether using NAPI to service response queues |
| * |
| * Selects the top-level interrupt handler based on the type of interrupts |
| * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the |
| * response queues. |
| */ |
| irq_handler_t t3_intr_handler(struct adapter *adap, int polling) |
| { |
| if (adap->flags & USING_MSIX) |
| return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix; |
| if (adap->flags & USING_MSI) |
| return polling ? t3_intr_msi_napi : t3_intr_msi; |
| if (adap->params.rev > 0) |
| return polling ? t3b_intr_napi : t3b_intr; |
| return t3_intr; |
| } |
| |
| #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \ |
| F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \ |
| V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \ |
| F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \ |
| F_HIRCQPARITYERROR) |
| #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR) |
| #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \ |
| F_RSPQDISABLED) |
| |
| /** |
| * t3_sge_err_intr_handler - SGE async event interrupt handler |
| * @adapter: the adapter |
| * |
| * Interrupt handler for SGE asynchronous (non-data) events. |
| */ |
| void t3_sge_err_intr_handler(struct adapter *adapter) |
| { |
| unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) & |
| ~F_FLEMPTY; |
| |
| if (status & SGE_PARERR) |
| CH_ALERT(adapter, "SGE parity error (0x%x)\n", |
| status & SGE_PARERR); |
| if (status & SGE_FRAMINGERR) |
| CH_ALERT(adapter, "SGE framing error (0x%x)\n", |
| status & SGE_FRAMINGERR); |
| |
| if (status & F_RSPQCREDITOVERFOW) |
| CH_ALERT(adapter, "SGE response queue credit overflow\n"); |
| |
| if (status & F_RSPQDISABLED) { |
| v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS); |
| |
| CH_ALERT(adapter, |
| "packet delivered to disabled response queue " |
| "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff); |
| } |
| |
| if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR)) |
| queue_work(cxgb3_wq, &adapter->db_drop_task); |
| |
| if (status & (F_HIPRIORITYDBFULL | F_LOPRIORITYDBFULL)) |
| queue_work(cxgb3_wq, &adapter->db_full_task); |
| |
| if (status & (F_HIPRIORITYDBEMPTY | F_LOPRIORITYDBEMPTY)) |
| queue_work(cxgb3_wq, &adapter->db_empty_task); |
| |
| t3_write_reg(adapter, A_SG_INT_CAUSE, status); |
| if (status & SGE_FATALERR) |
| t3_fatal_err(adapter); |
| } |
| |
| /** |
| * sge_timer_tx - perform periodic maintenance of an SGE qset |
| * @data: the SGE queue set to maintain |
| * |
| * Runs periodically from a timer to perform maintenance of an SGE queue |
| * set. It performs two tasks: |
| * |
| * Cleans up any completed Tx descriptors that may still be pending. |
| * Normal descriptor cleanup happens when new packets are added to a Tx |
| * queue so this timer is relatively infrequent and does any cleanup only |
| * if the Tx queue has not seen any new packets in a while. We make a |
| * best effort attempt to reclaim descriptors, in that we don't wait |
| * around if we cannot get a queue's lock (which most likely is because |
| * someone else is queueing new packets and so will also handle the clean |
| * up). Since control queues use immediate data exclusively we don't |
| * bother cleaning them up here. |
| * |
| */ |
| static void sge_timer_tx(unsigned long data) |
| { |
| struct sge_qset *qs = (struct sge_qset *)data; |
| struct port_info *pi = netdev_priv(qs->netdev); |
| struct adapter *adap = pi->adapter; |
| unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0}; |
| unsigned long next_period; |
| |
| if (__netif_tx_trylock(qs->tx_q)) { |
| tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH], |
| TX_RECLAIM_TIMER_CHUNK); |
| __netif_tx_unlock(qs->tx_q); |
| } |
| |
| if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) { |
| tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD], |
| TX_RECLAIM_TIMER_CHUNK); |
| spin_unlock(&qs->txq[TXQ_OFLD].lock); |
| } |
| |
| next_period = TX_RECLAIM_PERIOD >> |
| (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) / |
| TX_RECLAIM_TIMER_CHUNK); |
| mod_timer(&qs->tx_reclaim_timer, jiffies + next_period); |
| } |
| |
| /** |
| * sge_timer_rx - perform periodic maintenance of an SGE qset |
| * @data: the SGE queue set to maintain |
| * |
| * a) Replenishes Rx queues that have run out due to memory shortage. |
| * Normally new Rx buffers are added when existing ones are consumed but |
