| /* |
| * Compressed RAM block device |
| * |
| * Copyright (C) 2008, 2009, 2010 Nitin Gupta |
| * 2012, 2013 Minchan Kim |
| * |
| * This code is released using a dual license strategy: BSD/GPL |
| * You can choose the licence that better fits your requirements. |
| * |
| * Released under the terms of 3-clause BSD License |
| * Released under the terms of GNU General Public License Version 2.0 |
| * |
| */ |
| |
| #define KMSG_COMPONENT "zram" |
| #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/bio.h> |
| #include <linux/bitops.h> |
| #include <linux/blkdev.h> |
| #include <linux/buffer_head.h> |
| #include <linux/device.h> |
| #include <linux/genhd.h> |
| #include <linux/highmem.h> |
| #include <linux/slab.h> |
| #include <linux/backing-dev.h> |
| #include <linux/string.h> |
| #include <linux/vmalloc.h> |
| #include <linux/err.h> |
| #include <linux/idr.h> |
| #include <linux/sysfs.h> |
| #include <linux/debugfs.h> |
| #include <linux/kthread.h> |
| #include <linux/freezer.h> |
| #include <linux/jiffies.h> |
| #include <linux/vmstat.h> |
| #include <linux/statfs.h> |
| #include <uapi/linux/sched.h> |
| |
| #include "zram_drv.h" |
| #include "../loop.h" |
| |
| /* Total bytes used by the compressed storage */ |
| static u64 zram_pool_total_size; |
| |
| static DEFINE_IDR(zram_index_idr); |
| /* idr index must be protected */ |
| static DEFINE_MUTEX(zram_index_mutex); |
| |
| static int zram_major; |
| #if IS_ENABLED(CONFIG_CRYPTO_ZSTD) |
| static const char *default_compressor = "zstd"; |
| #elif IS_ENABLED(CONFIG_CRYPTO_LZ4) |
| static const char *default_compressor = "lz4"; |
| #else |
| static const char *default_compressor = "lzo"; |
| #endif |
| |
| /* Module params (documentation at end) */ |
| static unsigned int num_devices = 1; |
| /* |
| * Pages that compress to sizes equals or greater than this are stored |
| * uncompressed in memory. |
| */ |
| static size_t huge_class_size; |
| |
| static void zram_free_page(struct zram *zram, size_t index); |
| static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, |
| u32 index, int offset, struct bio *bio); |
| |
| |
| static int zram_slot_trylock(struct zram *zram, u32 index) |
| { |
| return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags); |
| } |
| |
| static void zram_slot_lock(struct zram *zram, u32 index) |
| { |
| bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags); |
| } |
| |
| static void zram_slot_unlock(struct zram *zram, u32 index) |
| { |
| bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags); |
| } |
| |
| static inline bool init_done(struct zram *zram) |
| { |
| return zram->disksize; |
| } |
| |
| static inline struct zram *dev_to_zram(struct device *dev) |
| { |
| return (struct zram *)dev_to_disk(dev)->private_data; |
| } |
| |
| static unsigned long zram_get_handle(struct zram *zram, u32 index) |
| { |
| return zram->table[index].handle; |
| } |
| |
| static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle) |
| { |
| zram->table[index].handle = handle; |
| } |
| |
| /* flag operations require table entry bit_spin_lock() being held */ |
| static bool zram_test_flag(struct zram *zram, u32 index, |
| enum zram_pageflags flag) |
| { |
| return zram->table[index].flags & BIT(flag); |
| } |
| |
| static void zram_set_flag(struct zram *zram, u32 index, |
| enum zram_pageflags flag) |
| { |
| zram->table[index].flags |= BIT(flag); |
| } |
| |
| static void zram_clear_flag(struct zram *zram, u32 index, |
| enum zram_pageflags flag) |
| { |
| zram->table[index].flags &= ~BIT(flag); |
| } |
| |
| static inline void zram_set_element(struct zram *zram, u32 index, |
| unsigned long element) |
| { |
| zram->table[index].element = element; |
| } |
| |
| static unsigned long zram_get_element(struct zram *zram, u32 index) |
| { |
| return zram->table[index].element; |
| } |
| |
| static size_t zram_get_obj_size(struct zram *zram, u32 index) |
| { |
| return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1); |
| } |
| |
| static void zram_set_obj_size(struct zram *zram, |
| u32 index, size_t size) |
| { |
| unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT; |
| |
| zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size; |
| } |
| |
| static inline bool zram_allocated(struct zram *zram, u32 index) |
| { |
| return zram_get_obj_size(zram, index) || |
| zram_test_flag(zram, index, ZRAM_SAME) || |
| zram_test_flag(zram, index, ZRAM_WB); |
| } |
| |
| #if PAGE_SIZE != 4096 |
| static inline bool is_partial_io(struct bio_vec *bvec) |
| { |
| return bvec->bv_len != PAGE_SIZE; |
| } |
| #else |
| static inline bool is_partial_io(struct bio_vec *bvec) |
| { |
| return false; |
| } |
| #endif |
| |
| /* |
| * Check if request is within bounds and aligned on zram logical blocks. |
| */ |
| static inline bool valid_io_request(struct zram *zram, |
| sector_t start, unsigned int size) |
| { |
| u64 end, bound; |
| |
| /* unaligned request */ |
| if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1))) |
| return false; |
| if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1))) |
| return false; |
| |
| end = start + (size >> SECTOR_SHIFT); |
| bound = zram->disksize >> SECTOR_SHIFT; |
| /* out of range range */ |
| if (unlikely(start >= bound || end > bound || start > end)) |
| return false; |
| |
| /* I/O request is valid */ |
| return true; |
| } |
| |
| static void update_position(u32 *index, int *offset, struct bio_vec *bvec) |
| { |
| *index += (*offset + bvec->bv_len) / PAGE_SIZE; |
| *offset = (*offset + bvec->bv_len) % PAGE_SIZE; |
| } |
| |
| static inline void update_used_max(struct zram *zram, |
| const unsigned long pages) |
| { |
| unsigned long old_max, cur_max; |
| |
| old_max = atomic_long_read(&zram->stats.max_used_pages); |
| |
| do { |
| cur_max = old_max; |
| if (pages > cur_max) |
| old_max = atomic_long_cmpxchg( |
| &zram->stats.max_used_pages, cur_max, pages); |
| } while (old_max != cur_max); |
| } |
| |
| static inline void zram_fill_page(char *ptr, unsigned long len, |
| unsigned long value) |
| { |
| int i; |
| unsigned long *page = (unsigned long *)ptr; |
| |
| WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long))); |
| |
| if (likely(value == 0)) { |
| memset(ptr, 0, len); |
| } else { |
| for (i = 0; i < len / sizeof(*page); i++) |
| page[i] = value; |
| } |
| } |
| |
| static bool page_same_filled(void *ptr, unsigned long *element) |
| { |
| unsigned int pos; |
| unsigned long *page; |
| unsigned long val; |
| |
| page = (unsigned long *)ptr; |
| val = page[0]; |
| |
| for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) { |
| if (val != page[pos]) |
| return false; |
| } |
| |
| *element = val; |
| |
| return true; |
| } |
| |
| static ssize_t initstate_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| u32 val; |
| struct zram *zram = dev_to_zram(dev); |
| |
| down_read(&zram->init_lock); |
| val = init_done(zram); |
| up_read(&zram->init_lock); |
| |
| return scnprintf(buf, PAGE_SIZE, "%u\n", val); |
| } |
| |
| static ssize_t disksize_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct zram *zram = dev_to_zram(dev); |
| |
| return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize); |
| } |
| |
| static ssize_t mem_limit_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| u64 limit; |
| char *tmp; |
| struct zram *zram = dev_to_zram(dev); |
| |
| limit = memparse(buf, &tmp); |
| if (buf == tmp) /* no chars parsed, invalid input */ |
| return -EINVAL; |
| |
| down_write(&zram->init_lock); |
| zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT; |
| up_write(&zram->init_lock); |
| |
| return len; |
| } |
| |
| static ssize_t mem_used_max_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| int err; |
| unsigned long val; |
| struct zram *zram = dev_to_zram(dev); |
| |
| err = kstrtoul(buf, 10, &val); |
| if (err || val != 0) |
| return -EINVAL; |
| |
| down_read(&zram->init_lock); |
| if (init_done(zram)) { |
| atomic_long_set(&zram->stats.max_used_pages, |
| zs_get_total_pages(zram->mem_pool)); |
| } |
| up_read(&zram->init_lock); |
| |
| return len; |
| } |
| |
| static ssize_t idle_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| struct zram *zram = dev_to_zram(dev); |
| unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; |
| int index; |
| |
| if (!sysfs_streq(buf, "all")) |
| return -EINVAL; |
| |
| down_read(&zram->init_lock); |
| if (!init_done(zram)) { |
| up_read(&zram->init_lock); |
| return -EINVAL; |
| } |
| |
| for (index = 0; index < nr_pages; index++) { |
| /* |
| * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race. |
| * See the comment in writeback_store. |
| */ |
| zram_slot_lock(zram, index); |
| if (zram_allocated(zram, index) && |
| !zram_test_flag(zram, index, ZRAM_UNDER_WB)) |
| zram_set_flag(zram, index, ZRAM_IDLE); |
| zram_slot_unlock(zram, index); |
| } |
| |
| up_read(&zram->init_lock); |
| |
| return len; |
| } |
| |
| #ifdef CONFIG_ZRAM_WRITEBACK |
| #ifdef CONFIG_ZRAM_LRU_WRITEBACK |
| static int zram_wbd(void *); |
| static struct zram *g_zram; |
| static bool is_app_launch; |
| |
| static int init_lru_writeback(struct zram *zram) |
| { |
| struct sched_param param = { .sched_priority = 0 }; |
| int ret = 0; |
| int bitmap_sz; |
| |
| init_waitqueue_head(&zram->wbd_wait); |
| zram->wb_table = kzalloc(sizeof(u8) * zram->nr_pages, GFP_KERNEL); |
| if (!zram->wb_table) { |
| ret = -ENOMEM; |
| return ret; |
| } |
| |
| bitmap_sz = BITS_TO_LONGS(zram->nr_pages) * sizeof(long) / NR_ZWBS; |
| /* backing dev should be large enough for chunk writeback */ |
| if (!bitmap_sz) |
| return -EINVAL; |
| zram->chunk_bitmap = kzalloc(bitmap_sz, GFP_KERNEL); |
| if (!zram->chunk_bitmap) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| zram->wbd = kthread_run(zram_wbd, zram, "%s_wbd", zram->disk->disk_name); |
| if (IS_ERR(zram->wbd)) { |
| ret = PTR_ERR(zram->wbd); |
| goto out; |
| } |
| |
| g_zram = zram; |
| zram->wb_limit_enable = true; |
| sched_setscheduler(zram->wbd, SCHED_IDLE, ¶m); |
| |
| return ret; |
| out: |
| if (zram->chunk_bitmap) { |
| kvfree(zram->chunk_bitmap); |
| zram->chunk_bitmap = NULL; |
| } |
| kvfree(zram->wb_table); |
| zram->wb_table = NULL; |
| return ret; |
| } |
| |
| static void stop_lru_writeback(struct zram *zram) |
| { |
| if (!IS_ERR_OR_NULL(zram->wbd)) { |
| g_zram = NULL; |
| kthread_stop(zram->wbd); |
| zram->wbd = NULL; |
| } |
| } |
| |
| static void deinit_lru_writeback(struct zram *zram) |
| { |
| unsigned long flags; |
| |
| stop_lru_writeback(zram); |
| if (zram->chunk_bitmap) { |
| kvfree(zram->chunk_bitmap); |
| zram->chunk_bitmap = NULL; |
| } |
| spin_lock_irqsave(&zram->wb_table_lock, flags); |
| if (zram->wb_table) { |
