blob: 7da7fcb05640b4fdd74597c2dd5cbc2fd5db51d6 [file] [log] [blame]
/*
* gmidi.c -- USB MIDI Gadget Driver
*
* Copyright (C) 2006 Thumtronics Pty Ltd.
* Developed for Thumtronics by Grey Innovation
* Ben Williamson <ben.williamson@greyinnovation.com>
*
* This software is distributed under the terms of the GNU General Public
* License ("GPL") version 2, as published by the Free Software Foundation.
*
* This code is based in part on:
*
* Gadget Zero driver, Copyright (C) 2003-2004 David Brownell.
* USB Audio driver, Copyright (C) 2002 by Takashi Iwai.
* USB MIDI driver, Copyright (C) 2002-2005 Clemens Ladisch.
*
* Refer to the USB Device Class Definition for MIDI Devices:
* http://www.usb.org/developers/devclass_docs/midi10.pdf
*/
/* #define VERBOSE_DEBUG */
#include <linux/kernel.h>
#include <linux/utsname.h>
#include <linux/device.h>
#include <sound/core.h>
#include <sound/initval.h>
#include <sound/rawmidi.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <linux/usb/audio.h>
#include <linux/usb/midi.h>
#include "gadget_chips.h"
MODULE_AUTHOR("Ben Williamson");
MODULE_LICENSE("GPL v2");
#define DRIVER_VERSION "25 Jul 2006"
static const char shortname[] = "g_midi";
static const char longname[] = "MIDI Gadget";
static int index = SNDRV_DEFAULT_IDX1;
static char *id = SNDRV_DEFAULT_STR1;
module_param(index, int, 0444);
MODULE_PARM_DESC(index, "Index value for the USB MIDI Gadget adapter.");
module_param(id, charp, 0444);
MODULE_PARM_DESC(id, "ID string for the USB MIDI Gadget adapter.");
/* Some systems will want different product identifers published in the
* device descriptor, either numbers or strings or both. These string
* parameters are in UTF-8 (superset of ASCII's 7 bit characters).
*/
static ushort idVendor;
module_param(idVendor, ushort, S_IRUGO);
MODULE_PARM_DESC(idVendor, "USB Vendor ID");
static ushort idProduct;
module_param(idProduct, ushort, S_IRUGO);
MODULE_PARM_DESC(idProduct, "USB Product ID");
static ushort bcdDevice;
module_param(bcdDevice, ushort, S_IRUGO);
MODULE_PARM_DESC(bcdDevice, "USB Device version (BCD)");
static char *iManufacturer;
module_param(iManufacturer, charp, S_IRUGO);
MODULE_PARM_DESC(iManufacturer, "USB Manufacturer string");
static char *iProduct;
module_param(iProduct, charp, S_IRUGO);
MODULE_PARM_DESC(iProduct, "USB Product string");
static char *iSerialNumber;
module_param(iSerialNumber, charp, S_IRUGO);
MODULE_PARM_DESC(iSerialNumber, "SerialNumber");
/*
* this version autoconfigures as much as possible,
* which is reasonable for most "bulk-only" drivers.
*/
static const char *EP_IN_NAME;
static const char *EP_OUT_NAME;
/* big enough to hold our biggest descriptor */
#define USB_BUFSIZ 256
/* This is a gadget, and the IN/OUT naming is from the host's perspective.
USB -> OUT endpoint -> rawmidi
USB <- IN endpoint <- rawmidi */
struct gmidi_in_port {
struct gmidi_device* dev;
int active;
uint8_t cable; /* cable number << 4 */
uint8_t state;
#define STATE_UNKNOWN 0
#define STATE_1PARAM 1
#define STATE_2PARAM_1 2
#define STATE_2PARAM_2 3
#define STATE_SYSEX_0 4
#define STATE_SYSEX_1 5
#define STATE_SYSEX_2 6
uint8_t data[2];
};
struct gmidi_device {
spinlock_t lock;
struct usb_gadget *gadget;
struct usb_request *req; /* for control responses */
u8 config;
struct usb_ep *in_ep, *out_ep;
struct snd_card *card;
struct snd_rawmidi *rmidi;
struct snd_rawmidi_substream *in_substream;
struct snd_rawmidi_substream *out_substream;
/* For the moment we only support one port in
each direction, but in_port is kept as a
separate struct so we can have more later. */
struct gmidi_in_port in_port;
unsigned long out_triggered;
struct tasklet_struct tasklet;
};
static void gmidi_transmit(struct gmidi_device* dev, struct usb_request* req);
#define DBG(d, fmt, args...) \
dev_dbg(&(d)->gadget->dev , fmt , ## args)
#define VDBG(d, fmt, args...) \
dev_vdbg(&(d)->gadget->dev , fmt , ## args)
#define ERROR(d, fmt, args...) \
dev_err(&(d)->gadget->dev , fmt , ## args)
#define WARN(d, fmt, args...) \
dev_warn(&(d)->gadget->dev , fmt , ## args)
#define INFO(d, fmt, args...) \
dev_info(&(d)->gadget->dev , fmt , ## args)
static unsigned buflen = 256;
static unsigned qlen = 32;
module_param(buflen, uint, S_IRUGO);
module_param(qlen, uint, S_IRUGO);
/* Thanks to Grey Innovation for donating this product ID.