| * when out of memory a queue can become empty. We try to add only a few |
| * buffers here, the queue will be replenished fully as these new buffers |
| * are used up if memory shortage has subsided. |
| * |
| * b) Return coalesced response queue credits in case a response queue is |
| * starved. |
| * |
| */ |
| static void sge_timer_rx(unsigned long data) |
| { |
| spinlock_t *lock; |
| struct sge_qset *qs = (struct sge_qset *)data; |
| struct port_info *pi = netdev_priv(qs->netdev); |
| struct adapter *adap = pi->adapter; |
| u32 status; |
| |
| lock = adap->params.rev > 0 ? |
| &qs->rspq.lock : &adap->sge.qs[0].rspq.lock; |
| |
| if (!spin_trylock_irq(lock)) |
| goto out; |
| |
| if (napi_is_scheduled(&qs->napi)) |
| goto unlock; |
| |
| if (adap->params.rev < 4) { |
| status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS); |
| |
| if (status & (1 << qs->rspq.cntxt_id)) { |
| qs->rspq.starved++; |
| if (qs->rspq.credits) { |
| qs->rspq.credits--; |
| refill_rspq(adap, &qs->rspq, 1); |
| qs->rspq.restarted++; |
| t3_write_reg(adap, A_SG_RSPQ_FL_STATUS, |
| 1 << qs->rspq.cntxt_id); |
| } |
| } |
| } |
| |
| if (qs->fl[0].credits < qs->fl[0].size) |
| __refill_fl(adap, &qs->fl[0]); |
| if (qs->fl[1].credits < qs->fl[1].size) |
| __refill_fl(adap, &qs->fl[1]); |
| |
| unlock: |
| spin_unlock_irq(lock); |
| out: |
| mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD); |
| } |
| |
| /** |
| * t3_update_qset_coalesce - update coalescing settings for a queue set |
| * @qs: the SGE queue set |
| * @p: new queue set parameters |
| * |
| * Update the coalescing settings for an SGE queue set. Nothing is done |
| * if the queue set is not initialized yet. |
| */ |
| void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p) |
| { |
| qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */ |
| qs->rspq.polling = p->polling; |
| qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll; |
| } |
| |
| /** |
| * t3_sge_alloc_qset - initialize an SGE queue set |
| * @adapter: the adapter |
| * @id: the queue set id |
| * @nports: how many Ethernet ports will be using this queue set |
| * @irq_vec_idx: the IRQ vector index for response queue interrupts |
| * @p: configuration parameters for this queue set |
| * @ntxq: number of Tx queues for the queue set |
| * @netdev: net device associated with this queue set |
| * @netdevq: net device TX queue associated with this queue set |
| * |
| * Allocate resources and initialize an SGE queue set. A queue set |
| * comprises a response queue, two Rx free-buffer queues, and up to 3 |
| * Tx queues. The Tx queues are assigned roles in the order Ethernet |
| * queue, offload queue, and control queue. |
| */ |
| int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports, |
| int irq_vec_idx, const struct qset_params *p, |
| int ntxq, struct net_device *dev, |
| struct netdev_queue *netdevq) |
| { |
| int i, avail, ret = -ENOMEM; |
| struct sge_qset *q = &adapter->sge.qs[id]; |
| |
| init_qset_cntxt(q, id); |
| setup_timer(&q->tx_reclaim_timer, sge_timer_tx, (unsigned long)q); |
| setup_timer(&q->rx_reclaim_timer, sge_timer_rx, (unsigned long)q); |
| |
| q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size, |
| sizeof(struct rx_desc), |
| sizeof(struct rx_sw_desc), |
| &q->fl[0].phys_addr, &q->fl[0].sdesc); |
| if (!q->fl[0].desc) |
| goto err; |
| |
| q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size, |
| sizeof(struct rx_desc), |
| sizeof(struct rx_sw_desc), |
| &q->fl[1].phys_addr, &q->fl[1].sdesc); |
| if (!q->fl[1].desc) |
| goto err; |
| |
| q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size, |
| sizeof(struct rsp_desc), 0, |
| &q->rspq.phys_addr, NULL); |
| if (!q->rspq.desc) |
| goto err; |
| |
| for (i = 0; i < ntxq; ++i) { |
| /* |
| * The control queue always uses immediate data so does not |
| * need to keep track of any sk_buffs. |
| */ |
| size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc); |
| |
| q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i], |
| sizeof(struct tx_desc), sz, |
| &q->txq[i].phys_addr, |
| &q->txq[i].sdesc); |
| if (!q->txq[i].desc) |
| goto err; |
| |
| q->txq[i].gen = 1; |
| q->txq[i].size = p->txq_size[i]; |
| spin_lock_init(&q->txq[i].lock); |
| skb_queue_head_init(&q->txq[i].sendq); |
| } |
| |
| tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq, |
