| /* |
| This is a maximally equidistributed combined Tausworthe generator |
| based on code from GNU Scientific Library 1.5 (30 Jun 2004) |
| |
| lfsr113 version: |
| |
| x_n = (s1_n ^ s2_n ^ s3_n ^ s4_n) |
| |
| s1_{n+1} = (((s1_n & 4294967294) << 18) ^ (((s1_n << 6) ^ s1_n) >> 13)) |
| s2_{n+1} = (((s2_n & 4294967288) << 2) ^ (((s2_n << 2) ^ s2_n) >> 27)) |
| s3_{n+1} = (((s3_n & 4294967280) << 7) ^ (((s3_n << 13) ^ s3_n) >> 21)) |
| s4_{n+1} = (((s4_n & 4294967168) << 13) ^ (((s4_n << 3) ^ s4_n) >> 12)) |
| |
| The period of this generator is about 2^113 (see erratum paper). |
| |
| From: P. L'Ecuyer, "Maximally Equidistributed Combined Tausworthe |
| Generators", Mathematics of Computation, 65, 213 (1996), 203--213: |
| http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps |
| ftp://ftp.iro.umontreal.ca/pub/simulation/lecuyer/papers/tausme.ps |
| |
| There is an erratum in the paper "Tables of Maximally |
| Equidistributed Combined LFSR Generators", Mathematics of |
| Computation, 68, 225 (1999), 261--269: |
| http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps |
| |
| ... the k_j most significant bits of z_j must be non- |
| zero, for each j. (Note: this restriction also applies to the |
| computer code given in [4], but was mistakenly not mentioned in |
| that paper.) |
| |
| This affects the seeding procedure by imposing the requirement |
| s1 > 1, s2 > 7, s3 > 15, s4 > 127. |
| |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/percpu.h> |
| #include <linux/export.h> |
| #include <linux/jiffies.h> |
| #include <linux/random.h> |
| |
| static DEFINE_PER_CPU(struct rnd_state, net_rand_state); |
| |
| /** |
| * prandom_u32_state - seeded pseudo-random number generator. |
| * @state: pointer to state structure holding seeded state. |
| * |
| * This is used for pseudo-randomness with no outside seeding. |
| * For more random results, use prandom_u32(). |
| */ |
| u32 prandom_u32_state(struct rnd_state *state) |
| { |
| #define TAUSWORTHE(s,a,b,c,d) ((s&c)<<d) ^ (((s <<a) ^ s)>>b) |
| |
| state->s1 = TAUSWORTHE(state->s1, 6U, 13U, 4294967294U, 18U); |
| state->s2 = TAUSWORTHE(state->s2, 2U, 27U, 4294967288U, 2U); |
| state->s3 = TAUSWORTHE(state->s3, 13U, 21U, 4294967280U, 7U); |
| state->s4 = TAUSWORTHE(state->s4, 3U, 12U, 4294967168U, 13U); |
| |
| return (state->s1 ^ state->s2 ^ state->s3 ^ state->s4); |
| } |
| EXPORT_SYMBOL(prandom_u32_state); |
| |
| /** |
| * prandom_u32 - pseudo random number generator |
| * |
| * A 32 bit pseudo-random number is generated using a fast |
| * algorithm suitable for simulation. This algorithm is NOT |
| * considered safe for cryptographic use. |
| */ |
| u32 prandom_u32(void) |
| { |
| unsigned long r; |
| struct rnd_state *state = &get_cpu_var(net_rand_state); |
| r = prandom_u32_state(state); |
| put_cpu_var(state); |
| return r; |
| } |
| EXPORT_SYMBOL(prandom_u32); |
| |
| /* |
| * prandom_bytes_state - get the requested number of pseudo-random bytes |
| * |
| * @state: pointer to state structure holding seeded state. |
| * @buf: where to copy the pseudo-random bytes to |
| * @bytes: the requested number of bytes |
| * |
| * This is used for pseudo-randomness with no outside seeding. |
| * For more random results, use prandom_bytes(). |
| */ |
| void prandom_bytes_state(struct rnd_state *state, void *buf, int bytes) |
| { |
| unsigned char *p = buf; |
| int i; |
| |
| for (i = 0; i < round_down(bytes, sizeof(u32)); i += sizeof(u32)) { |
| u32 random = prandom_u32_state(state); |
| int j; |
| |
| for (j = 0; j < sizeof(u32); j++) { |
| p[i + j] = random; |
| random >>= BITS_PER_BYTE; |
| } |
| } |
| if (i < bytes) { |
| u32 random = prandom_u32_state(state); |
| |
| for (; i < bytes; i++) { |
| p[i] = random; |
| random >>= BITS_PER_BYTE; |