| kvfree(zram->wb_table); |
| zram->wb_table = NULL; |
| } |
| spin_unlock_irqrestore(&zram->wb_table_lock, flags); |
| } |
| #endif |
| |
| static ssize_t writeback_limit_enable_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| struct zram *zram = dev_to_zram(dev); |
| u64 val; |
| ssize_t ret = -EINVAL; |
| |
| if (kstrtoull(buf, 10, &val)) |
| return ret; |
| |
| down_read(&zram->init_lock); |
| spin_lock(&zram->wb_limit_lock); |
| zram->wb_limit_enable = val; |
| spin_unlock(&zram->wb_limit_lock); |
| up_read(&zram->init_lock); |
| ret = len; |
| |
| return ret; |
| } |
| |
| static ssize_t writeback_limit_enable_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| bool val; |
| struct zram *zram = dev_to_zram(dev); |
| |
| down_read(&zram->init_lock); |
| spin_lock(&zram->wb_limit_lock); |
| val = zram->wb_limit_enable; |
| spin_unlock(&zram->wb_limit_lock); |
| up_read(&zram->init_lock); |
| |
| return scnprintf(buf, PAGE_SIZE, "%d\n", val); |
| } |
| |
| static ssize_t writeback_limit_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| struct zram *zram = dev_to_zram(dev); |
| u64 val; |
| ssize_t ret = -EINVAL; |
| |
| if (kstrtoull(buf, 10, &val)) |
| return ret; |
| |
| down_read(&zram->init_lock); |
| spin_lock(&zram->wb_limit_lock); |
| zram->bd_wb_limit = val; |
| spin_unlock(&zram->wb_limit_lock); |
| up_read(&zram->init_lock); |
| ret = len; |
| |
| return ret; |
| } |
| |
| static ssize_t writeback_limit_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| u64 val; |
| struct zram *zram = dev_to_zram(dev); |
| |
| down_read(&zram->init_lock); |
| spin_lock(&zram->wb_limit_lock); |
| val = zram->bd_wb_limit; |
| spin_unlock(&zram->wb_limit_lock); |
| up_read(&zram->init_lock); |
| |
| return scnprintf(buf, PAGE_SIZE, "%llu\n", val); |
| } |
| |
| static void reset_bdev(struct zram *zram) |
| { |
| struct block_device *bdev; |
| |
| if (!zram->backing_dev) |
| return; |
| |
| bdev = zram->bdev; |
| if (zram->old_block_size) |
| set_blocksize(bdev, zram->old_block_size); |
| blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); |
| /* hope filp_close flush all of IO */ |
| filp_close(zram->backing_dev, NULL); |
| zram->backing_dev = NULL; |
| zram->old_block_size = 0; |
| zram->bdev = NULL; |
| |
| kvfree(zram->bitmap); |
| zram->bitmap = NULL; |
| #ifdef CONFIG_ZRAM_LRU_WRITEBACK |
| deinit_lru_writeback(zram); |
| #endif |
| } |
| |
| static ssize_t backing_dev_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct zram *zram = dev_to_zram(dev); |
| struct file *file = zram->backing_dev; |
| char *p; |
| ssize_t ret; |
| |
| down_read(&zram->init_lock); |
| if (!zram->backing_dev) { |
| memcpy(buf, "none\n", 5); |
| up_read(&zram->init_lock); |
| return 5; |
| } |
| |
| p = file_path(file, buf, PAGE_SIZE - 1); |
| if (IS_ERR(p)) { |
| ret = PTR_ERR(p); |
| goto out; |
| } |
| |
| ret = strlen(p); |
| memmove(buf, p, ret); |
| buf[ret++] = '\n'; |
| out: |
| up_read(&zram->init_lock); |
| return ret; |
| } |
| |
| static ssize_t backing_dev_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| char *file_name; |
| size_t sz; |
| struct file *backing_dev = NULL; |
| struct inode *inode; |
| struct address_space *mapping; |
| unsigned int bitmap_sz, old_block_size = 0; |
| unsigned long nr_pages, *bitmap = NULL; |
| struct block_device *bdev = NULL; |
| int err; |
| struct zram *zram = dev_to_zram(dev); |
| gfp_t kmalloc_flags; |
| |
| file_name = kmalloc(PATH_MAX, GFP_KERNEL); |
| if (!file_name) |
| return -ENOMEM; |
| |
| down_write(&zram->init_lock); |
| if (init_done(zram)) { |
| pr_info("Can't setup backing device for initialized device\n"); |
| err = -EBUSY; |
| goto out; |
| } |
| |
| strlcpy(file_name, buf, PATH_MAX); |
| /* ignore trailing newline */ |
| sz = strlen(file_name); |
| if (sz > 0 && file_name[sz - 1] == '\n') |
| file_name[sz - 1] = 0x00; |
| |
| backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0); |
| if (IS_ERR(backing_dev)) { |
| err = PTR_ERR(backing_dev); |
| backing_dev = NULL; |
| goto out; |
| } |
| |
| mapping = backing_dev->f_mapping; |
| inode = mapping->host; |
| |
| /* Support only block device in this moment */ |
| if (!S_ISBLK(inode->i_mode)) { |
| err = -ENOTBLK; |
| goto out; |
| } |
| |
| bdev = bdgrab(I_BDEV(inode)); |
| err = blkdev_get(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram); |
| if (err < 0) { |
| bdev = NULL; |
| goto out; |
| } |
| |
| nr_pages = i_size_read(inode) >> PAGE_SHIFT; |
| bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long); |
| kmalloc_flags = GFP_KERNEL | __GFP_ZERO; |
| if (bitmap_sz > PAGE_SIZE) |
| kmalloc_flags |= __GFP_NOWARN | __GFP_NORETRY; |
| |
| bitmap = kmalloc_node(bitmap_sz, kmalloc_flags, NUMA_NO_NODE); |
| if (!bitmap && bitmap_sz > PAGE_SIZE) |
| bitmap = vzalloc(bitmap_sz); |
| |
| if (!bitmap) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| old_block_size = block_size(bdev); |
| err = set_blocksize(bdev, PAGE_SIZE); |
| if (err) |
| goto out; |
| |
| reset_bdev(zram); |
| |
| zram->old_block_size = old_block_size; |
| zram->bdev = bdev; |
| zram->backing_dev = backing_dev; |
| zram->bitmap = bitmap; |
| zram->nr_pages = nr_pages; |
| #ifdef CONFIG_ZRAM_LRU_WRITEBACK |
| err = init_lru_writeback(zram); |
| if (err) |
| goto init_lru_writeback_fail; |
| #endif |
| up_write(&zram->init_lock); |
| |
| pr_info("setup backing device %s\n", file_name); |
| kfree(file_name); |
| |
| return len; |
| #ifdef CONFIG_ZRAM_LRU_WRITEBACK |
| init_lru_writeback_fail: |
| zram->old_block_size = 0; |
| zram->bdev = NULL; |
| zram->backing_dev = NULL; |
| zram->bitmap = NULL; |
| zram->nr_pages = 0; |
| #endif |
| out: |
| if (bitmap) |
| kvfree(bitmap); |
| |
| if (bdev) |
| blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); |
| |
| if (backing_dev) |
| filp_close(backing_dev, NULL); |
| |
| up_write(&zram->init_lock); |
| |
| kfree(file_name); |
| |
| return err; |
| } |
| |
| #ifdef CONFIG_ZRAM_LRU_WRITEBACK |
| static unsigned long chunk_to_blk_idx(unsigned long idx) |
| { |
| return idx * NR_ZWBS; |
| } |
| static unsigned long blk_to_chunk_idx(unsigned long idx) |
| { |
| return idx / NR_ZWBS; |
| } |
| |
| static unsigned long alloc_chunk_bdev(struct zram *zram) |
| { |
| unsigned long chunk_idx = 1; |
| unsigned long max_idx = zram->nr_pages / NR_ZWBS; |
| unsigned long blk_idx; |
| unsigned long flags; |
| int i; |
| retry: |
| /* skip 0 bit to confuse zram.handle = 0 */ |
| chunk_idx = find_next_zero_bit(zram->chunk_bitmap, max_idx, chunk_idx); |
| if (chunk_idx == max_idx) |
| return 0; |
| |
| spin_lock_irqsave(&zram->bitmap_lock, flags); |
| if (test_and_set_bit(chunk_idx, zram->chunk_bitmap)) { |
| spin_unlock_irqrestore(&zram->bitmap_lock, flags); |
| goto retry; |
| } |
| blk_idx = chunk_to_blk_idx(chunk_idx); |
| for (i = 0; i < NR_ZWBS; i++) |
| BUG_ON(test_and_set_bit(blk_idx + i, zram->bitmap)); |
| spin_unlock_irqrestore(&zram->bitmap_lock, flags); |
| atomic64_add(NR_ZWBS, &zram->stats.bd_count); |
| return blk_idx; |
| } |
| |
| static unsigned long alloc_block_bdev(struct zram *zram) |
| { |
| unsigned long blk_idx = 1; |
| unsigned long flags; |
| retry: |
| /* skip 0 bit to confuse zram.handle = 0 */ |
| blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx); |
| if (blk_idx == zram->nr_pages) |
| return 0; |
| |
| spin_lock_irqsave(&zram->bitmap_lock, flags); |
| if (test_and_set_bit(blk_idx, zram->bitmap)) { |
| spin_unlock_irqrestore(&zram->bitmap_lock, flags); |
| goto retry; |
| } |
| set_bit(blk_to_chunk_idx(blk_idx), zram->chunk_bitmap); |
| spin_unlock_irqrestore(&zram->bitmap_lock, flags); |
| atomic64_inc(&zram->stats.bd_count); |
| return blk_idx; |
| } |
| |
| static unsigned long try_alloc_block_bdev(struct zram *zram, int *nr_pages) |
| { |
| unsigned long blk_idx; |
| |
| /* found free chunk, return blk_idx */ |
| if (*nr_pages == NR_ZWBS) { |
| blk_idx = alloc_chunk_bdev(zram); |
| if (blk_idx) |
| return blk_idx; |
| } |
| *nr_pages = 1; |
| return alloc_block_bdev(zram); |
| } |
| |
| static void free_chunk_bdev(struct zram *zram, unsigned long chunk_idx) |
| { |
| unsigned long blk_idx; |
| unsigned long flags; |
| int i; |
| |
| blk_idx = chunk_to_blk_idx(chunk_idx); |
| spin_lock_irqsave(&zram->bitmap_lock, flags); |
| for (i = 0; i < NR_ZWBS; i++) { |
| if (test_bit(blk_idx + i, zram->bitmap)) { |
| spin_unlock_irqrestore(&zram->bitmap_lock, flags); |
| return; |
| } |
| } |
| clear_bit(chunk_idx, zram->chunk_bitmap); |
| spin_unlock_irqrestore(&zram->bitmap_lock, flags); |
| } |
| |
| static void free_block_bdev(struct zram *zram, unsigned long blk_idx) |
| { |
| int was_set; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&zram->wb_table_lock, flags); |
| if (!zram->wb_table || zram->wb_table[blk_idx] == 0) |
| goto out; |
| zram->wb_table[blk_idx]--; |
| atomic64_dec(&zram->stats.bd_objcnt); |
| if (zram->wb_table[blk_idx] > 0) { |
| spin_unlock_irqrestore(&zram->wb_table_lock, flags); |
| return; |
| } |
| out: |
| spin_unlock_irqrestore(&zram->wb_table_lock, flags); |
| was_set = test_and_clear_bit(blk_idx, zram->bitmap); |
| WARN_ON_ONCE(!was_set); |
| atomic64_dec(&zram->stats.bd_count); |
| free_chunk_bdev(zram, blk_to_chunk_idx(blk_idx)); |
| } |
| #else |
| static unsigned long alloc_block_bdev(struct zram *zram) |
| { |
| unsigned long blk_idx = 1; |
| retry: |
| /* skip 0 bit to confuse zram.handle = 0 */ |
| blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx); |
| if (blk_idx == zram->nr_pages) |
| return 0; |
| |
| if (test_and_set_bit(blk_idx, zram->bitmap)) |
| goto retry; |
| |
| atomic64_inc(&zram->stats.bd_count); |
| return blk_idx; |
| } |
| |
| static void free_block_bdev(struct zram *zram, unsigned long blk_idx) |
| { |
| int was_set; |
| |
| was_set = test_and_clear_bit(blk_idx, zram->bitmap); |
| WARN_ON_ONCE(!was_set); |
| atomic64_dec(&zram->stats.bd_count); |
| } |
| #endif |
| |
| static void zram_page_end_io(struct bio *bio) |
| { |
| struct page *page = bio->bi_io_vec[0].bv_page; |
| |
| page_endio(page, bio_data_dir(bio), bio->bi_error); |
| bio_put(bio); |
| } |
| |
| /* |
| * Returns 1 if the submission is successful. |
| */ |
| static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec, |
| unsigned long entry, struct bio *parent) |
| { |
| struct bio *bio; |
| |
| bio = bio_alloc(GFP_ATOMIC, 1); |
| if (!bio) |
| return -ENOMEM; |
| |
| bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9); |
| bio->bi_bdev = zram->bdev; |
| if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) { |
| bio_put(bio); |
| return -EIO; |
| } |
| |
| if (!parent) { |
| bio->bi_rw = 0; |
| bio->bi_end_io = zram_page_end_io; |
| } else { |
| bio->bi_rw = parent->bi_rw; |
| bio_chain(bio, parent); |
