| /* |
| * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.4 $) |
| * |
| * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> |
| * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> |
| * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de> |
| * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com> |
| * |
| * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or (at |
| * your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, write to the Free Software Foundation, Inc., |
| * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. |
| * |
| * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/smp.h> |
| #include <linux/sched.h> |
| #include <linux/cpufreq.h> |
| #include <linux/compiler.h> |
| #include <linux/dmi.h> |
| |
| #include <linux/acpi.h> |
| #include <acpi/processor.h> |
| |
| #include <asm/io.h> |
| #include <asm/msr.h> |
| #include <asm/processor.h> |
| #include <asm/cpufeature.h> |
| #include <asm/delay.h> |
| #include <asm/uaccess.h> |
| |
| #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg) |
| |
| MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski"); |
| MODULE_DESCRIPTION("ACPI Processor P-States Driver"); |
| MODULE_LICENSE("GPL"); |
| |
| enum { |
| UNDEFINED_CAPABLE = 0, |
| SYSTEM_INTEL_MSR_CAPABLE, |
| SYSTEM_IO_CAPABLE, |
| }; |
| |
| #define INTEL_MSR_RANGE (0xffff) |
| #define CPUID_6_ECX_APERFMPERF_CAPABILITY (0x1) |
| |
| struct acpi_cpufreq_data { |
| struct acpi_processor_performance *acpi_data; |
| struct cpufreq_frequency_table *freq_table; |
| unsigned int max_freq; |
| unsigned int resume; |
| unsigned int cpu_feature; |
| }; |
| |
| static struct acpi_cpufreq_data *drv_data[NR_CPUS]; |
| /* acpi_perf_data is a pointer to percpu data. */ |
| static struct acpi_processor_performance *acpi_perf_data; |
| |
| static struct cpufreq_driver acpi_cpufreq_driver; |
| |
| static unsigned int acpi_pstate_strict; |
| |
| static int check_est_cpu(unsigned int cpuid) |
| { |
| struct cpuinfo_x86 *cpu = &cpu_data[cpuid]; |
| |
| if (cpu->x86_vendor != X86_VENDOR_INTEL || |
| !cpu_has(cpu, X86_FEATURE_EST)) |
| return 0; |
| |
| return 1; |
| } |
| |
| static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data) |
| { |
| struct acpi_processor_performance *perf; |
| int i; |
| |
| perf = data->acpi_data; |
| |
| for (i=0; i<perf->state_count; i++) { |
| if (value == perf->states[i].status) |
| return data->freq_table[i].frequency; |
| } |
| return 0; |
| } |
| |
| static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data) |
| { |
| int i; |
| struct acpi_processor_performance *perf; |
| |
| msr &= INTEL_MSR_RANGE; |
| perf = data->acpi_data; |
| |
| for (i=0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) { |
| if (msr == perf->states[data->freq_table[i].index].status) |
| return data->freq_table[i].frequency; |
| } |
| return data->freq_table[0].frequency; |
| } |
| |
| static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data) |
| { |
| switch (data->cpu_feature) { |
| case SYSTEM_INTEL_MSR_CAPABLE: |
| return extract_msr(val, data); |
| case SYSTEM_IO_CAPABLE: |
| return extract_io(val, data); |
| default: |
| return 0; |
| } |
| } |
| |
| struct msr_addr { |
| u32 reg; |
| }; |
| |
| struct io_addr { |
| u16 port; |
| u8 bit_width; |
| }; |
| |
| typedef union { |
| struct msr_addr msr; |
| struct io_addr io; |
| } drv_addr_union; |
| |
| struct drv_cmd { |
| unsigned int type; |
| cpumask_t mask; |
| drv_addr_union addr; |
| u32 val; |
| }; |
| |
| static void do_drv_read(struct drv_cmd *cmd) |