*
* DO NOT REUSE THESE IDs with a protocol-incompatible driver!! Ever!!
* Instead: allocate your own, using normal USB-IF procedures.
*/
#define DRIVER_VENDOR_NUM 0x17b3 /* Grey Innovation */
#define DRIVER_PRODUCT_NUM 0x0004 /* Linux-USB "MIDI Gadget" */
/*
* DESCRIPTORS ... most are static, but strings and (full)
* configuration descriptors are built on demand.
*/
#define STRING_MANUFACTURER 25
#define STRING_PRODUCT 42
#define STRING_SERIAL 101
#define STRING_MIDI_GADGET 250
/* We only have the one configuration, it's number 1. */
#define GMIDI_CONFIG 1
/* We have two interfaces- AudioControl and MIDIStreaming */
#define GMIDI_AC_INTERFACE 0
#define GMIDI_MS_INTERFACE 1
#define GMIDI_NUM_INTERFACES 2
DECLARE_USB_AC_HEADER_DESCRIPTOR(1);
DECLARE_USB_MIDI_OUT_JACK_DESCRIPTOR(1);
DECLARE_USB_MS_ENDPOINT_DESCRIPTOR(1);
/* B.1 Device Descriptor */
static struct usb_device_descriptor device_desc = {
.bLength = USB_DT_DEVICE_SIZE,
.bDescriptorType = USB_DT_DEVICE,
.bcdUSB = __constant_cpu_to_le16(0x0200),
.bDeviceClass = USB_CLASS_PER_INTERFACE,
.idVendor = __constant_cpu_to_le16(DRIVER_VENDOR_NUM),
.idProduct = __constant_cpu_to_le16(DRIVER_PRODUCT_NUM),
.iManufacturer = STRING_MANUFACTURER,
.iProduct = STRING_PRODUCT,
.bNumConfigurations = 1,
};
/* B.2 Configuration Descriptor */
static struct usb_config_descriptor config_desc = {
.bLength = USB_DT_CONFIG_SIZE,
.bDescriptorType = USB_DT_CONFIG,
/* compute wTotalLength on the fly */
.bNumInterfaces = GMIDI_NUM_INTERFACES,
.bConfigurationValue = GMIDI_CONFIG,
.iConfiguration = STRING_MIDI_GADGET,
/*
* FIXME: When embedding this driver in a device,
* these need to be set to reflect the actual
* power properties of the device. Is it selfpowered?
*/
.bmAttributes = USB_CONFIG_ATT_ONE,
.bMaxPower = 1,
};
/* B.3.1 Standard AC Interface Descriptor */
static const struct usb_interface_descriptor ac_interface_desc = {
.bLength = USB_DT_INTERFACE_SIZE,
.bDescriptorType = USB_DT_INTERFACE,
.bInterfaceNumber = GMIDI_AC_INTERFACE,
.bNumEndpoints = 0,
.bInterfaceClass = USB_CLASS_AUDIO,
.bInterfaceSubClass = USB_SUBCLASS_AUDIOCONTROL,
.iInterface = STRING_MIDI_GADGET,
};
/* B.3.2 Class-Specific AC Interface Descriptor */
static const struct usb_ac_header_descriptor_1 ac_header_desc = {
.bLength = USB_DT_AC_HEADER_SIZE(1),
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubtype = USB_MS_HEADER,
.bcdADC = __constant_cpu_to_le16(0x0100),
.wTotalLength = USB_DT_AC_HEADER_SIZE(1),
.bInCollection = 1,
.baInterfaceNr = {
[0] = GMIDI_MS_INTERFACE,
}
};
/* B.4.1 Standard MS Interface Descriptor */
static const struct usb_interface_descriptor ms_interface_desc = {
.bLength = USB_DT_INTERFACE_SIZE,
.bDescriptorType = USB_DT_INTERFACE,
.bInterfaceNumber = GMIDI_MS_INTERFACE,
.bNumEndpoints = 2,
.bInterfaceClass = USB_CLASS_AUDIO,
.bInterfaceSubClass = USB_SUBCLASS_MIDISTREAMING,
.iInterface = STRING_MIDI_GADGET,
};
/* B.4.2 Class-Specific MS Interface Descriptor */
static const struct usb_ms_header_descriptor ms_header_desc = {
.bLength = USB_DT_MS_HEADER_SIZE,
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubtype = USB_MS_HEADER,
.bcdMSC = __constant_cpu_to_le16(0x0100),
.wTotalLength = USB_DT_MS_HEADER_SIZE
+ 2*USB_DT_MIDI_IN_SIZE
+ 2*USB_DT_MIDI_OUT_SIZE(1),
};
#define JACK_IN_EMB 1
#define JACK_IN_EXT 2
#define JACK_OUT_EMB 3
#define JACK_OUT_EXT 4
/* B.4.3 MIDI IN Jack Descriptors */
static const struct usb_midi_in_jack_descriptor jack_in_emb_desc = {
.bLength = USB_DT_MIDI_IN_SIZE,
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubtype = USB_MS_MIDI_IN_JACK,
.bJackType = USB_MS_EMBEDDED,
.bJackID = JACK_IN_EMB,
};
static const struct usb_midi_in_jack_descriptor jack_in_ext_desc = {
.bLength = USB_DT_MIDI_IN_SIZE,
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubtype = USB_MS_MIDI_IN_JACK,
.bJackType = USB_MS_EXTERNAL,
.bJackID = JACK_IN_EXT,