| } |
| |
| submit_bio(READ, bio); |
| return 1; |
| } |
| |
| #ifdef CONFIG_ZRAM_LRU_WRITEBACK |
| static int zram_balance_threshold = 5; /* min swap-used threshold */ |
| static int zram_balance_ratio = 25; /* nand writeback ratio */ |
| module_param(zram_balance_threshold, int, 0644); |
| module_param(zram_balance_ratio, int, 0644); |
| |
| static bool is_bdev_avail(struct zram *zram) |
| { |
| struct loop_device *lo; |
| struct inode *inode; |
| struct dentry *root; |
| struct kstatfs statbuf; |
| u64 min_free_blocks; |
| int ret; |
| |
| if (!zram->bdev->bd_disk) |
| return false; |
| |
| lo = zram->bdev->bd_disk->private_data; |
| if (!lo || !lo->lo_backing_file) |
| return false; |
| |
| inode = lo->lo_backing_file->f_mapping->host; |
| root = inode->i_sb->s_root; |
| if (!root->d_sb->s_op->statfs) |
| return false; |
| |
| ret = root->d_sb->s_op->statfs(root, &statbuf); |
| if (ret) |
| return false; |
| /* |
| * To guarantee "reserved block(133MB on Q-os)" for system, |
| * SQZR is triggered only when devices have enough storage free space |
| * more than SZ_1G or reserved block * 2. |
| */ |
| min_free_blocks = max_t(u64, SZ_1G / statbuf.f_bsize, |
| (statbuf.f_bfree - statbuf.f_bavail) * 2); |
| if (statbuf.f_bavail < min_free_blocks) |
| return false; |
| |
| return true; |
| } |
| |
| static bool zram_wb_available(struct zram *zram) |
| { |
| if (!zram->wb_table) |
| return false; |
| spin_lock(&zram->wb_limit_lock); |
| if (zram->wb_limit_enable && !zram->bd_wb_limit) { |
| spin_unlock(&zram->wb_limit_lock); |
| return false; |
| } |
| spin_unlock(&zram->wb_limit_lock); |
| |
| return true; |
| } |
| |
| static u32 entry_to_index(struct zram *zram, struct zram_table_entry *entry) |
| { |
| return (u32)(((unsigned long)entry - (unsigned long)zram->table) / |
| sizeof(struct zram_table_entry)); |
| } |
| |
| #define SKIP 1 |
| #define ABORT 2 |
| static int zram_try_mark_page(struct zram *zram, u32 index) |
| { |
| /* invalid index */ |
| if (index >= (zram->disksize >> PAGE_SHIFT)) |
| return ABORT; |
| |
| if (!zram_slot_trylock(zram, index)) |
| return SKIP; |
| |
| if (!zram_allocated(zram, index)) { |
| zram_slot_unlock(zram, index); |
| return ABORT; |
| } else if (zram_test_flag(zram, index, ZRAM_UNDER_WB)) { |
| zram_slot_unlock(zram, index); |
| return SKIP; |
| } |
| zram_set_flag(zram, index, ZRAM_IDLE); |
| zram_slot_unlock(zram, index); |
| return 0; |
| } |
| |
| void free_zwbs(struct zwbs **zwbs) |
| { |
| int i; |
| |
| for (i = 0; i < NR_ZWBS; i++) { |
| if (!zwbs[i]) |
| return; |
| if (zwbs[i]->page) |
| __free_page(zwbs[i]->page); |
| kfree(zwbs[i]); |
| } |
| } |
| |
| int alloc_zwbs(struct zwbs **zwbs) |
| { |
| int i; |
| |
| for (i = 0; i < NR_ZWBS; i++) { |
| zwbs[i] = kzalloc(sizeof(struct zwbs), GFP_KERNEL); |
| if (!zwbs[i]) |
| goto out; |
| zwbs[i]->page = alloc_page(GFP_KERNEL); |
| if (!zwbs[i]->page) |
| goto out; |
| } |
| return 0; |
| out: |
| free_zwbs(zwbs); |
| return -ENOMEM; |
| } |
| |
| bool zram_is_app_launch(void) |
| { |
| return is_app_launch; |
| } |
| |
| #define ZRAM_WBD_INTERVAL 10 * HZ |
| static bool zram_should_writeback(struct zram *zram, |
| unsigned long pages, bool trigger) |
| { |
| unsigned long total = zram->disksize >> PAGE_SHIFT; |
| unsigned long stored = atomic64_read(&zram->stats.pages_stored); |
| unsigned long writtenback = atomic64_read(&zram->stats.bd_objcnt) - |
| atomic64_read(&zram->stats.bd_expire); |
| unsigned long min_stored = total * zram_balance_threshold / 100; |
| int writtenback_ratio = stored ? (writtenback * 100) / stored : 0; |
| int min_writtenback_ratio = zram_balance_ratio; |
| int margin = max_t(int, 1, zram_balance_ratio / 10); |
| int max_pages = CONFIG_ZRAM_LRU_WRITEBACK_LIMIT; |
| static unsigned long time_stamp; |
| bool ret = true; |
| |
| /* avoid app launch time */ |
| if (is_app_launch) |
| return false; |
| |
| /* stop thread when writtenback enough */ |
| if (pages > max_pages) |
| return false; |
| |
| /* do not trigger again before time interval */ |
| if (trigger && time_is_after_jiffies(time_stamp)) |
| return false; |
| |
| if (trigger) |
| min_writtenback_ratio -= margin; |
| else |
| min_writtenback_ratio += margin; |
| |
| if (min_stored > stored || min_writtenback_ratio < writtenback_ratio) |
| ret = false; |
| |
| if (trigger && ret == true) |
| time_stamp = jiffies + ZRAM_WBD_INTERVAL; |
| |
| return ret; |
| } |
| |
| static void try_wakeup_zram_wbd(struct zram *zram) |
| { |
| unsigned long bd_count; |
| |
| if (zram->backing_dev && !zram->wbd_running && |
| zram_wb_available(zram) && |
| zram_should_writeback(zram, 0, true) && |
| is_bdev_avail(zram)) { |
| bd_count = atomic64_read(&zram->stats.bd_count); |
| /* wakeup zram_wbd with enough free blocks */ |
| if (zram->nr_pages - bd_count < NR_ZWBS) |
| return; |
| |
| zram->wbd_running = true; |
| wake_up(&zram->wbd_wait); |
| } |
| } |
| |
| static int zram_app_launch_notifier(struct notifier_block *nb, |
| unsigned long action, void *data) |
| { |
| is_app_launch = action ? true : false; |
| |
| if (!is_app_launch && g_zram) |
| try_wakeup_zram_wbd(g_zram); |
| |
| return 0; |
| } |
| |
| static struct notifier_block zram_app_launch_nb = { |
| .notifier_call = zram_app_launch_notifier, |
| }; |
| |
| static void mark_end_of_page(struct zwbs *zwbs) |
| { |
| struct zram_wb_header *zhdr; |
| struct page *page = zwbs->page; |
| int offset = zwbs->off; |
| void *mem; |
| |
| if (offset + sizeof(struct zram_wb_header) < PAGE_SIZE) { |
| mem = kmap_atomic(page); |
| zhdr = (struct zram_wb_header *)(mem + offset); |
| zhdr->index = UINT_MAX; |
| zhdr->size = 0; |
| kunmap_atomic(mem); |
| } |
| } |
| |
| static int zram_writeback_fill_page(struct zram *zram, u32 index, |
| struct zwbs *zwbs) |
| { |
| struct zram_wb_header *zhdr; |
| struct page *page = zwbs->page; |
| int offset = zwbs->off; |
| unsigned long handle; |
| void *src, *dst; |
| int ret, size; |
| int header_sz = 0; |
| |
| zram_slot_lock(zram, index); |
| if (!zram_allocated(zram, index) || |
| !zram_test_flag(zram, index, ZRAM_IDLE) || |
| zram_test_flag(zram, index, ZRAM_WB) || |
| zram_test_flag(zram, index, ZRAM_SAME) || |
| zram_test_flag(zram, index, ZRAM_UNDER_WB)) { |
| zram_slot_unlock(zram, index); |
| return 0; |
| } |
| size = zram_get_obj_size(zram, index); |
| if (size != PAGE_SIZE) |
| header_sz = sizeof(struct zram_wb_header); |
| |
| if (offset + header_sz + size > PAGE_SIZE) { |
| zram_slot_unlock(zram, index); |
| return -ENOSPC; |
| } |
| /* |
| * Clearing ZRAM_UNDER_WB is duty of caller. |
| * IOW, zram_free_page never clear it. |
| */ |
| zram_set_flag(zram, index, ZRAM_UNDER_WB); |
| /* Need for hugepage writeback racing */ |
| zram_set_flag(zram, index, ZRAM_IDLE); |
| |
| handle = zram_get_element(zram, index); |
| if (!handle) { |
| zram_clear_flag(zram, index, ZRAM_UNDER_WB); |
| zram_clear_flag(zram, index, ZRAM_IDLE); |
| zram_slot_unlock(zram, index); |
| return -ENOENT; |
| } |
| src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO); |
| dst = kmap_atomic(page); |
| if (size != PAGE_SIZE) { |
| zhdr = (struct zram_wb_header *)(dst + offset); |
| zhdr->index = index; |
| zhdr->size = size; |
| dst = (u8 *)(zhdr + 1); |
| } |
| memcpy(dst, src, size); |
| ret = size; |
| kunmap_atomic(dst); |
| zs_unmap_object(zram->mem_pool, handle); |
| zram_slot_unlock(zram, index); |
| |
| return ret; |
| } |
| |
| static void zram_writeback_clear_flag(struct zram *zram, struct zwbs *zwbs) |
| { |
| struct zram_wb_entry *entry = zwbs->entry; |
| unsigned int count = zwbs->cnt; |
| unsigned long index; |
| int i; |
| |
| for (i = 0; i < count; i++) { |
| index = entry[i].index; |
| zram_slot_lock(zram, index); |
| zram_clear_flag(zram, index, ZRAM_UNDER_WB); |
| zram_clear_flag(zram, index, ZRAM_IDLE); |
| zram_slot_unlock(zram, index); |
| } |
| } |
| |
| static void zram_writeback_done(struct zram *zram, |
| struct zwbs *zwbs, unsigned long blk_idx) |
| { |
| unsigned long index; |
| unsigned int offset; |
| unsigned int size; |
| unsigned int count = zwbs->cnt; |
| struct zram_wb_entry *entry = zwbs->entry; |
| int i; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&zram->wb_table_lock, flags); |
| if (!zram->wb_table) { |
| spin_unlock_irqrestore(&zram->wb_table_lock, flags); |
| return; |
| } |
| zram->wb_table[blk_idx] = count; |
| spin_unlock_irqrestore(&zram->wb_table_lock, flags); |
| atomic64_add(count, &zram->stats.bd_objcnt); |
| |
| for (i = 0; i < count; i++) { |
| index = entry[i].index; |
| offset = entry[i].offset; |
| size = entry[i].size; |
| /* |
| * We released zram_slot_lock so need to check if the slot was |
| * changed. If there is freeing for the slot, we can catch it |
| * easily by zram_allocated. |
| * A subtle case is the slot is freed/reallocated/marked as |
| * ZRAM_IDLE again. To close the race, idle_store doesn't |
| * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB. |
| * Thus, we could close the race by checking ZRAM_IDLE bit. |
| */ |
| zram_slot_lock(zram, index); |
| if (!zram_allocated(zram, index) || |
| !zram_test_flag(zram, index, ZRAM_IDLE)) { |
| zram_clear_flag(zram, index, ZRAM_UNDER_WB); |
| zram_clear_flag(zram, index, ZRAM_IDLE); |
| free_block_bdev(zram, blk_idx); |
| zram_slot_unlock(zram, index); |
| continue; |
| } |
| |
| zram_free_page(zram, index); |
| zram_clear_flag(zram, index, ZRAM_UNDER_WB); |
| zram_set_flag(zram, index, ZRAM_WB); |
| /* record element as "blk_idx|offset|size" */ |
| if (size == PAGE_SIZE) |
| size = 0; |
| zram_set_element(zram, index, |
| (blk_idx << (PAGE_SHIFT * 2)) | (offset << PAGE_SHIFT) | size); |
| zram_slot_unlock(zram, index); |
| atomic64_inc(&zram->stats.pages_stored); |
| } |
| } |
| |
| static void zram_writeback_end_io(struct bio *bio) |
| { |
| if (g_zram && !g_zram->io_complete) { |
| g_zram->io_complete = true; |
| wake_up(&g_zram->wbd_wait); |
| } |
| } |
| |
| static int zram_writeback_page(struct zram *zram, struct zwbs **zwbs, |
| int nr_to_write, bool sync) |
| { |
| struct bio bio; |
| struct bio_vec *bio_vec; |
| unsigned long blk_idx; |
| int ret = 0; |
| int i, idx = 0; |
| int nr_pages = nr_to_write; |
| retry: |
| blk_idx = try_alloc_block_bdev(zram, &nr_pages); |
| if (!blk_idx) { |
| ret = -ENOSPC; |
| goto out; |
| } |
| |
| bio_vec = kmalloc_array(nr_pages, sizeof(struct bio_vec), GFP_KERNEL); |
| if (!bio_vec) { |
| ret = -ENOSPC; |
| goto out; |
| } |
| |
| bio_init(&bio); |
| |
| bio.bi_max_vecs = nr_pages; |
| bio.bi_io_vec = bio_vec; |
| bio.bi_bdev = zram->bdev; |
| |
| bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9); |
| for (i = 0; i < nr_pages; i++) |
| bio_add_page(&bio, zwbs[idx + i]->page, PAGE_SIZE, 0); |