| { |
| u32 h; |
| |
| switch (cmd->type) { |
| case SYSTEM_INTEL_MSR_CAPABLE: |
| rdmsr(cmd->addr.msr.reg, cmd->val, h); |
| break; |
| case SYSTEM_IO_CAPABLE: |
| acpi_os_read_port((acpi_io_address)cmd->addr.io.port, |
| &cmd->val, |
| (u32)cmd->addr.io.bit_width); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void do_drv_write(struct drv_cmd *cmd) |
| { |
| u32 lo, hi; |
| |
| switch (cmd->type) { |
| case SYSTEM_INTEL_MSR_CAPABLE: |
| rdmsr(cmd->addr.msr.reg, lo, hi); |
| lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE); |
| wrmsr(cmd->addr.msr.reg, lo, hi); |
| break; |
| case SYSTEM_IO_CAPABLE: |
| acpi_os_write_port((acpi_io_address)cmd->addr.io.port, |
| cmd->val, |
| (u32)cmd->addr.io.bit_width); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void drv_read(struct drv_cmd *cmd) |
| { |
| cpumask_t saved_mask = current->cpus_allowed; |
| cmd->val = 0; |
| |
| set_cpus_allowed(current, cmd->mask); |
| do_drv_read(cmd); |
| set_cpus_allowed(current, saved_mask); |
| } |
| |
| static void drv_write(struct drv_cmd *cmd) |
| { |
| cpumask_t saved_mask = current->cpus_allowed; |
| unsigned int i; |
| |
| for_each_cpu_mask(i, cmd->mask) { |
| set_cpus_allowed(current, cpumask_of_cpu(i)); |
| do_drv_write(cmd); |
| } |
| |
| set_cpus_allowed(current, saved_mask); |
| return; |
| } |
| |
| static u32 get_cur_val(cpumask_t mask) |
| { |
| struct acpi_processor_performance *perf; |
| struct drv_cmd cmd; |
| |
| if (unlikely(cpus_empty(mask))) |
| return 0; |
| |
| switch (drv_data[first_cpu(mask)]->cpu_feature) { |
| case SYSTEM_INTEL_MSR_CAPABLE: |
| cmd.type = SYSTEM_INTEL_MSR_CAPABLE; |
| cmd.addr.msr.reg = MSR_IA32_PERF_STATUS; |
| break; |
| case SYSTEM_IO_CAPABLE: |
| cmd.type = SYSTEM_IO_CAPABLE; |
| perf = drv_data[first_cpu(mask)]->acpi_data; |
| cmd.addr.io.port = perf->control_register.address; |
| cmd.addr.io.bit_width = perf->control_register.bit_width; |
| break; |
| default: |
| return 0; |
| } |
| |
| cmd.mask = mask; |
| |
| drv_read(&cmd); |
| |
| dprintk("get_cur_val = %u\n", cmd.val); |
| |
| return cmd.val; |
| } |
| |
| /* |
| * Return the measured active (C0) frequency on this CPU since last call |
| * to this function. |
| * Input: cpu number |
| * Return: Average CPU frequency in terms of max frequency (zero on error) |
| * |
| * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance |
| * over a period of time, while CPU is in C0 state. |
| * IA32_MPERF counts at the rate of max advertised frequency |
| * IA32_APERF counts at the rate of actual CPU frequency |
| * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and |
| * no meaning should be associated with absolute values of these MSRs. |
| */ |
| static unsigned int get_measured_perf(unsigned int cpu) |
| { |
| union { |
| struct { |
| u32 lo; |
| u32 hi; |
| } split; |
| u64 whole; |
| } aperf_cur, mperf_cur; |
| |
| cpumask_t saved_mask; |
| unsigned int perf_percent; |
| unsigned int retval; |
| |
| saved_mask = current->cpus_allowed; |
| set_cpus_allowed(current, cpumask_of_cpu(cpu)); |
| if (get_cpu() != cpu) { |
| /* We were not able to run on requested processor */ |
| put_cpu(); |
| return 0; |
| } |
| |
| rdmsr(MSR_IA32_APERF, aperf_cur.split.lo, aperf_cur.split.hi); |
| rdmsr(MSR_IA32_MPERF, mperf_cur.split.lo, mperf_cur.split.hi); |
| |
| wrmsr(MSR_IA32_APERF, 0,0); |
| wrmsr(MSR_IA32_MPERF, 0,0); |
| |
| #ifdef __i386__ |
| /* |
| * We dont want to do 64 bit divide with 32 bit kernel |
| * Get an approximate value. Return failure in case we cannot get |