};
/* B.4.4 MIDI OUT Jack Descriptors */
static const struct usb_midi_out_jack_descriptor_1 jack_out_emb_desc = {
.bLength = USB_DT_MIDI_OUT_SIZE(1),
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubtype = USB_MS_MIDI_OUT_JACK,
.bJackType = USB_MS_EMBEDDED,
.bJackID = JACK_OUT_EMB,
.bNrInputPins = 1,
.pins = {
[0] = {
.baSourceID = JACK_IN_EXT,
.baSourcePin = 1,
}
}
};
static const struct usb_midi_out_jack_descriptor_1 jack_out_ext_desc = {
.bLength = USB_DT_MIDI_OUT_SIZE(1),
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubtype = USB_MS_MIDI_OUT_JACK,
.bJackType = USB_MS_EXTERNAL,
.bJackID = JACK_OUT_EXT,
.bNrInputPins = 1,
.pins = {
[0] = {
.baSourceID = JACK_IN_EMB,
.baSourcePin = 1,
}
}
};
/* B.5.1 Standard Bulk OUT Endpoint Descriptor */
static struct usb_endpoint_descriptor bulk_out_desc = {
.bLength = USB_DT_ENDPOINT_AUDIO_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_OUT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
};
/* B.5.2 Class-specific MS Bulk OUT Endpoint Descriptor */
static const struct usb_ms_endpoint_descriptor_1 ms_out_desc = {
.bLength = USB_DT_MS_ENDPOINT_SIZE(1),
.bDescriptorType = USB_DT_CS_ENDPOINT,
.bDescriptorSubtype = USB_MS_GENERAL,
.bNumEmbMIDIJack = 1,
.baAssocJackID = {
[0] = JACK_IN_EMB,
}
};
/* B.6.1 Standard Bulk IN Endpoint Descriptor */
static struct usb_endpoint_descriptor bulk_in_desc = {
.bLength = USB_DT_ENDPOINT_AUDIO_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
};
/* B.6.2 Class-specific MS Bulk IN Endpoint Descriptor */
static const struct usb_ms_endpoint_descriptor_1 ms_in_desc = {
.bLength = USB_DT_MS_ENDPOINT_SIZE(1),
.bDescriptorType = USB_DT_CS_ENDPOINT,
.bDescriptorSubtype = USB_MS_GENERAL,
.bNumEmbMIDIJack = 1,
.baAssocJackID = {
[0] = JACK_OUT_EMB,
}
};
static const struct usb_descriptor_header *gmidi_function [] = {
(struct usb_descriptor_header *)&ac_interface_desc,
(struct usb_descriptor_header *)&ac_header_desc,
(struct usb_descriptor_header *)&ms_interface_desc,
(struct usb_descriptor_header *)&ms_header_desc,
(struct usb_descriptor_header *)&jack_in_emb_desc,
(struct usb_descriptor_header *)&jack_in_ext_desc,
(struct usb_descriptor_header *)&jack_out_emb_desc,
(struct usb_descriptor_header *)&jack_out_ext_desc,
/* If you add more jacks, update ms_header_desc.wTotalLength */
(struct usb_descriptor_header *)&bulk_out_desc,
(struct usb_descriptor_header *)&ms_out_desc,
(struct usb_descriptor_header *)&bulk_in_desc,
(struct usb_descriptor_header *)&ms_in_desc,
NULL,
};
static char manufacturer[50];
static char product_desc[40] = "MIDI Gadget";
static char serial_number[20];
/* static strings, in UTF-8 */
static struct usb_string strings [] = {
{ STRING_MANUFACTURER, manufacturer, },
{ STRING_PRODUCT, product_desc, },
{ STRING_SERIAL, serial_number, },
{ STRING_MIDI_GADGET, longname, },
{ } /* end of list */
};
static struct usb_gadget_strings stringtab = {
.language = 0x0409, /* en-us */
.strings = strings,
};
static int config_buf(struct usb_gadget *gadget,
u8 *buf, u8 type, unsigned index)
{
int len;
/* only one configuration */
if (index != 0) {
return -EINVAL;
}
len = usb_gadget_config_buf(&config_desc,
buf, USB_BUFSIZ, gmidi_function);
if (len < 0) {
return len;
}
((struct usb_config_descriptor *)buf)->bDescriptorType = type;
return len;
}
static struct usb_request *alloc_ep_req(struct usb_ep *ep, unsigned length)
{
struct usb_request *req;
req = usb_ep_alloc_request(ep, GFP_ATOMIC);
if (req) {
req->length = length;
req->buf = kmalloc(length, GFP_ATOMIC);
if (!req->buf) {
usb_ep_free_request(ep, req);
req = NULL;
}
}
return req;
}
static void free_ep_req(struct usb_ep *ep, struct usb_request *req)
{
kfree(req->buf);
usb_ep_free_request(ep, req);
}
static const uint8_t gmidi_cin_length[] = {
0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1
};
/*
* Receives a chunk of MIDI data.