| if (sync) { |
| ret = submit_bio_wait(WRITE, &bio); |
| } else { |
| bio.bi_end_io = zram_writeback_end_io; |
| zram->io_complete = false; |
| submit_bio(WRITE, &bio); |
| wait_event(zram->wbd_wait, zram->io_complete); |
| ret = bio.bi_error; |
| } |
| kfree(bio_vec); |
| out: |
| if (!ret) { |
| for (i = 0; i < nr_pages; i++) |
| zram_writeback_done(zram, zwbs[idx + i], blk_idx + i); |
| |
| atomic64_add(nr_pages, &zram->stats.bd_writes); |
| spin_lock(&zram->wb_limit_lock); |
| if (zram->wb_limit_enable) { |
| if (zram->bd_wb_limit > nr_pages) |
| zram->bd_wb_limit -= nr_pages; |
| else |
| zram->bd_wb_limit = 0; |
| } |
| spin_unlock(&zram->wb_limit_lock); |
| |
| idx += nr_pages; |
| if (idx < nr_to_write) |
| goto retry; |
| } else { |
| if (blk_idx) |
| for (i = 0; i < nr_pages; i++) |
| free_block_bdev(zram, blk_idx + i); |
| /* free all remaining entries when error */ |
| for (i = idx; i < nr_to_write; i++) |
| zram_writeback_clear_flag(zram, zwbs[i]); |
| } |
| return ret; |
| } |
| |
| static int zram_comp_writeback_index(struct zram *zram, u32 index, |
| struct zwbs **zwbs, int *idx, bool sync) |
| { |
| int size, ret = 0; |
| int i = *idx, j; |
| retry: |
| size = zram_writeback_fill_page(zram, index, zwbs[i]); |
| if (size > 0) { |
| struct zram_wb_entry *entry = zwbs[i]->entry; |
| entry[zwbs[i]->cnt].index = index; |
| entry[zwbs[i]->cnt].offset = zwbs[i]->off; |
| entry[zwbs[i]->cnt].size = size; |
| zwbs[i]->off += size; |
| if (size < PAGE_SIZE) |
| zwbs[i]->off += sizeof(struct zram_wb_header); |
| zwbs[i]->cnt++; |
| } |
| /* writeback if page is full/entry is full */ |
| if (size == -ENOSPC || zwbs[i]->cnt == ZRAM_WB_THRESHOLD) { |
| mark_end_of_page(zwbs[i]); |
| i = (i + 1) % NR_ZWBS; |
| if (i > 0) |
| goto retry; |
| ret = zram_writeback_page(zram, zwbs, NR_ZWBS, sync); |
| for (j = 0; j < NR_ZWBS; j++) { |
| zwbs[j]->cnt = 0; |
| zwbs[j]->off = 0; |
| } |
| if (ret == 0 && size == -ENOSPC) |
| goto retry; |
| } |
| *idx = i; |
| return ret; |
| } |
| |
| static void zram_comp_writeback(struct zram *zram) |
| { |
| struct zwbs *zwbs[NR_ZWBS]; |
| unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; |
| unsigned long index; |
| int idx = 0; |
| |
| if (alloc_zwbs(zwbs)) { |
| pr_info("%s alloc_zwbs failed", __func__); |
| return; |
| } |
| |
| for (index = 0; index < nr_pages; index++) { |
| if (!zram_wb_available(zram)) |
| break; |
| if (zram_comp_writeback_index(zram, index, zwbs, &idx, true)) |
| break; |
| } |
| free_zwbs(zwbs); |
| pr_info("%s done", __func__); |
| } |
| |
| static int zram_wbd(void *p) |
| { |
| struct zram *zram = (struct zram *)p; |
| struct zram_table_entry *zram_entry, *n; |
| struct zwbs *zwbs[NR_ZWBS]; |
| u32 index; |
| int idx = 0; |
| int ret; |
| |
| set_freezable(); |
| |
| if (alloc_zwbs(zwbs)) { |
| pr_info("%s alloc_zwbs failed", __func__); |
| return 0; |
| } |
| |
| while (!kthread_should_stop()) { |
| unsigned long nr_pages = 0; |
| wait_event_freezable(zram->wbd_wait, |
| zram->wbd_running || kthread_should_stop()); |
| list_for_each_entry_safe(zram_entry, n, &zram->list, lru_list) { |
| if (try_to_freeze() || kthread_should_stop()) |
| break; |
| if (!zram_wb_available(zram)) |
| break; |
| index = entry_to_index(zram, zram_entry); |
| ret = zram_try_mark_page(zram, index); |
| if (!ret) { |
| if (zram_comp_writeback_index(zram, index, |
| zwbs, &idx, false)) |
| break; |
| } else if (ret == ABORT) { |
| n = list_first_entry(&zram->list, |
| struct zram_table_entry, lru_list); |
| } |
| if (!zram_should_writeback(zram, ++nr_pages, false)) |
| break; |
| } |
| zram->wbd_running = false; |
| pr_info("%s done", __func__); |
| } |
| free_zwbs(zwbs); |
| |
| return 0; |
| } |
| #endif |
| |
| #define HUGE_WRITEBACK 1 |
| #define IDLE_WRITEBACK 2 |
| |
| static ssize_t writeback_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| struct zram *zram = dev_to_zram(dev); |
| unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; |
| unsigned long index; |
| struct bio bio; |
| struct bio_vec bio_vec; |
| struct page *page; |
| ssize_t ret; |
| int mode; |
| unsigned long blk_idx = 0; |
| |
| if (sysfs_streq(buf, "idle")) |
| mode = IDLE_WRITEBACK; |
| else if (sysfs_streq(buf, "huge")) |
| mode = HUGE_WRITEBACK; |
| else |
| return -EINVAL; |
| |
| down_read(&zram->init_lock); |
| if (!init_done(zram)) { |
| ret = -EINVAL; |
| goto release_init_lock; |
| } |
| |
| if (!zram->backing_dev) { |
| ret = -ENODEV; |
| goto release_init_lock; |
| } |
| |
| #ifdef CONFIG_ZRAM_LRU_WRITEBACK |
| if (mode == IDLE_WRITEBACK) { |
| if (is_bdev_avail(zram)) |
| zram_comp_writeback(zram); |
| ret = len; |
| goto release_init_lock; |
| } |
| #endif |
| page = alloc_page(GFP_KERNEL); |
| if (!page) { |
| ret = -ENOMEM; |
| goto release_init_lock; |
| } |
| |
| for (index = 0; index < nr_pages; index++) { |
| struct bio_vec bvec; |
| |
| bvec.bv_page = page; |
| bvec.bv_len = PAGE_SIZE; |
| bvec.bv_offset = 0; |
| |
| spin_lock(&zram->wb_limit_lock); |
| if (zram->wb_limit_enable && !zram->bd_wb_limit) { |
| spin_unlock(&zram->wb_limit_lock); |
| ret = -EIO; |
| break; |
| } |
| spin_unlock(&zram->wb_limit_lock); |
| |
| if (!blk_idx) { |
| blk_idx = alloc_block_bdev(zram); |
| if (!blk_idx) { |
| ret = -ENOSPC; |
| break; |
| } |
| } |
| |
| zram_slot_lock(zram, index); |
| if (!zram_allocated(zram, index)) |
| goto next; |
| |
| if (zram_test_flag(zram, index, ZRAM_WB) || |
| zram_test_flag(zram, index, ZRAM_SAME) || |
| zram_test_flag(zram, index, ZRAM_UNDER_WB)) |
| goto next; |
| |
| if (mode == IDLE_WRITEBACK && |
| !zram_test_flag(zram, index, ZRAM_IDLE)) |
| goto next; |
| if (mode == HUGE_WRITEBACK && |
| !zram_test_flag(zram, index, ZRAM_HUGE)) |
| goto next; |
| /* |
| * Clearing ZRAM_UNDER_WB is duty of caller. |
| * IOW, zram_free_page never clear it. |
| */ |
| zram_set_flag(zram, index, ZRAM_UNDER_WB); |
| /* Need for hugepage writeback racing */ |
| zram_set_flag(zram, index, ZRAM_IDLE); |
| zram_slot_unlock(zram, index); |
| if (zram_bvec_read(zram, &bvec, index, 0, NULL)) { |
| zram_slot_lock(zram, index); |
| zram_clear_flag(zram, index, ZRAM_UNDER_WB); |
| zram_clear_flag(zram, index, ZRAM_IDLE); |
| zram_slot_unlock(zram, index); |
| continue; |
| } |
| |
| bio_init(&bio); |
| |
| bio.bi_max_vecs = 1; |
| bio.bi_io_vec = &bio_vec; |
| bio.bi_bdev = zram->bdev; |
| |
| bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9); |
| bio_add_page(&bio, bvec.bv_page, bvec.bv_len, |
| bvec.bv_offset); |
| /* |
| * XXX: A single page IO would be inefficient for write |
| * but it would be not bad as starter. |
| */ |
| ret = submit_bio_wait(WRITE, &bio); |
| if (ret) { |
| zram_slot_lock(zram, index); |
| zram_clear_flag(zram, index, ZRAM_UNDER_WB); |
| zram_clear_flag(zram, index, ZRAM_IDLE); |
| zram_slot_unlock(zram, index); |
| continue; |
| } |
| |
| atomic64_inc(&zram->stats.bd_writes); |
| /* |
| * We released zram_slot_lock so need to check if the slot was |
| * changed. If there is freeing for the slot, we can catch it |
| * easily by zram_allocated. |
| * A subtle case is the slot is freed/reallocated/marked as |
| * ZRAM_IDLE again. To close the race, idle_store doesn't |
| * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB. |
| * Thus, we could close the race by checking ZRAM_IDLE bit. |
| */ |
| zram_slot_lock(zram, index); |
| if (!zram_allocated(zram, index) || |
| !zram_test_flag(zram, index, ZRAM_IDLE)) { |
| zram_clear_flag(zram, index, ZRAM_UNDER_WB); |
| zram_clear_flag(zram, index, ZRAM_IDLE); |
| goto next; |
| } |
| |
| zram_free_page(zram, index); |
| zram_clear_flag(zram, index, ZRAM_UNDER_WB); |
| zram_set_flag(zram, index, ZRAM_WB); |
| zram_set_element(zram, index, blk_idx << (PAGE_SHIFT * 2)); |
| blk_idx = 0; |
| atomic64_inc(&zram->stats.pages_stored); |
| atomic64_inc(&zram->stats.bd_objcnt); |
| spin_lock(&zram->wb_limit_lock); |
| if (zram->wb_limit_enable && zram->bd_wb_limit > 0) |
| zram->bd_wb_limit -= 1UL << (PAGE_SHIFT - 12); |
| spin_unlock(&zram->wb_limit_lock); |
| next: |
| zram_slot_unlock(zram, index); |
| } |
| |
| if (blk_idx) |
| free_block_bdev(zram, blk_idx); |
| ret = len; |
| __free_page(page); |
| release_init_lock: |
| up_read(&zram->init_lock); |
| |
| return ret; |
| } |
| |
| struct zram_work { |
| struct work_struct work; |
| struct zram *zram; |
| unsigned long entry; |
| struct bio *bio; |
| }; |
| |
| #if PAGE_SIZE != 4096 |
| static void zram_sync_read(struct work_struct *work) |
| { |
| struct bio_vec bvec; |
| struct zram_work *zw = container_of(work, struct zram_work, work); |
| struct zram *zram = zw->zram; |
| unsigned long entry = zw->entry; |
| struct bio *bio = zw->bio; |
| |
| read_from_bdev_async(zram, &bvec, entry, bio); |
| } |
| |
| /* |
| * Block layer want one ->make_request_fn to be active at a time |
| * so if we use chained IO with parent IO in same context, |
| * it's a deadlock. To avoid, it, it uses worker thread context. |
| */ |
| static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec, |
| unsigned long entry, struct bio *bio) |
| { |
| struct zram_work work; |
| |
| work.zram = zram; |
| work.entry = entry; |
| work.bio = bio; |
| |
| INIT_WORK_ONSTACK(&work.work, zram_sync_read); |
| queue_work(system_unbound_wq, &work.work); |
| flush_work(&work.work); |
| destroy_work_on_stack(&work.work); |
| |
| return 1; |
| } |
| #else |
| static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec, |
| unsigned long entry, struct bio *bio) |
| { |
| WARN_ON(1); |
| return -EIO; |
| } |
| #endif |
| |
| static int read_from_bdev(struct zram *zram, struct bio_vec *bvec, |
| unsigned long entry, struct bio *parent, bool sync) |
| { |
| atomic64_inc(&zram->stats.bd_reads); |
| if (sync) |
| return read_from_bdev_sync(zram, bvec, entry, parent); |
| else |
| return read_from_bdev_async(zram, bvec, entry, parent); |
| } |
| |
| #ifdef CONFIG_ZRAM_LRU_WRITEBACK |
| static void zram_handle_remain(struct zram *zram, struct page *page, |
| unsigned int blk_idx) |
| { |
| struct zram_wb_header *zhdr; |
| unsigned long alloced_pages; |
| unsigned long handle; |
| unsigned int offset = 0; |
| unsigned int size; |
| u32 index; |
| u8 *mem, *src, *dst; |
| |
| mem = kmap_atomic(page); |
| while (offset + sizeof(struct zram_wb_header) < PAGE_SIZE) { |
| zhdr = (struct zram_wb_header *)(mem + offset); |
| index = zhdr->index; |
| size = zhdr->size; |
| |
| /* invalid index */ |
| if (index >= (zram->disksize >> PAGE_SHIFT)) |
| break; |
| |
| if (!zram_slot_trylock(zram, index)) |
| goto next; |
| |
| if (!zram_allocated(zram, index) || |
| !zram_test_flag(zram, index, ZRAM_WB) || |
| zram_test_flag(zram, index, ZRAM_READ_BDEV)) { |