| * an approximate value. |
| */ |
| if (unlikely(aperf_cur.split.hi || mperf_cur.split.hi)) { |
| int shift_count; |
| u32 h; |
| |
| h = max_t(u32, aperf_cur.split.hi, mperf_cur.split.hi); |
| shift_count = fls(h); |
| |
| aperf_cur.whole >>= shift_count; |
| mperf_cur.whole >>= shift_count; |
| } |
| |
| if (((unsigned long)(-1) / 100) < aperf_cur.split.lo) { |
| int shift_count = 7; |
| aperf_cur.split.lo >>= shift_count; |
| mperf_cur.split.lo >>= shift_count; |
| } |
| |
| if (aperf_cur.split.lo && mperf_cur.split.lo) |
| perf_percent = (aperf_cur.split.lo * 100) / mperf_cur.split.lo; |
| else |
| perf_percent = 0; |
| |
| #else |
| if (unlikely(((unsigned long)(-1) / 100) < aperf_cur.whole)) { |
| int shift_count = 7; |
| aperf_cur.whole >>= shift_count; |
| mperf_cur.whole >>= shift_count; |
| } |
| |
| if (aperf_cur.whole && mperf_cur.whole) |
| perf_percent = (aperf_cur.whole * 100) / mperf_cur.whole; |
| else |
| perf_percent = 0; |
| |
| #endif |
| |
| retval = drv_data[cpu]->max_freq * perf_percent / 100; |
| |
| put_cpu(); |
| set_cpus_allowed(current, saved_mask); |
| |
| dprintk("cpu %d: performance percent %d\n", cpu, perf_percent); |
| return retval; |
| } |
| |
| static unsigned int get_cur_freq_on_cpu(unsigned int cpu) |
| { |
| struct acpi_cpufreq_data *data = drv_data[cpu]; |
| unsigned int freq; |
| |
| dprintk("get_cur_freq_on_cpu (%d)\n", cpu); |
| |
| if (unlikely(data == NULL || |
| data->acpi_data == NULL || data->freq_table == NULL)) { |
| return 0; |
| } |
| |
| freq = extract_freq(get_cur_val(cpumask_of_cpu(cpu)), data); |
| dprintk("cur freq = %u\n", freq); |
| |
| return freq; |
| } |
| |
| static unsigned int check_freqs(cpumask_t mask, unsigned int freq, |
| struct acpi_cpufreq_data *data) |
| { |
| unsigned int cur_freq; |
| unsigned int i; |
| |
| for (i=0; i<100; i++) { |
| cur_freq = extract_freq(get_cur_val(mask), data); |
| if (cur_freq == freq) |
| return 1; |
| udelay(10); |
| } |
| return 0; |
| } |
| |
| static int acpi_cpufreq_target(struct cpufreq_policy *policy, |
| unsigned int target_freq, unsigned int relation) |
| { |
| struct acpi_cpufreq_data *data = drv_data[policy->cpu]; |
| struct acpi_processor_performance *perf; |
| struct cpufreq_freqs freqs; |
| cpumask_t online_policy_cpus; |
| struct drv_cmd cmd; |
| unsigned int next_state = 0; /* Index into freq_table */ |
| unsigned int next_perf_state = 0; /* Index into perf table */ |
| unsigned int i; |
| int result = 0; |
| |
| dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu); |
| |
| if (unlikely(data == NULL || |
| data->acpi_data == NULL || data->freq_table == NULL)) { |
| return -ENODEV; |
| } |
| |
| perf = data->acpi_data; |
| result = cpufreq_frequency_table_target(policy, |
| data->freq_table, |
| target_freq, |
| relation, &next_state); |
| if (unlikely(result)) |
| return -ENODEV; |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| /* cpufreq holds the hotplug lock, so we are safe from here on */ |
| cpus_and(online_policy_cpus, cpu_online_map, policy->cpus); |
| #else |
| online_policy_cpus = policy->cpus; |
| #endif |
| |
| next_perf_state = data->freq_table[next_state].index; |
| if (perf->state == next_perf_state) { |
| if (unlikely(data->resume)) { |
| dprintk("Called after resume, resetting to P%d\n", |
| next_perf_state); |
| data->resume = 0; |
| } else { |
| dprintk("Already at target state (P%d)\n", |
| next_perf_state); |
| return 0; |
| } |
| } |
| |
| switch (data->cpu_feature) { |
| case SYSTEM_INTEL_MSR_CAPABLE: |