*/
static void gmidi_read_data(struct usb_ep *ep, int cable,
uint8_t *data, int length)
{
struct gmidi_device *dev = ep->driver_data;
/* cable is ignored, because for now we only have one. */
if (!dev->out_substream) {
/* Nobody is listening - throw it on the floor. */
return;
}
if (!test_bit(dev->out_substream->number, &dev->out_triggered)) {
return;
}
snd_rawmidi_receive(dev->out_substream, data, length);
}
static void gmidi_handle_out_data(struct usb_ep *ep, struct usb_request *req)
{
unsigned i;
u8 *buf = req->buf;
for (i = 0; i + 3 < req->actual; i += 4) {
if (buf[i] != 0) {
int cable = buf[i] >> 4;
int length = gmidi_cin_length[buf[i] & 0x0f];
gmidi_read_data(ep, cable, &buf[i + 1], length);
}
}
}
static void gmidi_complete(struct usb_ep *ep, struct usb_request *req)
{
struct gmidi_device *dev = ep->driver_data;
int status = req->status;
switch (status) {
case 0: /* normal completion */
if (ep == dev->out_ep) {
/* we received stuff.
req is queued again, below */
gmidi_handle_out_data(ep, req);
} else if (ep == dev->in_ep) {
/* our transmit completed.
see if there's more to go.
gmidi_transmit eats req, don't queue it again. */
gmidi_transmit(dev, req);
return;
}
break;
/* this endpoint is normally active while we're configured */
case -ECONNABORTED: /* hardware forced ep reset */
case -ECONNRESET: /* request dequeued */
case -ESHUTDOWN: /* disconnect from host */
VDBG(dev, "%s gone (%d), %d/%d\n", ep->name, status,
req->actual, req->length);
if (ep == dev->out_ep) {
gmidi_handle_out_data(ep, req);
}
free_ep_req(ep, req);
return;
case -EOVERFLOW: /* buffer overrun on read means that
* we didn't provide a big enough
* buffer.
*/
default:
DBG(dev, "%s complete --> %d, %d/%d\n", ep->name,
status, req->actual, req->length);
break;
case -EREMOTEIO: /* short read */
break;
}
status = usb_ep_queue(ep, req, GFP_ATOMIC);
if (status) {
ERROR(dev, "kill %s: resubmit %d bytes --> %d\n",
ep->name, req->length, status);
usb_ep_set_halt(ep);
/* FIXME recover later ... somehow */
}
}
static int set_gmidi_config(struct gmidi_device *dev, gfp_t gfp_flags)
{
int err = 0;
struct usb_request *req;
struct usb_ep *ep;
unsigned i;
err = usb_ep_enable(dev->in_ep, &bulk_in_desc);
if (err) {
ERROR(dev, "can't start %s: %d\n", dev->in_ep->name, err);
goto fail;
}
dev->in_ep->driver_data = dev;
err = usb_ep_enable(dev->out_ep, &bulk_out_desc);
if (err) {
ERROR(dev, "can't start %s: %d\n", dev->out_ep->name, err);
goto fail;
}
dev->out_ep->driver_data = dev;
/* allocate a bunch of read buffers and queue them all at once. */
ep = dev->out_ep;
for (i = 0; i < qlen && err == 0; i++) {
req = alloc_ep_req(ep, buflen);
if (req) {
req->complete = gmidi_complete;
err = usb_ep_queue(ep, req, GFP_ATOMIC);
if (err) {
DBG(dev, "%s queue req: %d\n", ep->name, err);
}
} else {
err = -ENOMEM;
}
}
fail:
/* caller is responsible for cleanup on error */
return err;
}
static void gmidi_reset_config(struct gmidi_device *dev)
{
if (dev->config == 0) {
return;
}
DBG(dev, "reset config\n");
/* just disable endpoints, forcing completion of pending i/o.
* all our completion handlers free their requests in this case.
*/
usb_ep_disable(dev->in_ep);
usb_ep_disable(dev->out_ep);
dev->config = 0;
}
/* change our operational config. this code must agree with the code
* that returns config descriptors, and altsetting code.
*
* it's also responsible for power management interactions. some
* configurations might not work with our current power sources.
*
* note that some device controller hardware will constrain what this
* code can do, perhaps by disallowing more than one configuration or
* by limiting configuration choices (like the pxa2xx).