| (unsigned long)q); |
| tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq, |
| (unsigned long)q); |
| |
| q->fl[0].gen = q->fl[1].gen = 1; |
| q->fl[0].size = p->fl_size; |
| q->fl[1].size = p->jumbo_size; |
| |
| q->rspq.gen = 1; |
| q->rspq.size = p->rspq_size; |
| spin_lock_init(&q->rspq.lock); |
| skb_queue_head_init(&q->rspq.rx_queue); |
| |
| q->txq[TXQ_ETH].stop_thres = nports * |
| flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3); |
| |
| #if FL0_PG_CHUNK_SIZE > 0 |
| q->fl[0].buf_size = FL0_PG_CHUNK_SIZE; |
| #else |
| q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data); |
| #endif |
| #if FL1_PG_CHUNK_SIZE > 0 |
| q->fl[1].buf_size = FL1_PG_CHUNK_SIZE; |
| #else |
| q->fl[1].buf_size = is_offload(adapter) ? |
| (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : |
| MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt); |
| #endif |
| |
| q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0; |
| q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0; |
| q->fl[0].order = FL0_PG_ORDER; |
| q->fl[1].order = FL1_PG_ORDER; |
| q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE; |
| q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE; |
| |
| spin_lock_irq(&adapter->sge.reg_lock); |
| |
| /* FL threshold comparison uses < */ |
| ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx, |
| q->rspq.phys_addr, q->rspq.size, |
| q->fl[0].buf_size - SGE_PG_RSVD, 1, 0); |
| if (ret) |
| goto err_unlock; |
| |
| for (i = 0; i < SGE_RXQ_PER_SET; ++i) { |
| ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0, |
| q->fl[i].phys_addr, q->fl[i].size, |
| q->fl[i].buf_size - SGE_PG_RSVD, |
| p->cong_thres, 1, 0); |
| if (ret) |
| goto err_unlock; |
| } |
| |
| ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS, |
| SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr, |
| q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token, |
| 1, 0); |
| if (ret) |
| goto err_unlock; |
| |
| if (ntxq > 1) { |
| ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id, |
| USE_GTS, SGE_CNTXT_OFLD, id, |
| q->txq[TXQ_OFLD].phys_addr, |
| q->txq[TXQ_OFLD].size, 0, 1, 0); |
| if (ret) |
| goto err_unlock; |
| } |
| |
| if (ntxq > 2) { |
| ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0, |
| SGE_CNTXT_CTRL, id, |
| q->txq[TXQ_CTRL].phys_addr, |
| q->txq[TXQ_CTRL].size, |
| q->txq[TXQ_CTRL].token, 1, 0); |
| if (ret) |
| goto err_unlock; |
| } |
| |
| spin_unlock_irq(&adapter->sge.reg_lock); |
| |
| q->adap = adapter; |
| q->netdev = dev; |
| q->tx_q = netdevq; |
| t3_update_qset_coalesce(q, p); |
| |
| avail = refill_fl(adapter, &q->fl[0], q->fl[0].size, |
| GFP_KERNEL | __GFP_COMP); |
| if (!avail) { |
| CH_ALERT(adapter, "free list queue 0 initialization failed\n"); |
| goto err; |
| } |
| if (avail < q->fl[0].size) |
| CH_WARN(adapter, "free list queue 0 enabled with %d credits\n", |
| avail); |
| |
| avail = refill_fl(adapter, &q->fl[1], q->fl[1].size, |
| GFP_KERNEL | __GFP_COMP); |
| if (avail < q->fl[1].size) |
| CH_WARN(adapter, "free list queue 1 enabled with %d credits\n", |
| avail); |
| refill_rspq(adapter, &q->rspq, q->rspq.size - 1); |
| |
| t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) | |
| V_NEWTIMER(q->rspq.holdoff_tmr)); |
| |
| return 0; |
| |
| err_unlock: |
| spin_unlock_irq(&adapter->sge.reg_lock); |
| err: |
| t3_free_qset(adapter, q); |
| return ret; |
| } |
| |
| /** |
| * t3_start_sge_timers - start SGE timer call backs |
| * @adap: the adapter |
| * |
| * Starts each SGE queue set's timer call back |
| */ |
| void t3_start_sge_timers(struct adapter *adap) |
| { |
| int i; |
| |
| for (i = 0; i < SGE_QSETS; ++i) { |
| struct sge_qset *q = &adap->sge.qs[i]; |
| |
| if (q->tx_reclaim_timer.function) |
| mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD); |
| |
| if (q->rx_reclaim_timer.function) |
| mod_timer(&q->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD); |
| } |
| } |
| |
| /** |
| * t3_stop_sge_timers - stop SGE timer call backs |
| * @adap: the adapter |
| * |
| * Stops each SGE queue set's timer call back |
| */ |
| void t3_stop_sge_timers(struct adapter *adap) |
| { |
| int i; |
| |
| for (i = 0; i < SGE_QSETS; ++i) { |
| struct sge_qset *q = &adap->sge.qs[i]; |
| |
| if (q->tx_reclaim_timer.function) |
| del_timer_sync(&q->tx_reclaim_timer); |
| if (q->rx_reclaim_timer.function) |