| zram_slot_unlock(zram, index); |
| goto next; |
| } |
| handle = zram_get_element(zram, index); |
| if ((handle >> (PAGE_SHIFT * 2)) != blk_idx || |
| ((handle >> PAGE_SHIFT) & (PAGE_SIZE - 1)) != offset || |
| (handle & (PAGE_SIZE - 1)) != size) { |
| zram_slot_unlock(zram, index); |
| goto next; |
| } |
| |
| handle = zs_malloc(zram->mem_pool, size, |
| __GFP_KSWAPD_RECLAIM | |
| __GFP_NOWARN | |
| __GFP_HIGHMEM | |
| __GFP_MOVABLE); |
| if (!handle) { |
| zram_slot_unlock(zram, index); |
| break; |
| } |
| alloced_pages = zs_get_total_pages(zram->mem_pool); |
| update_used_max(zram, alloced_pages); |
| |
| dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO); |
| src = (u8 *)(zhdr + 1); |
| memcpy(dst, src, size); |
| zs_unmap_object(zram->mem_pool, handle); |
| |
| atomic64_add(size, &zram->stats.compr_data_size); |
| zram_free_page(zram, index); |
| zram_set_element(zram, index, handle); |
| zram_set_obj_size(zram, index, size); |
| zram_slot_unlock(zram, index); |
| atomic64_inc(&zram->stats.pages_stored); |
| next: |
| offset += (size + sizeof(struct zram_wb_header)); |
| } |
| kunmap_atomic(mem); |
| free_block_bdev(zram, blk_idx); |
| atomic64_inc(&zram->stats.bd_objcnt); |
| } |
| |
| static void zram_handle_comp_page(struct work_struct *work) |
| { |
| struct zram_wb_work *zw = container_of(work, struct zram_wb_work, work); |
| struct zram_wb_header *zhdr; |
| struct zram *zram = zw->zram; |
| struct zcomp_strm *zstrm; |
| struct page *src_page = zw->src_page; |
| struct page *dst_page = zw->dst_page; |
| struct bio *bio = zw->bio; |
| unsigned long handle; |
| unsigned int blk_idx = zw->handle >> (PAGE_SHIFT * 2); |
| unsigned int offset = (zw->handle >> PAGE_SHIFT) & (PAGE_SIZE - 1); |
| unsigned int size = zw->handle & (PAGE_SIZE - 1); |
| u8 *src, *dst; |
| int ret; |
| unsigned long flags; |
| |
| src = kmap_atomic(src_page); |
| zhdr = (struct zram_wb_header *)(src + offset); |
| handle = zhdr->index; |
| BUG_ON(zhdr->size != size); |
| |
| dst = kmap_atomic(dst_page); |
| zstrm = zcomp_stream_get(zram->comp); |
| ret = zcomp_decompress(zstrm, |
| src + offset + sizeof(struct zram_wb_header), size, dst); |
| zcomp_stream_put(zram->comp); |
| if (ret) { |
| pr_err("%s Decompression failed! err=%d offset=%u size=%u addr=%p\n", |
| __func__, ret, offset, size, src); |
| print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 16, 1, |
| src, PAGE_SIZE, 1); |
| BUG_ON(ret); |
| } |
| kunmap_atomic(dst); |
| kunmap_atomic(src); |
| |
| zram_slot_lock(zram, handle); |
| zram_clear_flag(zram, handle, ZRAM_READ_BDEV); |
| zram_slot_unlock(zram, handle); |
| |
| /* increment refcount to prevent freeing block */ |
| spin_lock_irqsave(&zram->wb_table_lock, flags); |
| if (zram->wb_table) |
| zram->wb_table[blk_idx]++; |
| spin_unlock_irqrestore(&zram->wb_table_lock, flags); |
| |
| page_endio(dst_page, bio_data_dir(bio), bio->bi_error); |
| bio_put(bio); |
| |
| zram_handle_remain(zram, src_page, blk_idx); |
| kfree(zw); |
| __free_page(src_page); |
| } |
| |
| static void zram_comp_page_end_io(struct bio *bio) |
| { |
| struct page *page = bio->bi_io_vec[0].bv_page; |
| struct zram_wb_work *zw = (struct zram_wb_work *)page_private(page); |
| |
| INIT_WORK(&zw->work, zram_handle_comp_page); |
| schedule_work(&zw->work); |
| } |
| |
| static int read_comp_from_bdev(struct zram *zram, struct bio_vec *bvec, |
| unsigned long handle, struct bio *parent) |
| { |
| struct zram_wb_work *zw; |
| struct bio *bio; |
| struct page *page; |
| unsigned long blk_idx = handle >> (PAGE_SHIFT * 2); |
| |
| atomic64_inc(&zram->stats.bd_reads); |
| |
| bio = bio_alloc(GFP_ATOMIC, 1); |
| if (!bio) |
| return -ENOMEM; |
| |
| page = alloc_page(GFP_NOIO|__GFP_HIGHMEM); |
| if (!page) { |
| pr_info("%s failed to alloc page", __func__); |
| bio_put(bio); |
| return -ENOMEM; |
| } |
| zw = kzalloc(sizeof(struct zram_wb_work), GFP_ATOMIC); |
| if (!zw) { |
| __free_page(page); |
| bio_put(bio); |
| return -ENOMEM; |
| } |
| zw->src_page = page; |
| zw->dst_page = bvec->bv_page; |
| zw->zram = zram; |
| zw->bio = bio; |
| zw->handle = handle; |
| set_page_private(page, (unsigned long)zw); |
| |
| bio->bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9); |
| bio->bi_bdev = zram->bdev; |
| if (!bio_add_page(bio, page, PAGE_SIZE, 0)) { |
| kfree(zw); |
| __free_page(page); |
| bio_put(bio); |
| return -EIO; |
| } |
| |
| if (!parent) { |
| bio->bi_rw = 0; |
| bio->bi_end_io = zram_comp_page_end_io; |
| } else { |
| bio->bi_rw = parent->bi_rw; |
| bio_chain(bio, parent); |
| } |
| |
| submit_bio(READ, bio); |
| return 1; |
| } |
| #endif |
| #else |
| static inline void reset_bdev(struct zram *zram) {}; |
| static int read_from_bdev(struct zram *zram, struct bio_vec *bvec, |
| unsigned long entry, struct bio *parent, bool sync) |
| { |
| return -EIO; |
| } |
| |
| static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {}; |
| #endif |
| |
| #ifdef CONFIG_ZRAM_MEMORY_TRACKING |
| |
| static struct dentry *zram_debugfs_root; |
| |
| static void zram_debugfs_create(void) |
| { |
| zram_debugfs_root = debugfs_create_dir("zram", NULL); |
| } |
| |
| static void zram_debugfs_destroy(void) |
| { |
| debugfs_remove_recursive(zram_debugfs_root); |
| } |
| |
| static void zram_accessed(struct zram *zram, u32 index) |
| { |
| zram_clear_flag(zram, index, ZRAM_IDLE); |
| zram->table[index].ac_time = ktime_get_boottime(); |
| } |
| |
| static ssize_t read_block_state(struct file *file, char __user *buf, |
| size_t count, loff_t *ppos) |
| { |
| char *kbuf; |
| ssize_t index, written = 0; |
| struct zram *zram = file->private_data; |
| unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; |
| struct timespec64 ts; |
| gfp_t kmalloc_flags; |
| |
| kmalloc_flags = GFP_KERNEL; |
| if (count > PAGE_SIZE) |
| kmalloc_flags |= __GFP_NOWARN | __GFP_NORETRY; |
| |
| kbuf = kmalloc_node(count, kmalloc_flags, NUMA_NO_NODE); |
| if (!kbuf && count > PAGE_SIZE) |
| kbuf = vmalloc(count); |
| |
| if (!kbuf) |
| return -ENOMEM; |
| |
| down_read(&zram->init_lock); |
| if (!init_done(zram)) { |
| up_read(&zram->init_lock); |
| kvfree(kbuf); |
| return -EINVAL; |
| } |
| |
| for (index = *ppos; index < nr_pages; index++) { |
| int copied; |
| |
| zram_slot_lock(zram, index); |
| if (!zram_allocated(zram, index)) |
| goto next; |
| |
| ts = ktime_to_timespec64(zram->table[index].ac_time); |
| copied = snprintf(kbuf + written, count, |
| "%12zd %12lld.%06lu %c%c%c%c\n", |
| index, (s64)ts.tv_sec, |
| ts.tv_nsec / NSEC_PER_USEC, |
| zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.', |
| zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.', |
| zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.', |
| zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.'); |
| |
| if (count < copied) { |
| zram_slot_unlock(zram, index); |
| break; |
| } |
| written += copied; |
| count -= copied; |
| next: |
| zram_slot_unlock(zram, index); |
| *ppos += 1; |
| } |
| |
| up_read(&zram->init_lock); |
| if (copy_to_user(buf, kbuf, written)) |
| written = -EFAULT; |
| kvfree(kbuf); |
| |
| return written; |
| } |
| |
| static const struct file_operations proc_zram_block_state_op = { |
| .open = simple_open, |
| .read = read_block_state, |
| .llseek = default_llseek, |
| }; |
| |
| static void zram_debugfs_register(struct zram *zram) |
| { |
| if (!zram_debugfs_root) |
| return; |
| |
| zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name, |
| zram_debugfs_root); |
| debugfs_create_file("block_state", 0400, zram->debugfs_dir, |
| zram, &proc_zram_block_state_op); |
| } |
| |
| static void zram_debugfs_unregister(struct zram *zram) |
| { |
| debugfs_remove_recursive(zram->debugfs_dir); |
| } |
| #else |
| static void zram_debugfs_create(void) {}; |
| static void zram_debugfs_destroy(void) {}; |
| static void zram_accessed(struct zram *zram, u32 index) |
| { |
| zram_clear_flag(zram, index, ZRAM_IDLE); |
| }; |
| static void zram_debugfs_register(struct zram *zram) {}; |
| static void zram_debugfs_unregister(struct zram *zram) {}; |
| #endif |
| |
| /* |
| * We switched to per-cpu streams and this attr is not needed anymore. |
| * However, we will keep it around for some time, because: |
| * a) we may revert per-cpu streams in the future |
| * b) it's visible to user space and we need to follow our 2 years |
| * retirement rule; but we already have a number of 'soon to be |
| * altered' attrs, so max_comp_streams need to wait for the next |
| * layoff cycle. |
| */ |
| static ssize_t max_comp_streams_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus()); |
| } |
| |
| static ssize_t max_comp_streams_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| return len; |
| } |
| |
| static ssize_t comp_algorithm_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| size_t sz; |
| struct zram *zram = dev_to_zram(dev); |
| |
| down_read(&zram->init_lock); |
| sz = zcomp_available_show(zram->compressor, buf); |
| up_read(&zram->init_lock); |
| |
| return sz; |
| } |
| |
| static ssize_t comp_algorithm_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| struct zram *zram = dev_to_zram(dev); |
| char compressor[ARRAY_SIZE(zram->compressor)]; |
| size_t sz; |
| |
| strlcpy(compressor, buf, sizeof(compressor)); |
| /* ignore trailing newline */ |
| sz = strlen(compressor); |
| if (sz > 0 && compressor[sz - 1] == '\n') |
| compressor[sz - 1] = 0x00; |
| |
| if (!zcomp_available_algorithm(compressor)) |
| return -EINVAL; |
| |
| down_write(&zram->init_lock); |
| if (init_done(zram)) { |
| up_write(&zram->init_lock); |
| pr_info("Can't change algorithm for initialized device\n"); |
| return -EBUSY; |
| } |
| |
| strcpy(zram->compressor, compressor); |
| up_write(&zram->init_lock); |
| return len; |
| } |
| |
| static ssize_t compact_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| struct zram *zram = dev_to_zram(dev); |
| |
| down_read(&zram->init_lock); |
| if (!init_done(zram)) { |
| up_read(&zram->init_lock); |
| return -EINVAL; |
| } |
| |
| zs_compact(zram->mem_pool); |
| up_read(&zram->init_lock); |
| |
| return len; |
| } |
| |
| static ssize_t io_stat_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct zram *zram = dev_to_zram(dev); |
| ssize_t ret; |
| |
| down_read(&zram->init_lock); |
| ret = scnprintf(buf, PAGE_SIZE, |
| "%8llu %8llu %8llu %8llu\n", |
| (u64)atomic64_read(&zram->stats.failed_reads), |
| (u64)atomic64_read(&zram->stats.failed_writes), |
| (u64)atomic64_read(&zram->stats.invalid_io), |
| (u64)atomic64_read(&zram->stats.notify_free)); |
| up_read(&zram->init_lock); |
| |
| return ret; |
| } |
| |
| static ssize_t mm_stat_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct zram *zram = dev_to_zram(dev); |