*/
static int
gmidi_set_config(struct gmidi_device *dev, unsigned number, gfp_t gfp_flags)
{
int result = 0;
struct usb_gadget *gadget = dev->gadget;
#if 0
/* FIXME */
/* Hacking this bit out fixes a bug where on receipt of two
USB_REQ_SET_CONFIGURATION messages, we end up with no
buffered OUT requests waiting for data. This is clearly
hiding a bug elsewhere, because if the config didn't
change then we really shouldn't do anything. */
/* Having said that, when we do "change" from config 1
to config 1, we at least gmidi_reset_config() which
clears out any requests on endpoints, so it's not like
we leak or anything. */
if (number == dev->config) {
return 0;
}
#endif
if (gadget_is_sa1100(gadget) && dev->config) {
/* tx fifo is full, but we can't clear it...*/
ERROR(dev, "can't change configurations\n");
return -ESPIPE;
}
gmidi_reset_config(dev);
switch (number) {
case GMIDI_CONFIG:
result = set_gmidi_config(dev, gfp_flags);
break;
default:
result = -EINVAL;
/* FALL THROUGH */
case 0:
return result;
}
if (!result && (!dev->in_ep || !dev->out_ep)) {
result = -ENODEV;
}
if (result) {
gmidi_reset_config(dev);
} else {
char *speed;
switch (gadget->speed) {
case USB_SPEED_LOW: speed = "low"; break;
case USB_SPEED_FULL: speed = "full"; break;
case USB_SPEED_HIGH: speed = "high"; break;
default: speed = "?"; break;
}
dev->config = number;
INFO(dev, "%s speed\n", speed);
}
return result;
}
static void gmidi_setup_complete(struct usb_ep *ep, struct usb_request *req)
{
if (req->status || req->actual != req->length) {
DBG((struct gmidi_device *) ep->driver_data,
"setup complete --> %d, %d/%d\n",
req->status, req->actual, req->length);
}
}
/*
* The setup() callback implements all the ep0 functionality that's
* not handled lower down, in hardware or the hardware driver (like
* device and endpoint feature flags, and their status). It's all
* housekeeping for the gadget function we're implementing. Most of
* the work is in config-specific setup.
*/
static int gmidi_setup(struct usb_gadget *gadget,
const struct usb_ctrlrequest *ctrl)
{
struct gmidi_device *dev = get_gadget_data(gadget);
struct usb_request *req = dev->req;
int value = -EOPNOTSUPP;
u16 w_index = le16_to_cpu(ctrl->wIndex);
u16 w_value = le16_to_cpu(ctrl->wValue);
u16 w_length = le16_to_cpu(ctrl->wLength);
/* usually this stores reply data in the pre-allocated ep0 buffer,
* but config change events will reconfigure hardware.
*/
req->zero = 0;
switch (ctrl->bRequest) {
case USB_REQ_GET_DESCRIPTOR:
if (ctrl->bRequestType != USB_DIR_IN) {
goto unknown;
}
switch (w_value >> 8) {
case USB_DT_DEVICE:
value = min(w_length, (u16) sizeof(device_desc));
memcpy(req->buf, &device_desc, value);
break;
case USB_DT_CONFIG:
value = config_buf(gadget, req->buf,
w_value >> 8,
w_value & 0xff);
if (value >= 0) {
value = min(w_length, (u16)value);
}
break;
case USB_DT_STRING:
/* wIndex == language code.
* this driver only handles one language, you can
* add string tables for other languages, using
* any UTF-8 characters
*/
value = usb_gadget_get_string(&stringtab,
w_value & 0xff, req->buf);
if (value >= 0) {
value = min(w_length, (u16)value);
}
break;
}
break;
/* currently two configs, two speeds */
case USB_REQ_SET_CONFIGURATION:
if (ctrl->bRequestType != 0) {
goto unknown;
}
if (gadget->a_hnp_support) {
DBG(dev, "HNP available\n");
} else if (gadget->a_alt_hnp_support) {
DBG(dev, "HNP needs a different root port\n");
} else {
VDBG(dev, "HNP inactive\n");
}
spin_lock(&dev->lock);
value = gmidi_set_config(dev, w_value, GFP_ATOMIC);
spin_unlock(&dev->lock);
break;
case USB_REQ_GET_CONFIGURATION:
if (ctrl->bRequestType != USB_DIR_IN) {
goto unknown;
}
*(u8 *)req->buf = dev->config;
value = min(w_length, (u16)1);
break;
/* until we add altsetting support, or other interfaces,
* only 0/0 are possible. pxa2xx only supports 0/0 (poorly)
* and already killed pending endpoint I/O.
*/
case USB_REQ_SET_INTERFACE:
if (ctrl->bRequestType != USB_RECIP_INTERFACE) {
goto unknown;
}
spin_lock(&dev->lock);
if (dev->config && w_index < GMIDI_NUM_INTERFACES
&& w_value == 0)
{
u8 config = dev->config;
/* resets interface configuration, forgets about
* previous transaction state (queued bufs, etc)
* and re-inits endpoint state (toggle etc)
* no response queued, just zero status == success.
* if we had more than one interface we couldn't
* use this "reset the config" shortcut.