| } |
| } |
| } |
| EXPORT_SYMBOL(prandom_bytes_state); |
| |
| /** |
| * prandom_bytes - get the requested number of pseudo-random bytes |
| * @buf: where to copy the pseudo-random bytes to |
| * @bytes: the requested number of bytes |
| */ |
| void prandom_bytes(void *buf, int bytes) |
| { |
| struct rnd_state *state = &get_cpu_var(net_rand_state); |
| |
| prandom_bytes_state(state, buf, bytes); |
| put_cpu_var(state); |
| } |
| EXPORT_SYMBOL(prandom_bytes); |
| |
| static void prandom_warmup(struct rnd_state *state) |
| { |
| /* Calling RNG ten times to satify recurrence condition */ |
| prandom_u32_state(state); |
| prandom_u32_state(state); |
| prandom_u32_state(state); |
| prandom_u32_state(state); |
| prandom_u32_state(state); |
| prandom_u32_state(state); |
| prandom_u32_state(state); |
| prandom_u32_state(state); |
| prandom_u32_state(state); |
| prandom_u32_state(state); |
| } |
| |
| /** |
| * prandom_seed - add entropy to pseudo random number generator |
| * @seed: seed value |
| * |
| * Add some additional seeding to the prandom pool. |
| */ |
| void prandom_seed(u32 entropy) |
| { |
| int i; |
| /* |
| * No locking on the CPUs, but then somewhat random results are, well, |
| * expected. |
| */ |
| for_each_possible_cpu (i) { |
| struct rnd_state *state = &per_cpu(net_rand_state, i); |
| |
| state->s1 = __seed(state->s1 ^ entropy, 2U); |
| prandom_warmup(state); |
| } |
| } |
| EXPORT_SYMBOL(prandom_seed); |
| |
| /* |
| * Generate some initially weak seeding values to allow |
| * to start the prandom_u32() engine. |
| */ |
| static int __init prandom_init(void) |
| { |
| int i; |
| |
| for_each_possible_cpu(i) { |
| struct rnd_state *state = &per_cpu(net_rand_state,i); |
| |
| #define LCG(x) ((x) * 69069U) /* super-duper LCG */ |
| state->s1 = __seed(LCG((i + jiffies) ^ random_get_entropy()), 2U); |
| state->s2 = __seed(LCG(state->s1), 8U); |
| state->s3 = __seed(LCG(state->s2), 16U); |
| state->s4 = __seed(LCG(state->s3), 128U); |
| |
| prandom_warmup(state); |
| } |
| return 0; |
| } |
| core_initcall(prandom_init); |
| |
| static void __prandom_timer(unsigned long dontcare); |
| static DEFINE_TIMER(seed_timer, __prandom_timer, 0, 0); |
| |
| static void __prandom_timer(unsigned long dontcare) |
| { |
| u32 entropy; |
| |
| get_random_bytes(&entropy, sizeof(entropy)); |
| prandom_seed(entropy); |
| /* reseed every ~60 seconds, in [40 .. 80) interval with slack */ |
| seed_timer.expires = jiffies + (40 * HZ + (prandom_u32() % (40 * HZ))); |
| add_timer(&seed_timer); |
| } |
| |
| static void prandom_start_seed_timer(void) |
| { |
| set_timer_slack(&seed_timer, HZ); |
| seed_timer.expires = jiffies + 40 * HZ; |
| add_timer(&seed_timer); |
| } |
| |
| /* |
| * Generate better values after random number generator |
| * is fully initialized. |
| */ |
| static void __prandom_reseed(bool late) |
| { |
| int i; |
| unsigned long flags; |
| static bool latch = false; |
| static DEFINE_SPINLOCK(lock); |
| |
| /* only allow initial seeding (late == false) once */ |
| spin_lock_irqsave(&lock, flags); |
| if (latch && !late) |
| goto out; |
| latch = true; |
| |
| for_each_possible_cpu(i) { |
| struct rnd_state *state = &per_cpu(net_rand_state,i); |
| u32 seeds[4]; |
| |
| get_random_bytes(&seeds, sizeof(seeds)); |
| state->s1 = __seed(seeds[0], 2U); |
| state->s2 = __seed(seeds[1], 8U); |
| state->s3 = __seed(seeds[2], 16U); |
| state->s4 = __seed(seeds[3], 128U); |
| |
| prandom_warmup(state); |
| } |
| out: |
| spin_unlock_irqrestore(&lock, flags); |
| } |
| |
| void prandom_reseed_late(void) |
| { |
| __prandom_reseed(true); |
| } |
| |
| static int __init prandom_reseed(void) |
| { |
| __prandom_reseed(false); |
| prandom_start_seed_timer(); |
| return 0; |
| } |
| late_initcall(prandom_reseed); |