| cmd.type = SYSTEM_INTEL_MSR_CAPABLE; |
| cmd.addr.msr.reg = MSR_IA32_PERF_CTL; |
| cmd.val = (u32) perf->states[next_perf_state].control; |
| break; |
| case SYSTEM_IO_CAPABLE: |
| cmd.type = SYSTEM_IO_CAPABLE; |
| cmd.addr.io.port = perf->control_register.address; |
| cmd.addr.io.bit_width = perf->control_register.bit_width; |
| cmd.val = (u32) perf->states[next_perf_state].control; |
| break; |
| default: |
| return -ENODEV; |
| } |
| |
| cpus_clear(cmd.mask); |
| |
| if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY) |
| cmd.mask = online_policy_cpus; |
| else |
| cpu_set(policy->cpu, cmd.mask); |
| |
| freqs.old = perf->states[perf->state].core_frequency * 1000; |
| freqs.new = data->freq_table[next_state].frequency; |
| for_each_cpu_mask(i, cmd.mask) { |
| freqs.cpu = i; |
| cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); |
| } |
| |
| drv_write(&cmd); |
| |
| if (acpi_pstate_strict) { |
| if (!check_freqs(cmd.mask, freqs.new, data)) { |
| dprintk("acpi_cpufreq_target failed (%d)\n", |
| policy->cpu); |
| return -EAGAIN; |
| } |
| } |
| |
| for_each_cpu_mask(i, cmd.mask) { |
| freqs.cpu = i; |
| cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); |
| } |
| perf->state = next_perf_state; |
| |
| return result; |
| } |
| |
| static int acpi_cpufreq_verify(struct cpufreq_policy *policy) |
| { |
| struct acpi_cpufreq_data *data = drv_data[policy->cpu]; |
| |
| dprintk("acpi_cpufreq_verify\n"); |
| |
| return cpufreq_frequency_table_verify(policy, data->freq_table); |
| } |
| |
| static unsigned long |
| acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu) |
| { |
| struct acpi_processor_performance *perf = data->acpi_data; |
| |
| if (cpu_khz) { |
| /* search the closest match to cpu_khz */ |
| unsigned int i; |
| unsigned long freq; |
| unsigned long freqn = perf->states[0].core_frequency * 1000; |
| |
| for (i=0; i<(perf->state_count-1); i++) { |
| freq = freqn; |
| freqn = perf->states[i+1].core_frequency * 1000; |
| if ((2 * cpu_khz) > (freqn + freq)) { |
| perf->state = i; |
| return freq; |
| } |
| } |
| perf->state = perf->state_count-1; |
| return freqn; |
| } else { |
| /* assume CPU is at P0... */ |
| perf->state = 0; |
| return perf->states[0].core_frequency * 1000; |
| } |
| } |
| |
| /* |
| * acpi_cpufreq_early_init - initialize ACPI P-States library |
| * |
| * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c) |
| * in order to determine correct frequency and voltage pairings. We can |
| * do _PDC and _PSD and find out the processor dependency for the |
| * actual init that will happen later... |
| */ |
| static int __init acpi_cpufreq_early_init(void) |
| { |
| dprintk("acpi_cpufreq_early_init\n"); |
| |
| acpi_perf_data = alloc_percpu(struct acpi_processor_performance); |
| if (!acpi_perf_data) { |
| dprintk("Memory allocation error for acpi_perf_data.\n"); |
| return -ENOMEM; |
| } |
| |
| /* Do initialization in ACPI core */ |
| acpi_processor_preregister_performance(acpi_perf_data); |
| return 0; |
| } |
| |
| #ifdef CONFIG_SMP |
| /* |
| * Some BIOSes do SW_ANY coordination internally, either set it up in hw |
| * or do it in BIOS firmware and won't inform about it to OS. If not |
| * detected, this has a side effect of making CPU run at a different speed |
| * than OS intended it to run at. Detect it and handle it cleanly. |
| */ |
| static int bios_with_sw_any_bug; |
| |
| static int sw_any_bug_found(const struct dmi_system_id *d) |
| { |
| bios_with_sw_any_bug = 1; |
| return 0; |
| } |
| |