*/
gmidi_reset_config(dev);
gmidi_set_config(dev, config, GFP_ATOMIC);
value = 0;
}
spin_unlock(&dev->lock);
break;
case USB_REQ_GET_INTERFACE:
if (ctrl->bRequestType != (USB_DIR_IN|USB_RECIP_INTERFACE)) {
goto unknown;
}
if (!dev->config) {
break;
}
if (w_index >= GMIDI_NUM_INTERFACES) {
value = -EDOM;
break;
}
*(u8 *)req->buf = 0;
value = min(w_length, (u16)1);
break;
default:
unknown:
VDBG(dev, "unknown control req%02x.%02x v%04x i%04x l%d\n",
ctrl->bRequestType, ctrl->bRequest,
w_value, w_index, w_length);
}
/* respond with data transfer before status phase? */
if (value >= 0) {
req->length = value;
req->zero = value < w_length;
value = usb_ep_queue(gadget->ep0, req, GFP_ATOMIC);
if (value < 0) {
DBG(dev, "ep_queue --> %d\n", value);
req->status = 0;
gmidi_setup_complete(gadget->ep0, req);
}
}
/* device either stalls (value < 0) or reports success */
return value;
}
static void gmidi_disconnect(struct usb_gadget *gadget)
{
struct gmidi_device *dev = get_gadget_data(gadget);
unsigned long flags;
spin_lock_irqsave(&dev->lock, flags);
gmidi_reset_config(dev);
/* a more significant application might have some non-usb
* activities to quiesce here, saving resources like power
* or pushing the notification up a network stack.
*/
spin_unlock_irqrestore(&dev->lock, flags);
/* next we may get setup() calls to enumerate new connections;
* or an unbind() during shutdown (including removing module).
*/
}
static void /* __init_or_exit */ gmidi_unbind(struct usb_gadget *gadget)
{
struct gmidi_device *dev = get_gadget_data(gadget);
struct snd_card *card;
DBG(dev, "unbind\n");
card = dev->card;
dev->card = NULL;
if (card) {
snd_card_free(card);
}
/* we've already been disconnected ... no i/o is active */
if (dev->req) {
dev->req->length = USB_BUFSIZ;
free_ep_req(gadget->ep0, dev->req);
}
kfree(dev);
set_gadget_data(gadget, NULL);
}
static int gmidi_snd_free(struct snd_device *device)
{
return 0;
}
static void gmidi_transmit_packet(struct usb_request *req, uint8_t p0,
uint8_t p1, uint8_t p2, uint8_t p3)
{
unsigned length = req->length;
u8 *buf = (u8 *)req->buf + length;
buf[0] = p0;
buf[1] = p1;
buf[2] = p2;
buf[3] = p3;
req->length = length + 4;
}
/*
* Converts MIDI commands to USB MIDI packets.
*/
static void gmidi_transmit_byte(struct usb_request *req,
struct gmidi_in_port *port, uint8_t b)
{
uint8_t p0 = port->cable;
if (b >= 0xf8) {
gmidi_transmit_packet(req, p0 | 0x0f, b, 0, 0);
} else if (b >= 0xf0) {
switch (b) {
case 0xf0:
port->data[0] = b;
port->state = STATE_SYSEX_1;
break;
case 0xf1:
case 0xf3:
port->data[0] = b;
port->state = STATE_1PARAM;
break;
case 0xf2:
port->data[0] = b;
port->state = STATE_2PARAM_1;
break;
case 0xf4:
case 0xf5:
port->state = STATE_UNKNOWN;
break;
case 0xf6:
gmidi_transmit_packet(req, p0 | 0x05, 0xf6, 0, 0);
port->state = STATE_UNKNOWN;
break;
case 0xf7:
switch (port->state) {
case STATE_SYSEX_0:
gmidi_transmit_packet(req,
p0 | 0x05, 0xf7, 0, 0);
break;
case STATE_SYSEX_1:
gmidi_transmit_packet(req,
p0 | 0x06, port->data[0], 0xf7, 0);
break;
case STATE_SYSEX_2:
gmidi_transmit_packet(req,
p0 | 0x07, port->data[0],
port->data[1], 0xf7);
break;
}
port->state = STATE_UNKNOWN;
break;
}
} else if (b >= 0x80) {
port->data[0] = b;
if (b >= 0xc0 && b <= 0xdf)
port->state = STATE_1PARAM;
else
port->state = STATE_2PARAM_1;
} else { /* b < 0x80 */
switch (port->state) {
case STATE_1PARAM:
if (port->data[0] < 0xf0) {
p0 |= port->data[0] >> 4;
} else {
p0 |= 0x02;
port->state = STATE_UNKNOWN;
}
gmidi_transmit_packet(req, p0, port->data[0], b, 0);
break;
case STATE_2PARAM_1:
port->data[1] = b;
port->state = STATE_2PARAM_2;
break;
case STATE_2PARAM_2:
if (port->data[0] < 0xf0) {
p0 |= port->data[0] >> 4;
port->state = STATE_2PARAM_1;
} else {
p0 |= 0x03;
port->state = STATE_UNKNOWN;
}
gmidi_transmit_packet(req,
p0, port->data[0], port->data[1], b);
break;
