| /* |
| * linux/arch/ia64/kernel/irq.c |
| * |
| * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar |
| * |
| * This file contains the code used by various IRQ handling routines: |
| * asking for different IRQs should be done through these routines |
| * instead of just grabbing them. Thus setups with different IRQ numbers |
| * shouldn't result in any weird surprises, and installing new handlers |
| * should be easier. |
| * |
| * Copyright (C) Ashok Raj<ashok.raj@intel.com>, Intel Corporation 2004 |
| * |
| * 4/14/2004: Added code to handle cpu migration and do safe irq |
| * migration without losing interrupts for iosapic |
| * architecture. |
| */ |
| |
| #include <asm/delay.h> |
| #include <asm/uaccess.h> |
| #include <linux/module.h> |
| #include <linux/seq_file.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel_stat.h> |
| |
| #include <asm/mca.h> |
| |
| /* |
| * 'what should we do if we get a hw irq event on an illegal vector'. |
| * each architecture has to answer this themselves. |
| */ |
| void ack_bad_irq(unsigned int irq) |
| { |
| printk(KERN_ERR "Unexpected irq vector 0x%x on CPU %u!\n", irq, smp_processor_id()); |
| } |
| |
| #ifdef CONFIG_IA64_GENERIC |
| ia64_vector __ia64_irq_to_vector(int irq) |
| { |
| return irq_cfg[irq].vector; |
| } |
| |
| unsigned int __ia64_local_vector_to_irq (ia64_vector vec) |
| { |
| return __this_cpu_read(vector_irq[vec]); |
| } |
| #endif |
| |
| /* |
| * Interrupt statistics: |
| */ |
| |
| atomic_t irq_err_count; |
| |
| /* |
| * /proc/interrupts printing: |
| */ |
| int arch_show_interrupts(struct seq_file *p, int prec) |
| { |
| seq_printf(p, "ERR: %10u\n", atomic_read(&irq_err_count)); |
| return 0; |
| } |
| |
| #ifdef CONFIG_SMP |
| static char irq_redir [NR_IRQS]; // = { [0 ... NR_IRQS-1] = 1 }; |
| |
| void set_irq_affinity_info (unsigned int irq, int hwid, int redir) |
| { |
| if (irq < NR_IRQS) { |
| cpumask_copy(irq_get_affinity_mask(irq), |
| cpumask_of(cpu_logical_id(hwid))); |
| irq_redir[irq] = (char) (redir & 0xff); |
| } |
| } |
| |
| bool is_affinity_mask_valid(const struct cpumask *cpumask) |
| { |
| if (ia64_platform_is("sn2")) { |
| /* Only allow one CPU to be specified in the smp_affinity mask */ |
| if (cpumask_weight(cpumask) != 1) |
| return false; |
| } |
| return true; |
| } |
| |
| #endif /* CONFIG_SMP */ |
| |
| int __init arch_early_irq_init(void) |
| { |
| ia64_mca_irq_init(); |
| return 0; |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| unsigned int vectors_in_migration[NR_IRQS]; |
| |
| /* |
| * Since cpu_online_mask is already updated, we just need to check for |
| * affinity that has zeros |
| */ |
| static void migrate_irqs(void) |
| { |
| int irq, new_cpu; |
| |
| for (irq=0; irq < NR_IRQS; irq++) { |
| struct irq_desc *desc = irq_to_desc(irq); |
| struct irq_data *data = irq_desc_get_irq_data(desc); |
| struct irq_chip *chip = irq_data_get_irq_chip(data); |
| |
| if (irqd_irq_disabled(data)) |
| continue; |
| |
| /* |
| * No handling for now. |
| * TBD: Implement a disable function so we can now |
| * tell CPU not to respond to these local intr sources. |
| * such as ITV,CPEI,MCA etc. |
| */ |
| if (irqd_is_per_cpu(data)) |
| continue; |
| |
| if (cpumask_any_and(irq_data_get_affinity_mask(data), |
| cpu_online_mask) >= nr_cpu_ids) { |
| /* |
| * Save it for phase 2 processing |
| */ |
| vectors_in_migration[irq] = irq; |
| |
| new_cpu = cpumask_any(cpu_online_mask); |
| |
| /* |
| * Al three are essential, currently WARN_ON.. maybe panic? |
| */ |
| if (chip && chip->irq_disable && |
| chip->irq_enable && chip->irq_set_affinity) { |
| chip->irq_disable(data); |
| chip->irq_set_affinity(data, |
| cpumask_of(new_cpu), false); |
| chip->irq_enable(data); |
| } else { |
| WARN_ON((!chip || !chip->irq_disable || |
| !chip->irq_enable || |
| !chip->irq_set_affinity)); |
| } |
| } |
| } |
| } |
| |
| void fixup_irqs(void) |
| { |
| unsigned int irq; |
| extern void ia64_process_pending_intr(void); |
| extern volatile int time_keeper_id; |
| |
| /* Mask ITV to disable timer */ |
| ia64_set_itv(1 << 16); |
| |
| /* |
| * Find a new timesync master |
| */ |
| if (smp_processor_id() == time_keeper_id) { |
| time_keeper_id = cpumask_first(cpu_online_mask); |
| printk ("CPU %d is now promoted to time-keeper master\n", time_keeper_id); |
| } |
| |
| /* |
| * Phase 1: Locate IRQs bound to this cpu and |
| * relocate them for cpu removal. |
| */ |
| migrate_irqs(); |
| |
| /* |
| * Phase 2: Perform interrupt processing for all entries reported in |
| * local APIC. |
| */ |
| ia64_process_pending_intr(); |
| |
| /* |
| * Phase 3: Now handle any interrupts not captured in local APIC. |
| * This is to account for cases that device interrupted during the time the |
| * rte was being disabled and re-programmed. |
| */ |
| for (irq=0; irq < NR_IRQS; irq++) { |
| if (vectors_in_migration[irq]) { |
| struct pt_regs *old_regs = set_irq_regs(NULL); |
| |
| vectors_in_migration[irq]=0; |
| generic_handle_irq(irq); |
| set_irq_regs(old_regs); |
| } |
| } |
| |
| /* |
| * Now let processor die. We do irq disable and max_xtp() to |
| * ensure there is no more interrupts routed to this processor. |
| * But the local timer interrupt can have 1 pending which we |
| * take care in timer_interrupt(). |
| */ |
| max_xtp(); |
| local_irq_disable(); |
| } |
| #endif |