| struct zs_pool_stats pool_stats; |
| u64 orig_size, mem_used = 0; |
| long max_used; |
| ssize_t ret; |
| |
| memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats)); |
| |
| down_read(&zram->init_lock); |
| if (init_done(zram)) { |
| mem_used = zs_get_total_pages(zram->mem_pool); |
| zs_pool_stats(zram->mem_pool, &pool_stats); |
| } |
| |
| orig_size = atomic64_read(&zram->stats.pages_stored); |
| max_used = atomic_long_read(&zram->stats.max_used_pages); |
| |
| ret = scnprintf(buf, PAGE_SIZE, |
| "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu\n", |
| orig_size << PAGE_SHIFT, |
| (u64)atomic64_read(&zram->stats.compr_data_size), |
| mem_used << PAGE_SHIFT, |
| zram->limit_pages << PAGE_SHIFT, |
| max_used << PAGE_SHIFT, |
| (u64)atomic64_read(&zram->stats.same_pages), |
| pool_stats.pages_compacted, |
| (u64)atomic64_read(&zram->stats.huge_pages)); |
| up_read(&zram->init_lock); |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_ZRAM_WRITEBACK |
| #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12))) |
| static ssize_t bd_stat_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct zram *zram = dev_to_zram(dev); |
| ssize_t ret; |
| |
| down_read(&zram->init_lock); |
| #ifdef CONFIG_ZRAM_LRU_WRITEBACK |
| ret = scnprintf(buf, PAGE_SIZE, |
| "%8llu %8llu %8llu %8llu %8llu\n", |
| FOUR_K((u64)atomic64_read(&zram->stats.bd_expire)), |
| FOUR_K((u64)atomic64_read(&zram->stats.bd_count)), |
| FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)), |
| FOUR_K((u64)atomic64_read(&zram->stats.bd_writes)), |
| FOUR_K((u64)atomic64_read(&zram->stats.bd_objcnt))); |
| #else |
| ret = scnprintf(buf, PAGE_SIZE, |
| "%8llu %8llu %8llu\n", |
| FOUR_K((u64)atomic64_read(&zram->stats.bd_count)), |
| FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)), |
| FOUR_K((u64)atomic64_read(&zram->stats.bd_writes))); |
| #endif |
| up_read(&zram->init_lock); |
| |
| return ret; |
| } |
| #endif |
| |
| static ssize_t debug_stat_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| int version = 1; |
| struct zram *zram = dev_to_zram(dev); |
| ssize_t ret; |
| |
| down_read(&zram->init_lock); |
| ret = scnprintf(buf, PAGE_SIZE, |
| "version: %d\n%8llu %8llu\n", |
| version, |
| (u64)atomic64_read(&zram->stats.writestall), |
| (u64)atomic64_read(&zram->stats.miss_free)); |
| up_read(&zram->init_lock); |
| |
| return ret; |
| } |
| |
| static DEVICE_ATTR_RO(io_stat); |
| static DEVICE_ATTR_RO(mm_stat); |
| #ifdef CONFIG_ZRAM_WRITEBACK |
| static DEVICE_ATTR_RO(bd_stat); |
| #endif |
| static DEVICE_ATTR_RO(debug_stat); |
| |
| static void zram_meta_free(struct zram *zram, u64 disksize) |
| { |
| size_t num_pages = disksize >> PAGE_SHIFT; |
| size_t index; |
| |
| /* Free all pages that are still in this zram device */ |
| for (index = 0; index < num_pages; index++) |
| zram_free_page(zram, index); |
| |
| zs_destroy_pool(zram->mem_pool); |
| vfree(zram->table); |
| } |
| |
| static bool zram_meta_alloc(struct zram *zram, u64 disksize) |
| { |
| size_t num_pages; |
| #ifdef CONFIG_ZRAM_LRU_WRITEBACK |
| int i; |
| #endif |
| |
| num_pages = disksize >> PAGE_SHIFT; |
| zram->table = vzalloc(num_pages * sizeof(*zram->table)); |
| if (!zram->table) |
| return false; |
| |
| #ifdef CONFIG_ZRAM_LRU_WRITEBACK |
| for (i = 0; i < num_pages; i++) |
| INIT_LIST_HEAD(&zram->table[i].lru_list); |
| #endif |
| zram->mem_pool = zs_create_pool(zram->disk->disk_name); |
| if (!zram->mem_pool) { |
| vfree(zram->table); |
| return false; |
| } |
| |
| if (!huge_class_size) |
| huge_class_size = zs_huge_class_size(zram->mem_pool); |
| return true; |
| } |
| |
| /* |
| * To protect concurrent access to the same index entry, |
| * caller should hold this table index entry's bit_spinlock to |
| * indicate this index entry is accessing. |
| */ |
| static void zram_free_page(struct zram *zram, size_t index) |
| { |
| unsigned long handle; |
| #ifdef CONFIG_ZRAM_LRU_WRITEBACK |
| unsigned long flags; |
| #endif |
| |
| #ifdef CONFIG_ZRAM_MEMORY_TRACKING |
| zram->table[index].ac_time = 0; |
| #endif |
| if (zram_test_flag(zram, index, ZRAM_IDLE)) |
| zram_clear_flag(zram, index, ZRAM_IDLE); |
| |
| if (zram_test_flag(zram, index, ZRAM_HUGE)) { |
| zram_clear_flag(zram, index, ZRAM_HUGE); |
| atomic64_dec(&zram->stats.huge_pages); |
| } |
| |
| if (zram_test_flag(zram, index, ZRAM_WB)) { |
| #ifdef CONFIG_ZRAM_LRU_WRITEBACK |
| if (zram_test_flag(zram, index, ZRAM_EXPIRE)) { |
| zram_clear_flag(zram, index, ZRAM_EXPIRE); |
| atomic64_dec(&zram->stats.bd_expire); |
| } |
| #endif |
| zram_clear_flag(zram, index, ZRAM_WB); |
| free_block_bdev(zram, zram_get_element(zram, index) >> (PAGE_SHIFT * 2)); |
| goto out; |
| } |
| |
| /* |
| * No memory is allocated for same element filled pages. |
| * Simply clear same page flag. |
| */ |
| if (zram_test_flag(zram, index, ZRAM_SAME)) { |
| zram_clear_flag(zram, index, ZRAM_SAME); |
| atomic64_dec(&zram->stats.same_pages); |
| goto out; |
| } |
| |
| handle = zram_get_handle(zram, index); |
| if (!handle) |
| return; |
| |
| zs_free(zram->mem_pool, handle); |
| |
| atomic64_sub(zram_get_obj_size(zram, index), |
| &zram->stats.compr_data_size); |
| out: |
| atomic64_dec(&zram->stats.pages_stored); |
| zram_set_handle(zram, index, 0); |
| zram_set_obj_size(zram, index, 0); |
| #ifdef CONFIG_ZRAM_LRU_WRITEBACK |
| spin_lock_irqsave(&zram->list_lock, flags); |
| if (!list_empty(&zram->table[index].lru_list)) |
| list_del_init(&zram->table[index].lru_list); |
| spin_unlock_irqrestore(&zram->list_lock, flags); |
| #endif |
| WARN_ON_ONCE(zram->table[index].flags & |
| ~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB)); |
| } |
| |
| static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index, |
| struct bio *bio, bool partial_io) |
| { |
| int ret; |
| unsigned long handle; |
| unsigned int size; |
| void *src, *dst; |
| #ifdef CONFIG_ZRAM_LRU_WRITEBACK |
| unsigned long flags; |
| #endif |
| |
| zram_slot_lock(zram, index); |
| if (zram_test_flag(zram, index, ZRAM_WB)) { |
| struct bio_vec bvec; |
| |
| bvec.bv_page = page; |
| bvec.bv_len = PAGE_SIZE; |
| bvec.bv_offset = 0; |
| #ifdef CONFIG_ZRAM_LRU_WRITEBACK |
| if (!zram_test_flag(zram, index, ZRAM_EXPIRE)) { |
| zram_set_flag(zram, index, ZRAM_EXPIRE); |
| atomic64_inc(&zram->stats.bd_expire); |
| } |
| if ((zram_get_element(zram, index) & (PAGE_SIZE - 1)) != 0) { |
| zram_set_flag(zram, index, ZRAM_READ_BDEV); |
| zram_slot_unlock(zram, index); |
| return read_comp_from_bdev(zram, &bvec, |
| zram_get_element(zram, index), bio); |
| } |
| #endif |
| zram_slot_unlock(zram, index); |
| return read_from_bdev(zram, &bvec, |
| zram_get_element(zram, index) >> (PAGE_SHIFT * 2), |
| bio, partial_io); |
| } |
| |
| handle = zram_get_handle(zram, index); |
| if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) { |
| unsigned long value; |
| void *mem; |
| |
| value = handle ? zram_get_element(zram, index) : 0; |
| mem = kmap_atomic(page); |
| zram_fill_page(mem, PAGE_SIZE, value); |
| kunmap_atomic(mem); |
| zram_slot_unlock(zram, index); |
| return 0; |
| } |
| |
| size = zram_get_obj_size(zram, index); |
| |
| src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO); |
| if (size == PAGE_SIZE) { |
| dst = kmap_atomic(page); |
| memcpy(dst, src, PAGE_SIZE); |
| kunmap_atomic(dst); |
| ret = 0; |
| } else { |
| struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp); |
| |
| dst = kmap_atomic(page); |
| ret = zcomp_decompress(zstrm, src, size, dst); |
| kunmap_atomic(dst); |
| zcomp_stream_put(zram->comp); |
| } |
| zs_unmap_object(zram->mem_pool, handle); |
| #ifdef CONFIG_ZRAM_LRU_WRITEBACK |
| spin_lock_irqsave(&zram->list_lock, flags); |
| if (!list_empty(&zram->table[index].lru_list)) |
| list_del_init(&zram->table[index].lru_list); |
| spin_unlock_irqrestore(&zram->list_lock, flags); |
| #endif |
| zram_slot_unlock(zram, index); |
| |
| /* Should NEVER happen. Return bio error if it does. */ |
| if (unlikely(ret)) |
| pr_err("Decompression failed! err=%d, page=%u\n", ret, index); |
| |
| return ret; |
| } |
| |
| static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, |
| u32 index, int offset, struct bio *bio) |
| { |
| int ret; |
| struct page *page; |
| |
| page = bvec->bv_page; |
| if (is_partial_io(bvec)) { |
| /* Use a temporary buffer to decompress the page */ |
| page = alloc_page(GFP_NOIO|__GFP_HIGHMEM); |
| if (!page) |
| return -ENOMEM; |
| } |
| |
| ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec)); |
| if (unlikely(ret)) |
| goto out; |
| |
| if (is_partial_io(bvec)) { |
| void *dst = kmap_atomic(bvec->bv_page); |
| void *src = kmap_atomic(page); |
| |
| memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len); |
| kunmap_atomic(src); |
| kunmap_atomic(dst); |
| } |
| out: |
| if (is_partial_io(bvec)) |
| __free_page(page); |
| |
| return ret; |
| } |
| |
| static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec, |
| u32 index, struct bio *bio) |
| { |
| int ret = 0; |
| unsigned long alloced_pages; |
| unsigned long handle = 0; |
| unsigned int comp_len = 0; |
| void *src, *dst, *mem; |
| struct zcomp_strm *zstrm; |
| struct page *page = bvec->bv_page; |
| unsigned long element = 0; |
| enum zram_pageflags flags = 0; |
| #ifdef CONFIG_ZRAM_LRU_WRITEBACK |
| unsigned long irq_flags; |
| #endif |
| |
| mem = kmap_atomic(page); |
| if (page_same_filled(mem, &element)) { |
| kunmap_atomic(mem); |
| /* Free memory associated with this sector now. */ |
| flags = ZRAM_SAME; |
| atomic64_inc(&zram->stats.same_pages); |
| goto out; |
| } |
| kunmap_atomic(mem); |
| |
| compress_again: |
| zstrm = zcomp_stream_get(zram->comp); |
| src = kmap_atomic(page); |
| ret = zcomp_compress(zstrm, src, &comp_len); |
| kunmap_atomic(src); |
| |
| if (unlikely(ret)) { |
| zcomp_stream_put(zram->comp); |
| pr_err("Compression failed! err=%d\n", ret); |
| zs_free(zram->mem_pool, handle); |
| return ret; |
| } |
| |
| if (comp_len >= huge_class_size) |
| comp_len = PAGE_SIZE; |
| /* |
| * handle allocation has 2 paths: |
| * a) fast path is executed with preemption disabled (for |
| * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear, |
| * since we can't sleep; |
| * b) slow path enables preemption and attempts to allocate |
| * the page with __GFP_DIRECT_RECLAIM bit set. we have to |
| * put per-cpu compression stream and, thus, to re-do |
| * the compression once handle is allocated. |
| * |
| * if we have a 'non-null' handle here then we are coming |
| * from the slow path and handle has already been allocated. |
| */ |
| if (!handle) |
| handle = zs_malloc(zram->mem_pool, comp_len, |
| __GFP_KSWAPD_RECLAIM | |
| __GFP_NOWARN | |
| __GFP_HIGHMEM | |