case STATE_SYSEX_0:
port->data[0] = b;
port->state = STATE_SYSEX_1;
break;
case STATE_SYSEX_1:
port->data[1] = b;
port->state = STATE_SYSEX_2;
break;
case STATE_SYSEX_2:
gmidi_transmit_packet(req,
p0 | 0x04, port->data[0], port->data[1], b);
port->state = STATE_SYSEX_0;
break;
}
}
}
static void gmidi_transmit(struct gmidi_device *dev, struct usb_request *req)
{
struct usb_ep *ep = dev->in_ep;
struct gmidi_in_port *port = &dev->in_port;
if (!ep) {
return;
}
if (!req) {
req = alloc_ep_req(ep, buflen);
}
if (!req) {
ERROR(dev, "gmidi_transmit: alloc_ep_request failed\n");
return;
}
req->length = 0;
req->complete = gmidi_complete;
if (port->active) {
while (req->length + 3 < buflen) {
uint8_t b;
if (snd_rawmidi_transmit(dev->in_substream, &b, 1)
!= 1)
{
port->active = 0;
break;
}
gmidi_transmit_byte(req, port, b);
}
}
if (req->length > 0) {
usb_ep_queue(ep, req, GFP_ATOMIC);
} else {
free_ep_req(ep, req);
}
}
static void gmidi_in_tasklet(unsigned long data)
{
struct gmidi_device *dev = (struct gmidi_device *)data;
gmidi_transmit(dev, NULL);
}
static int gmidi_in_open(struct snd_rawmidi_substream *substream)
{
struct gmidi_device *dev = substream->rmidi->private_data;
VDBG(dev, "gmidi_in_open\n");
dev->in_substream = substream;
dev->in_port.state = STATE_UNKNOWN;
return 0;
}
static int gmidi_in_close(struct snd_rawmidi_substream *substream)
{
struct gmidi_device *dev = substream->rmidi->private_data;
VDBG(dev, "gmidi_in_close\n");
return 0;
}
static void gmidi_in_trigger(struct snd_rawmidi_substream *substream, int up)
{
struct gmidi_device *dev = substream->rmidi->private_data;
VDBG(dev, "gmidi_in_trigger %d\n", up);
dev->in_port.active = up;
if (up) {
tasklet_hi_schedule(&dev->tasklet);
}
}
static int gmidi_out_open(struct snd_rawmidi_substream *substream)
{
struct gmidi_device *dev = substream->rmidi->private_data;
VDBG(dev, "gmidi_out_open\n");
dev->out_substream = substream;
return 0;
}
static int gmidi_out_close(struct snd_rawmidi_substream *substream)
{
struct gmidi_device *dev = substream->rmidi->private_data;
VDBG(dev, "gmidi_out_close\n");
return 0;
}
static void gmidi_out_trigger(struct snd_rawmidi_substream *substream, int up)
{
struct gmidi_device *dev = substream->rmidi->private_data;
VDBG(dev, "gmidi_out_trigger %d\n", up);
if (up) {
set_bit(substream->number, &dev->out_triggered);
} else {
clear_bit(substream->number, &dev->out_triggered);
}
}
static struct snd_rawmidi_ops gmidi_in_ops = {
.open = gmidi_in_open,
.close = gmidi_in_close,
.trigger = gmidi_in_trigger,
};
static struct snd_rawmidi_ops gmidi_out_ops = {
.open = gmidi_out_open,
.close = gmidi_out_close,
.trigger = gmidi_out_trigger
};
/* register as a sound "card" */
static int gmidi_register_card(struct gmidi_device *dev)
{
struct snd_card *card;
struct snd_rawmidi *rmidi;
int err;
int out_ports = 1;
int in_ports = 1;
static struct snd_device_ops ops = {
.dev_free = gmidi_snd_free,
};
card = snd_card_new(index, id, THIS_MODULE, 0);
if (!card) {
ERROR(dev, "snd_card_new failed\n");
err = -ENOMEM;
goto fail;
}
dev->card = card;
err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, dev, &ops);
if (err < 0) {
ERROR(dev, "snd_device_new failed: error %d\n", err);
goto fail;
}
strcpy(card->driver, longname);
strcpy(card->longname, longname);
strcpy(card->shortname, shortname);
/* Set up rawmidi */
dev->in_port.dev = dev;
dev->in_port.active = 0;
snd_component_add(card, "MIDI");
err = snd_rawmidi_new(card, "USB MIDI Gadget", 0,
out_ports, in_ports, &rmidi);
if (err < 0) {
ERROR(dev, "snd_rawmidi_new failed: error %d\n", err);
goto fail;
}
dev->rmidi = rmidi;
strcpy(rmidi->name, card->shortname);
rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
SNDRV_RAWMIDI_INFO_INPUT |
SNDRV_RAWMIDI_INFO_DUPLEX;
rmidi->private_data = dev;
/* Yes, rawmidi OUTPUT = USB IN, and rawmidi INPUT = USB OUT.