| static const struct dmi_system_id sw_any_bug_dmi_table[] = { |
| { |
| .callback = sw_any_bug_found, |
| .ident = "Supermicro Server X6DLP", |
| .matches = { |
| DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"), |
| DMI_MATCH(DMI_BIOS_VERSION, "080010"), |
| DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"), |
| }, |
| }, |
| { } |
| }; |
| #endif |
| |
| static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy) |
| { |
| unsigned int i; |
| unsigned int valid_states = 0; |
| unsigned int cpu = policy->cpu; |
| struct acpi_cpufreq_data *data; |
| unsigned int result = 0; |
| struct cpuinfo_x86 *c = &cpu_data[policy->cpu]; |
| struct acpi_processor_performance *perf; |
| |
| dprintk("acpi_cpufreq_cpu_init\n"); |
| |
| data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| |
| data->acpi_data = percpu_ptr(acpi_perf_data, cpu); |
| drv_data[cpu] = data; |
| |
| if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) |
| acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS; |
| |
| result = acpi_processor_register_performance(data->acpi_data, cpu); |
| if (result) |
| goto err_free; |
| |
| perf = data->acpi_data; |
| policy->shared_type = perf->shared_type; |
| |
| /* |
| * Will let policy->cpus know about dependency only when software |
| * coordination is required. |
| */ |
| if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL || |
| policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) { |
| policy->cpus = perf->shared_cpu_map; |
| } |
| |
| #ifdef CONFIG_SMP |
| dmi_check_system(sw_any_bug_dmi_table); |
| if (bios_with_sw_any_bug && cpus_weight(policy->cpus) == 1) { |
| policy->shared_type = CPUFREQ_SHARED_TYPE_ALL; |
| policy->cpus = per_cpu(cpu_core_map, cpu); |
| } |
| #endif |
| |
| /* capability check */ |
| if (perf->state_count <= 1) { |
| dprintk("No P-States\n"); |
| result = -ENODEV; |
| goto err_unreg; |
| } |
| |
| if (perf->control_register.space_id != perf->status_register.space_id) { |
| result = -ENODEV; |
| goto err_unreg; |
| } |
| |
| switch (perf->control_register.space_id) { |
| case ACPI_ADR_SPACE_SYSTEM_IO: |
| dprintk("SYSTEM IO addr space\n"); |
| data->cpu_feature = SYSTEM_IO_CAPABLE; |
| break; |
| case ACPI_ADR_SPACE_FIXED_HARDWARE: |
| dprintk("HARDWARE addr space\n"); |
| if (!check_est_cpu(cpu)) { |
| result = -ENODEV; |
| goto err_unreg; |
| } |
| data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE; |
| break; |
| default: |
| dprintk("Unknown addr space %d\n", |
| (u32) (perf->control_register.space_id)); |
| result = -ENODEV; |
| goto err_unreg; |
| } |
| |
| data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * |
| (perf->state_count+1), GFP_KERNEL); |
| if (!data->freq_table) { |
| result = -ENOMEM; |
| goto err_unreg; |
| } |
| |
| /* detect transition latency */ |
| policy->cpuinfo.transition_latency = 0; |
| for (i=0; i<perf->state_count; i++) { |
| if ((perf->states[i].transition_latency * 1000) > |
| policy->cpuinfo.transition_latency) |
| policy->cpuinfo.transition_latency = |
| perf->states[i].transition_latency * 1000; |
| } |
| |
| data->max_freq = perf->states[0].core_frequency * 1000; |
| /* table init */ |
| for (i=0; i<perf->state_count; i++) { |
| if (i>0 && perf->states[i].core_frequency >= |
| data->freq_table[valid_states-1].frequency / 1000) |
| continue; |
| |
| data->freq_table[valid_states].index = i; |
| data->freq_table[valid_states].frequency = |
| perf->states[i].core_frequency * 1000; |
| valid_states++; |
| } |
| data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END; |