| del_timer_sync(&q->rx_reclaim_timer); |
| } |
| } |
| |
| /** |
| * t3_free_sge_resources - free SGE resources |
| * @adap: the adapter |
| * |
| * Frees resources used by the SGE queue sets. |
| */ |
| void t3_free_sge_resources(struct adapter *adap) |
| { |
| int i; |
| |
| for (i = 0; i < SGE_QSETS; ++i) |
| t3_free_qset(adap, &adap->sge.qs[i]); |
| } |
| |
| /** |
| * t3_sge_start - enable SGE |
| * @adap: the adapter |
| * |
| * Enables the SGE for DMAs. This is the last step in starting packet |
| * transfers. |
| */ |
| void t3_sge_start(struct adapter *adap) |
| { |
| t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE); |
| } |
| |
| /** |
| * t3_sge_stop - disable SGE operation |
| * @adap: the adapter |
| * |
| * Disables the DMA engine. This can be called in emeregencies (e.g., |
| * from error interrupts) or from normal process context. In the latter |
| * case it also disables any pending queue restart tasklets. Note that |
| * if it is called in interrupt context it cannot disable the restart |
| * tasklets as it cannot wait, however the tasklets will have no effect |
| * since the doorbells are disabled and the driver will call this again |
| * later from process context, at which time the tasklets will be stopped |
| * if they are still running. |
| */ |
| void t3_sge_stop(struct adapter *adap) |
| { |
| t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0); |
| if (!in_interrupt()) { |
| int i; |
| |
| for (i = 0; i < SGE_QSETS; ++i) { |
| struct sge_qset *qs = &adap->sge.qs[i]; |
| |
| tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk); |
| tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk); |
| } |
| } |
| } |
| |
| /** |
| * t3_sge_init - initialize SGE |
| * @adap: the adapter |
| * @p: the SGE parameters |
| * |
| * Performs SGE initialization needed every time after a chip reset. |
| * We do not initialize any of the queue sets here, instead the driver |
| * top-level must request those individually. We also do not enable DMA |
| * here, that should be done after the queues have been set up. |
| */ |
| void t3_sge_init(struct adapter *adap, struct sge_params *p) |
| { |
| unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12); |
| |
| ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL | |
| F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN | |
| V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS | |
| V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING; |
| #if SGE_NUM_GENBITS == 1 |
| ctrl |= F_EGRGENCTRL; |
| #endif |
| if (adap->params.rev > 0) { |
| if (!(adap->flags & (USING_MSIX | USING_MSI))) |
| ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ; |
| } |
| t3_write_reg(adap, A_SG_CONTROL, ctrl); |
| t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) | |
| V_LORCQDRBTHRSH(512)); |
| t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10); |
| t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) | |
| V_TIMEOUT(200 * core_ticks_per_usec(adap))); |
| t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH, |
| adap->params.rev < T3_REV_C ? 1000 : 500); |
| t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256); |
| t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000); |
| t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256); |
| t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff)); |
| t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024); |
| } |
| |
| /** |
| * t3_sge_prep - one-time SGE initialization |
| * @adap: the associated adapter |
| * @p: SGE parameters |
| * |
| * Performs one-time initialization of SGE SW state. Includes determining |
| * defaults for the assorted SGE parameters, which admins can change until |
| * they are used to initialize the SGE. |
| */ |
| void t3_sge_prep(struct adapter *adap, struct sge_params *p) |
| { |
| int i; |
| |
| p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) - |
| SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); |
| |
| for (i = 0; i < SGE_QSETS; ++i) { |
| struct qset_params *q = p->qset + i; |
| |
| q->polling = adap->params.rev > 0; |
| q->coalesce_usecs = 5; |
| q->rspq_size = 1024; |
| q->fl_size = 1024; |
| q->jumbo_size = 512; |
| q->txq_size[TXQ_ETH] = 1024; |
| q->txq_size[TXQ_OFLD] = 1024; |
| q->txq_size[TXQ_CTRL] = 256; |
| q->cong_thres = 0; |
| } |
| |
| spin_lock_init(&adap->sge.reg_lock); |
| } |