It's an upside-down world being a gadget. */
snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &gmidi_in_ops);
snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &gmidi_out_ops);
snd_card_set_dev(card, &dev->gadget->dev);
/* register it - we're ready to go */
err = snd_card_register(card);
if (err < 0) {
ERROR(dev, "snd_card_register failed\n");
goto fail;
}
VDBG(dev, "gmidi_register_card finished ok\n");
return 0;
fail:
if (dev->card) {
snd_card_free(dev->card);
dev->card = NULL;
}
return err;
}
/*
* Creates an output endpoint, and initializes output ports.
*/
static int __devinit gmidi_bind(struct usb_gadget *gadget)
{
struct gmidi_device *dev;
struct usb_ep *in_ep, *out_ep;
int gcnum, err = 0;
/* support optional vendor/distro customization */
if (idVendor) {
if (!idProduct) {
printk(KERN_ERR "idVendor needs idProduct!\n");
return -ENODEV;
}
device_desc.idVendor = cpu_to_le16(idVendor);
device_desc.idProduct = cpu_to_le16(idProduct);
if (bcdDevice) {
device_desc.bcdDevice = cpu_to_le16(bcdDevice);
}
}
if (iManufacturer) {
strlcpy(manufacturer, iManufacturer, sizeof(manufacturer));
} else {
snprintf(manufacturer, sizeof(manufacturer), "%s %s with %s",
init_utsname()->sysname, init_utsname()->release,
gadget->name);
}
if (iProduct) {
strlcpy(product_desc, iProduct, sizeof(product_desc));
}
if (iSerialNumber) {
device_desc.iSerialNumber = STRING_SERIAL,
strlcpy(serial_number, iSerialNumber, sizeof(serial_number));
}
/* Bulk-only drivers like this one SHOULD be able to
* autoconfigure on any sane usb controller driver,
* but there may also be important quirks to address.
*/
usb_ep_autoconfig_reset(gadget);
in_ep = usb_ep_autoconfig(gadget, &bulk_in_desc);
if (!in_ep) {
autoconf_fail:
printk(KERN_ERR "%s: can't autoconfigure on %s\n",
shortname, gadget->name);
return -ENODEV;
}
EP_IN_NAME = in_ep->name;
in_ep->driver_data = in_ep; /* claim */
out_ep = usb_ep_autoconfig(gadget, &bulk_out_desc);
if (!out_ep) {
goto autoconf_fail;
}
EP_OUT_NAME = out_ep->name;
out_ep->driver_data = out_ep; /* claim */
gcnum = usb_gadget_controller_number(gadget);
if (gcnum >= 0) {
device_desc.bcdDevice = cpu_to_le16(0x0200 + gcnum);
} else {
/* gmidi is so simple (no altsettings) that
* it SHOULD NOT have problems with bulk-capable hardware.
* so warn about unrecognized controllers, don't panic.
*/
printk(KERN_WARNING "%s: controller '%s' not recognized\n",
shortname, gadget->name);
device_desc.bcdDevice = __constant_cpu_to_le16(0x9999);
}
/* ok, we made sense of the hardware ... */
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev) {
return -ENOMEM;
}
spin_lock_init(&dev->lock);
dev->gadget = gadget;
dev->in_ep = in_ep;
dev->out_ep = out_ep;
set_gadget_data(gadget, dev);
tasklet_init(&dev->tasklet, gmidi_in_tasklet, (unsigned long)dev);
/* preallocate control response and buffer */
dev->req = alloc_ep_req(gadget->ep0, USB_BUFSIZ);
if (!dev->req) {
err = -ENOMEM;
goto fail;
}
dev->req->complete = gmidi_setup_complete;
device_desc.bMaxPacketSize0 = gadget->ep0->maxpacket;
gadget->ep0->driver_data = dev;
INFO(dev, "%s, version: " DRIVER_VERSION "\n", longname);
INFO(dev, "using %s, OUT %s IN %s\n", gadget->name,
EP_OUT_NAME, EP_IN_NAME);
/* register as an ALSA sound card */
err = gmidi_register_card(dev);
if (err < 0) {
goto fail;
}
VDBG(dev, "gmidi_bind finished ok\n");
return 0;
fail:
gmidi_unbind(gadget);
return err;
}
static void gmidi_suspend(struct usb_gadget *gadget)
{
struct gmidi_device *dev = get_gadget_data(gadget);
if (gadget->speed == USB_SPEED_UNKNOWN) {
return;
}
DBG(dev, "suspend\n");
}
static void gmidi_resume(struct usb_gadget *gadget)
{
struct gmidi_device *dev = get_gadget_data(gadget);
DBG(dev, "resume\n");
}
static struct usb_gadget_driver gmidi_driver = {
.speed = USB_SPEED_FULL,
.function = (char *)longname,
.bind = gmidi_bind,
.unbind = gmidi_unbind,
.setup = gmidi_setup,
.disconnect = gmidi_disconnect,
.suspend = gmidi_suspend,
.resume = gmidi_resume,
.driver = {
.name = (char *)shortname,
.owner = THIS_MODULE,
},
};
static int __init gmidi_init(void)
{
return usb_gadget_register_driver(&gmidi_driver);
}
module_init(gmidi_init);
static void __exit gmidi_cleanup(void)
{
usb_gadget_unregister_driver(&gmidi_driver);
}
module_exit(gmidi_cleanup);