| perf->state = 0; |
| |
| result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table); |
| if (result) |
| goto err_freqfree; |
| |
| switch (perf->control_register.space_id) { |
| case ACPI_ADR_SPACE_SYSTEM_IO: |
| /* Current speed is unknown and not detectable by IO port */ |
| policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu); |
| break; |
| case ACPI_ADR_SPACE_FIXED_HARDWARE: |
| acpi_cpufreq_driver.get = get_cur_freq_on_cpu; |
| policy->cur = get_cur_freq_on_cpu(cpu); |
| break; |
| default: |
| break; |
| } |
| |
| /* notify BIOS that we exist */ |
| acpi_processor_notify_smm(THIS_MODULE); |
| |
| /* Check for APERF/MPERF support in hardware */ |
| if (c->x86_vendor == X86_VENDOR_INTEL && c->cpuid_level >= 6) { |
| unsigned int ecx; |
| ecx = cpuid_ecx(6); |
| if (ecx & CPUID_6_ECX_APERFMPERF_CAPABILITY) |
| acpi_cpufreq_driver.getavg = get_measured_perf; |
| } |
| |
| dprintk("CPU%u - ACPI performance management activated.\n", cpu); |
| for (i = 0; i < perf->state_count; i++) |
| dprintk(" %cP%d: %d MHz, %d mW, %d uS\n", |
| (i == perf->state ? '*' : ' '), i, |
| (u32) perf->states[i].core_frequency, |
| (u32) perf->states[i].power, |
| (u32) perf->states[i].transition_latency); |
| |
| cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu); |
| |
| /* |
| * the first call to ->target() should result in us actually |
| * writing something to the appropriate registers. |
| */ |
| data->resume = 1; |
| |
| return result; |
| |
| err_freqfree: |
| kfree(data->freq_table); |
| err_unreg: |
| acpi_processor_unregister_performance(perf, cpu); |
| err_free: |
| kfree(data); |
| drv_data[cpu] = NULL; |
| |
| return result; |
| } |
| |
| static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy) |
| { |
| struct acpi_cpufreq_data *data = drv_data[policy->cpu]; |
| |
| dprintk("acpi_cpufreq_cpu_exit\n"); |
| |
| if (data) { |
| cpufreq_frequency_table_put_attr(policy->cpu); |
| drv_data[policy->cpu] = NULL; |
| acpi_processor_unregister_performance(data->acpi_data, |
| policy->cpu); |
| kfree(data); |
| } |
| |
| return 0; |
| } |
| |
| static int acpi_cpufreq_resume(struct cpufreq_policy *policy) |
| { |
| struct acpi_cpufreq_data *data = drv_data[policy->cpu]; |
| |
| dprintk("acpi_cpufreq_resume\n"); |
| |
| data->resume = 1; |
| |
| return 0; |
| } |
| |
| static struct freq_attr *acpi_cpufreq_attr[] = { |
| &cpufreq_freq_attr_scaling_available_freqs, |
| NULL, |
| }; |
| |
| static struct cpufreq_driver acpi_cpufreq_driver = { |
| .verify = acpi_cpufreq_verify, |
| .target = acpi_cpufreq_target, |
| .init = acpi_cpufreq_cpu_init, |
| .exit = acpi_cpufreq_cpu_exit, |
| .resume = acpi_cpufreq_resume, |
| .name = "acpi-cpufreq", |
| .owner = THIS_MODULE, |
| .attr = acpi_cpufreq_attr, |
| }; |
| |
| static int __init acpi_cpufreq_init(void) |
| { |
| int ret; |
| |
| dprintk("acpi_cpufreq_init\n"); |
| |
| ret = acpi_cpufreq_early_init(); |
| if (ret) |
| return ret; |
| |
| return cpufreq_register_driver(&acpi_cpufreq_driver); |
| } |
| |
| static void __exit acpi_cpufreq_exit(void) |
| { |
| dprintk("acpi_cpufreq_exit\n"); |
| |
| cpufreq_unregister_driver(&acpi_cpufreq_driver); |
| |
| free_percpu(acpi_perf_data); |
| |
| return; |
| } |
| |
| module_param(acpi_pstate_strict, uint, 0644); |
| MODULE_PARM_DESC(acpi_pstate_strict, |
| "value 0 or non-zero. non-zero -> strict ACPI checks are " |
| "performed during frequency changes."); |
| |
| late_initcall(acpi_cpufreq_init); |
| module_exit(acpi_cpufreq_exit); |
| |
| MODULE_ALIAS("acpi"); |