| __GFP_MOVABLE | |
| __GFP_CMA); |
| if (!handle) { |
| zcomp_stream_put(zram->comp); |
| atomic64_inc(&zram->stats.writestall); |
| handle = zs_malloc(zram->mem_pool, comp_len, |
| GFP_NOIO | __GFP_HIGHMEM | |
| __GFP_MOVABLE | __GFP_CMA); |
| if (handle) |
| goto compress_again; |
| return -ENOMEM; |
| } |
| |
| alloced_pages = zs_get_total_pages(zram->mem_pool); |
| zram_pool_total_size = alloced_pages << PAGE_SHIFT; |
| update_used_max(zram, alloced_pages); |
| |
| if (zram->limit_pages && alloced_pages > zram->limit_pages) { |
| zcomp_stream_put(zram->comp); |
| zs_free(zram->mem_pool, handle); |
| return -ENOMEM; |
| } |
| |
| dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO); |
| |
| src = zstrm->buffer; |
| if (comp_len == PAGE_SIZE) |
| src = kmap_atomic(page); |
| memcpy(dst, src, comp_len); |
| if (comp_len == PAGE_SIZE) |
| kunmap_atomic(src); |
| |
| zcomp_stream_put(zram->comp); |
| zs_unmap_object(zram->mem_pool, handle); |
| atomic64_add(comp_len, &zram->stats.compr_data_size); |
| out: |
| /* |
| * Free memory associated with this sector |
| * before overwriting unused sectors. |
| */ |
| zram_slot_lock(zram, index); |
| zram_free_page(zram, index); |
| |
| if (comp_len == PAGE_SIZE) { |
| zram_set_flag(zram, index, ZRAM_HUGE); |
| atomic64_inc(&zram->stats.huge_pages); |
| } |
| |
| if (flags) { |
| zram_set_flag(zram, index, flags); |
| zram_set_element(zram, index, element); |
| } else { |
| zram_set_handle(zram, index, handle); |
| zram_set_obj_size(zram, index, comp_len); |
| #ifdef CONFIG_ZRAM_LRU_WRITEBACK |
| spin_lock_irqsave(&zram->list_lock, irq_flags); |
| list_add_tail(&zram->table[index].lru_list, &zram->list); |
| spin_unlock_irqrestore(&zram->list_lock, irq_flags); |
| #endif |
| } |
| zram_slot_unlock(zram, index); |
| |
| /* Update stats */ |
| atomic64_inc(&zram->stats.pages_stored); |
| #ifdef CONFIG_ZRAM_LRU_WRITEBACK |
| try_wakeup_zram_wbd(zram); |
| #endif |
| return ret; |
| } |
| |
| static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, |
| u32 index, int offset, struct bio *bio) |
| { |
| int ret; |
| struct page *page = NULL; |
| void *src; |
| struct bio_vec vec; |
| |
| vec = *bvec; |
| if (is_partial_io(bvec)) { |
| void *dst; |
| /* |
| * This is a partial IO. We need to read the full page |
| * before to write the changes. |
| */ |
| page = alloc_page(GFP_NOIO|__GFP_HIGHMEM); |
| if (!page) |
| return -ENOMEM; |
| |
| ret = __zram_bvec_read(zram, page, index, bio, true); |
| if (ret) |
| goto out; |
| |
| src = kmap_atomic(bvec->bv_page); |
| dst = kmap_atomic(page); |
| memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len); |
| kunmap_atomic(dst); |
| kunmap_atomic(src); |
| |
| vec.bv_page = page; |
| vec.bv_len = PAGE_SIZE; |
| vec.bv_offset = 0; |
| } |
| |
| ret = __zram_bvec_write(zram, &vec, index, bio); |
| out: |
| if (is_partial_io(bvec)) |
| __free_page(page); |
| return ret; |
| } |
| |
| /* |
| * zram_bio_discard - handler on discard request |
| * @index: physical block index in PAGE_SIZE units |
| * @offset: byte offset within physical block |
| */ |
| static void zram_bio_discard(struct zram *zram, u32 index, |
| int offset, struct bio *bio) |
| { |
| size_t n = bio->bi_iter.bi_size; |
| |
| /* |
| * zram manages data in physical block size units. Because logical block |
| * size isn't identical with physical block size on some arch, we |
| * could get a discard request pointing to a specific offset within a |
| * certain physical block. Although we can handle this request by |
| * reading that physiclal block and decompressing and partially zeroing |
| * and re-compressing and then re-storing it, this isn't reasonable |
| * because our intent with a discard request is to save memory. So |
| * skipping this logical block is appropriate here. |
| */ |
| if (offset) { |
| if (n <= (PAGE_SIZE - offset)) |
| return; |
| |
| n -= (PAGE_SIZE - offset); |
| index++; |
| } |
| |
| while (n >= PAGE_SIZE) { |
| zram_slot_lock(zram, index); |
| zram_free_page(zram, index); |
| zram_slot_unlock(zram, index); |
| atomic64_inc(&zram->stats.notify_free); |
| index++; |
| n -= PAGE_SIZE; |
| } |
| } |
| |
| /* |
| * Returns errno if it has some problem. Otherwise return 0 or 1. |
| * Returns 0 if IO request was done synchronously |
| * Returns 1 if IO request was successfully submitted. |
| */ |
| static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index, |
| int offset, int rw, struct bio *bio) |
| { |
| unsigned long start_time = jiffies; |
| int ret; |
| |
| generic_start_io_acct(rw, bvec->bv_len >> SECTOR_SHIFT, |
| &zram->disk->part0); |
| |
| if (rw == READ) { |
| atomic64_inc(&zram->stats.num_reads); |
| ret = zram_bvec_read(zram, bvec, index, offset, bio); |
| flush_dcache_page(bvec->bv_page); |
| } else { |
| atomic64_inc(&zram->stats.num_writes); |
| ret = zram_bvec_write(zram, bvec, index, offset, bio); |
| } |
| |
| generic_end_io_acct(rw, &zram->disk->part0, start_time); |
| |
| zram_slot_lock(zram, index); |
| zram_accessed(zram, index); |
| zram_slot_unlock(zram, index); |
| |
| if (unlikely(ret < 0)) { |
| if (rw == READ) |
| atomic64_inc(&zram->stats.failed_reads); |
| else |
| atomic64_inc(&zram->stats.failed_writes); |
| } |
| |
| return ret; |
| } |
| |
| static void __zram_make_request(struct zram *zram, struct bio *bio) |
| { |
| int offset, rw; |
| u32 index; |
| struct bio_vec bvec; |
| struct bvec_iter iter; |
| |
| index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; |
| offset = (bio->bi_iter.bi_sector & |
| (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT; |
| |
| if (unlikely(bio->bi_rw & REQ_DISCARD)) { |
| zram_bio_discard(zram, index, offset, bio); |
| bio_endio(bio); |
| return; |
| } |
| |
| rw = bio_data_dir(bio); |
| bio_for_each_segment(bvec, bio, iter) { |
| struct bio_vec bv = bvec; |
| unsigned int unwritten = bvec.bv_len; |
| |
| do { |
| bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset, |
| unwritten); |
| if (zram_bvec_rw(zram, &bv, index, offset, rw, bio) < 0) |
| goto out; |
| |
| bv.bv_offset += bv.bv_len; |
| unwritten -= bv.bv_len; |
| |
| update_position(&index, &offset, &bv); |
| } while (unwritten); |
| } |
| |
| bio_endio(bio); |
| return; |
| |
| out: |
| bio_io_error(bio); |
| } |
| |
| /* |
| * Handler function for all zram I/O requests. |
| */ |
| static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio) |
| { |
| struct zram *zram = queue->queuedata; |
| |
| if (!valid_io_request(zram, bio->bi_iter.bi_sector, |
| bio->bi_iter.bi_size)) { |
| atomic64_inc(&zram->stats.invalid_io); |
| goto error; |
| } |
| |
| __zram_make_request(zram, bio); |
| return BLK_QC_T_NONE; |
| |
| error: |
| bio_io_error(bio); |
| return BLK_QC_T_NONE; |
| } |
| |
| static void zram_slot_free_notify(struct block_device *bdev, |
| unsigned long index) |
| { |
| struct zram *zram; |
| |
| zram = bdev->bd_disk->private_data; |
| |
| atomic64_inc(&zram->stats.notify_free); |
| if (!zram_slot_trylock(zram, index)) { |
| atomic64_inc(&zram->stats.miss_free); |
| return; |
| } |
| |
| zram_free_page(zram, index); |
| zram_slot_unlock(zram, index); |
| } |
| |
| static int zram_rw_page(struct block_device *bdev, sector_t sector, |
| struct page *page, int rw) |
| { |
| int offset, ret; |
| u32 index; |
| struct zram *zram; |
| struct bio_vec bv; |
| |
| zram = bdev->bd_disk->private_data; |
| |
| if (!valid_io_request(zram, sector, PAGE_SIZE)) { |
| atomic64_inc(&zram->stats.invalid_io); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| index = sector >> SECTORS_PER_PAGE_SHIFT; |
| offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT; |
| |
| bv.bv_page = page; |
| bv.bv_len = PAGE_SIZE; |
| bv.bv_offset = 0; |
| |
| ret = zram_bvec_rw(zram, &bv, index, offset, rw, NULL); |
| out: |
| /* |
| * If I/O fails, just return error(ie, non-zero) without |
| * calling page_endio. |
| * It causes resubmit the I/O with bio request by upper functions |
| * of rw_page(e.g., swap_readpage, __swap_writepage) and |
| * bio->bi_end_io does things to handle the error |
| * (e.g., SetPageError, set_page_dirty and extra works). |
| */ |
| if (unlikely(ret < 0)) |
| return ret; |
| |
| switch (ret) { |
| case 0: |
| page_endio(page, rw, 0); |
| break; |
| case 1: |
| ret = 0; |
| break; |
| default: |
| WARN_ON(1); |
| } |
| return ret; |
| } |
| |
| static void zram_reset_device(struct zram *zram) |
| { |
| struct zcomp *comp; |
| u64 disksize; |
| |
| down_write(&zram->init_lock); |
| |
| zram->limit_pages = 0; |
| |
| if (!init_done(zram)) { |
| up_write(&zram->init_lock); |
| return; |
| } |
| |
| comp = zram->comp; |
| disksize = zram->disksize; |
| zram->disksize = 0; |
| |
| set_capacity(zram->disk, 0); |
| part_stat_set_all(&zram->disk->part0, 0); |
| |
| up_write(&zram->init_lock); |
| /* I/O operation under all of CPU are done so let's free */ |
| zram_meta_free(zram, disksize); |
| memset(&zram->stats, 0, sizeof(zram->stats)); |
| zcomp_destroy(comp); |
| reset_bdev(zram); |
| } |
| |
| static ssize_t disksize_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| u64 disksize; |
| struct zcomp *comp; |
| struct zram *zram = dev_to_zram(dev); |
| int err; |
| |
| disksize = memparse(buf, NULL); |
| if (!disksize) |
| return -EINVAL; |
| |
| down_write(&zram->init_lock); |
| if (init_done(zram)) { |
| pr_info("Cannot change disksize for initialized device\n"); |
| err = -EBUSY; |
| goto out_unlock; |
| } |
| |
| disksize = PAGE_ALIGN(disksize); |
| if (!zram_meta_alloc(zram, disksize)) { |
| err = -ENOMEM; |
| goto out_unlock; |
| } |
| |
| comp = zcomp_create(zram->compressor); |
| if (IS_ERR(comp)) { |
| pr_err("Cannot initialise %s compressing backend\n", |
| zram->compressor); |
| err = PTR_ERR(comp); |
| goto out_free_meta; |
| } |
| |
| zram->comp = comp; |
| zram->disksize = disksize; |
| set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT); |
| |
| revalidate_disk(zram->disk); |
| up_write(&zram->init_lock); |
| |
| return len; |
| |
| out_free_meta: |
| zram_meta_free(zram, disksize); |
| out_unlock: |
| up_write(&zram->init_lock); |
| return err; |
| } |
| |
| static ssize_t reset_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| int ret; |
| unsigned short do_reset; |
| struct zram *zram; |
| struct block_device *bdev; |
| |
| ret = kstrtou16(buf, 10, &do_reset); |
| if (ret) |
| return ret; |
| |
| if (!do_reset) |
| return -EINVAL; |
| |
| zram = dev_to_zram(dev); |
| bdev = bdget_disk(zram->disk, 0); |
| if (!bdev) |
| return -ENOMEM; |
| |
| mutex_lock(&bdev->bd_mutex); |
| /* Do not reset an active device or claimed device */ |
| if (bdev->bd_openers || zram->claim) { |
| mutex_unlock(&bdev->bd_mutex); |
| bdput(bdev); |
| return -EBUSY; |
| } |
| |
| /* From now on, anyone can't open /dev/zram[0-9] */ |
| zram->claim = true; |
| mutex_unlock(&bdev->bd_mutex); |
| #ifdef CONFIG_ZRAM_LRU_WRITEBACK |
| stop_lru_writeback(zram); |
| #endif |
| /* Make sure all the pending I/O are finished */ |
| fsync_bdev(bdev); |
| zram_reset_device(zram); |
| revalidate_disk(zram->disk); |
| bdput(bdev); |
| |
| mutex_lock(&bdev->bd_mutex); |
| zram->claim = false; |
| mutex_unlock(&bdev->bd_mutex); |
| |
| return len; |
| } |
| |
| static int zram_open(struct block_device *bdev, fmode_t mode) |
| { |
| int ret = 0; |
| struct zram *zram; |
| |
| WARN_ON(!mutex_is_locked(&bdev->bd_mutex)); |
| |
| zram = bdev->bd_disk->private_data; |
| /* zram was claimed to reset so open request fails */ |
| if (zram->claim) |
| ret = -EBUSY; |
| |
| return ret; |
| } |
| |
| static const struct block_device_operations zram_devops = { |
| .open = zram_open, |
| .swap_slot_free_notify = zram_slot_free_notify, |
| .rw_page = zram_rw_page, |
| .owner = THIS_MODULE |
| }; |
| |
| static DEVICE_ATTR_WO(compact); |
| static DEVICE_ATTR_RW(disksize); |
| static DEVICE_ATTR_RO(initstate); |
| static DEVICE_ATTR_WO(reset); |
| static DEVICE_ATTR_WO(mem_limit); |
| static DEVICE_ATTR_WO(mem_used_max); |
| static DEVICE_ATTR_WO(idle); |
| static DEVICE_ATTR_RW(max_comp_streams); |
| static DEVICE_ATTR_RW(comp_algorithm); |
| #ifdef CONFIG_ZRAM_WRITEBACK |
| static DEVICE_ATTR_RW(backing_dev); |
| static DEVICE_ATTR_WO(writeback); |
| static DEVICE_ATTR_RW(writeback_limit); |
| static DEVICE_ATTR_RW(writeback_limit_enable); |
| #endif |
| |
| static struct attribute *zram_disk_attrs[] = { |
| &dev_attr_disksize.attr, |
| &dev_attr_initstate.attr, |
| &dev_attr_reset.attr, |
| &dev_attr_compact.attr, |
| &dev_attr_mem_limit.attr, |
| &dev_attr_mem_used_max.attr, |
| &dev_attr_idle.attr, |
| &dev_attr_max_comp_streams.attr, |
| &dev_attr_comp_algorithm.attr, |
| #ifdef CONFIG_ZRAM_WRITEBACK |
| &dev_attr_backing_dev.attr, |
| &dev_attr_writeback.attr, |
| &dev_attr_writeback_limit.attr, |
| &dev_attr_writeback_limit_enable.attr, |
| #endif |
| &dev_attr_io_stat.attr, |
| &dev_attr_mm_stat.attr, |
| #ifdef CONFIG_ZRAM_WRITEBACK |
| &dev_attr_bd_stat.attr, |
| #endif |
| &dev_attr_debug_stat.attr, |
| NULL, |
| }; |
| |
| static const struct attribute_group zram_disk_attr_group = { |
| .attrs = zram_disk_attrs, |
| }; |
| |
| static const struct attribute_group *zram_disk_attr_groups[] = { |
| &zram_disk_attr_group, |
| NULL, |
| }; |
| |
| /* |
| * Allocate and initialize new zram device. the function returns |
| * '>= 0' device_id upon success, and negative value otherwise. |
| */ |
| static int zram_add(void) |
| { |
| struct zram *zram; |
| struct request_queue *queue; |
| int ret, device_id; |
| |
| zram = kzalloc(sizeof(struct zram), GFP_KERNEL); |
| if (!zram) |
| return -ENOMEM; |
| |
| ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL); |
| if (ret < 0) |
| goto out_free_dev; |
| device_id = ret; |
| |
| init_rwsem(&zram->init_lock); |
| #ifdef CONFIG_ZRAM_WRITEBACK |
| spin_lock_init(&zram->wb_limit_lock); |
| #endif |
| #ifdef CONFIG_ZRAM_LRU_WRITEBACK |
| INIT_LIST_HEAD(&zram->list); |
| spin_lock_init(&zram->list_lock); |
| spin_lock_init(&zram->wb_table_lock); |
| spin_lock_init(&zram->bitmap_lock); |
| #endif |
| queue = blk_alloc_queue(GFP_KERNEL); |
| if (!queue) { |
| pr_err("Error allocating disk queue for device %d\n", |
| device_id); |
| ret = -ENOMEM; |
| goto out_free_idr; |
| } |
| |
| blk_queue_make_request(queue, zram_make_request); |
| |
| /* gendisk structure */ |
| zram->disk = alloc_disk(1); |
| if (!zram->disk) { |
| pr_err("Error allocating disk structure for device %d\n", |
| device_id); |
| ret = -ENOMEM; |
| goto out_free_queue; |
| } |
| |
| zram->disk->major = zram_major; |
| zram->disk->first_minor = device_id; |
| zram->disk->fops = &zram_devops; |
| zram->disk->queue = queue; |
| zram->disk->queue->queuedata = zram; |
| zram->disk->private_data = zram; |
| snprintf(zram->disk->disk_name, 16, "zram%d", device_id); |
| |
| /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */ |
| set_capacity(zram->disk, 0); |
| /* zram devices sort of resembles non-rotational disks */ |
| queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue); |
| queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue); |
| |
| /* |
| * To ensure that we always get PAGE_SIZE aligned |
| * and n*PAGE_SIZED sized I/O requests. |
| */ |
| blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE); |
| blk_queue_logical_block_size(zram->disk->queue, |
| ZRAM_LOGICAL_BLOCK_SIZE); |
| blk_queue_io_min(zram->disk->queue, PAGE_SIZE); |
| blk_queue_io_opt(zram->disk->queue, PAGE_SIZE); |
| zram->disk->queue->limits.discard_granularity = PAGE_SIZE; |
| blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX); |
| /* |
| * zram_bio_discard() will clear all logical blocks if logical block |
| * size is identical with physical block size(PAGE_SIZE). But if it is |
| * different, we will skip discarding some parts of logical blocks in |
| * the part of the request range which isn't aligned to physical block |
| * size. So we can't ensure that all discarded logical blocks are |
| * zeroed. |
| */ |
| if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE) |
| zram->disk->queue->limits.discard_zeroes_data = 1; |
| else |
| zram->disk->queue->limits.discard_zeroes_data = 0; |
| queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue); |
| |
| zram->disk->queue->backing_dev_info.capabilities |= |
| BDI_CAP_STABLE_WRITES; |
| disk_to_dev(zram->disk)->groups = zram_disk_attr_groups; |
| add_disk(zram->disk); |
| |
| strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor)); |
| |
| zram_debugfs_register(zram); |
| pr_info("Added device: %s\n", zram->disk->disk_name); |
| return device_id; |
| |
| out_free_queue: |
| blk_cleanup_queue(queue); |
| out_free_idr: |
| idr_remove(&zram_index_idr, device_id); |
| out_free_dev: |
| kfree(zram); |
| return ret; |
| } |
| |
| static int zram_remove(struct zram *zram) |
| { |
| struct block_device *bdev; |
| |
| bdev = bdget_disk(zram->disk, 0); |
| if (!bdev) |
| return -ENOMEM; |
| |
| mutex_lock(&bdev->bd_mutex); |
| if (bdev->bd_openers || zram->claim) { |
| mutex_unlock(&bdev->bd_mutex); |
| bdput(bdev); |
| return -EBUSY; |
| } |
| |
| zram->claim = true; |
| mutex_unlock(&bdev->bd_mutex); |
| |
| #ifdef CONFIG_ZRAM_LRU_WRITEBACK |
| stop_lru_writeback(zram); |
| #endif |
| zram_debugfs_unregister(zram); |
| |
| /* Make sure all the pending I/O are finished */ |
| fsync_bdev(bdev); |
| zram_reset_device(zram); |
| bdput(bdev); |
| |
| pr_info("Removed device: %s\n", zram->disk->disk_name); |
| |
| del_gendisk(zram->disk); |
| blk_cleanup_queue(zram->disk->queue); |
| put_disk(zram->disk); |
| kfree(zram); |
| return 0; |
| } |
| |
| /* zram-control sysfs attributes */ |
| static ssize_t hot_add_show(struct class *class, |
| struct class_attribute *attr, |
| char *buf) |
| { |
| int ret; |
| |
| mutex_lock(&zram_index_mutex); |
| ret = zram_add(); |
| mutex_unlock(&zram_index_mutex); |
| |
| if (ret < 0) |
| return ret; |
| return scnprintf(buf, PAGE_SIZE, "%d\n", ret); |
| } |
| |
| static ssize_t hot_remove_store(struct class *class, |
| struct class_attribute *attr, |
| const char *buf, |
| size_t count) |
| { |
| struct zram *zram; |
| int ret, dev_id; |
| |
| /* dev_id is gendisk->first_minor, which is `int' */ |
| ret = kstrtoint(buf, 10, &dev_id); |
| if (ret) |
| return ret; |
| if (dev_id < 0) |
| return -EINVAL; |
| |
| mutex_lock(&zram_index_mutex); |
| |
| zram = idr_find(&zram_index_idr, dev_id); |
| if (zram) { |
| ret = zram_remove(zram); |
| if (!ret) |
| idr_remove(&zram_index_idr, dev_id); |
| } else { |
| ret = -ENODEV; |
| } |
| |
| mutex_unlock(&zram_index_mutex); |
| return ret ? ret : count; |
| } |
| |
| /* |
| * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a |
| * sense that reading from this file does alter the state of your system -- it |
| * creates a new un-initialized zram device and returns back this device's |
| * device_id (or an error code if it fails to create a new device). |
| */ |
| static struct class_attribute zram_control_class_attrs[] = { |
| __ATTR(hot_add, 0400, hot_add_show, NULL), |
| __ATTR_WO(hot_remove), |
| __ATTR_NULL, |
| }; |
| |
| static struct class zram_control_class = { |
| .name = "zram-control", |
| .owner = THIS_MODULE, |
| .class_attrs = zram_control_class_attrs, |
| }; |
| |
| static int zram_remove_cb(int id, void *ptr, void *data) |
| { |
| zram_remove(ptr); |
| return 0; |
| } |
| |
| static void destroy_devices(void) |
| { |
| class_unregister(&zram_control_class); |
| idr_for_each(&zram_index_idr, &zram_remove_cb, NULL); |
| zram_debugfs_destroy(); |
| idr_destroy(&zram_index_idr); |
| unregister_blkdev(zram_major, "zram"); |
| } |
| |
| static int zram_size_notifier(struct notifier_block *nb, |
| unsigned long action, void *data) |
| { |
| struct seq_file *s; |
| |
| s = (struct seq_file *)data; |
| if (s) |
| seq_printf(s, "ZramDevice: %8lu kB\n", |
| (unsigned long)zram_pool_total_size >> 10); |
| else |
| pr_cont("ZramDevice:%lukB ", |
| (unsigned long)zram_pool_total_size >> 10); |
| return 0; |
| } |
| |
| static struct notifier_block zram_size_nb = { |
| .notifier_call = zram_size_notifier, |
| }; |
| |
| |
| static int __init zram_init(void) |
| { |
| int ret; |
| |
| ret = class_register(&zram_control_class); |
| if (ret) { |
| pr_err("Unable to register zram-control class\n"); |
| return ret; |
| } |
| |
| zram_debugfs_create(); |
| zram_major = register_blkdev(0, "zram"); |
| if (zram_major <= 0) { |
| pr_err("Unable to get major number\n"); |
| class_unregister(&zram_control_class); |
| return -EBUSY; |
| } |
| |
| while (num_devices != 0) { |
| mutex_lock(&zram_index_mutex); |
| ret = zram_add(); |
| mutex_unlock(&zram_index_mutex); |
| if (ret < 0) |
| goto out_error; |
| num_devices--; |
| } |
| |
| show_mem_extra_notifier_register(&zram_size_nb); |
| #ifdef CONFIG_ZRAM_LRU_WRITEBACK |
| am_app_launch_notifier_register(&zram_app_launch_nb); |
| #endif |
| return 0; |
| |
| out_error: |
| destroy_devices(); |
| return ret; |
| } |
| |
| static void __exit zram_exit(void) |
| { |
| #ifdef CONFIG_ZRAM_LRU_WRITEBACK |
| am_app_launch_notifier_unregister(&zram_app_launch_nb); |
| #endif |
| destroy_devices(); |
| } |
| |
| module_init(zram_init); |
| module_exit(zram_exit); |
| |
| module_param(num_devices, uint, 0); |
| MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices"); |
| |
| MODULE_LICENSE("Dual BSD/GPL"); |
| MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); |
| MODULE_DESCRIPTION("Compressed RAM Block Device"); |