| /* |
| * machine_kexec.c - handle transition of Linux booting another kernel |
| * |
| * Copyright (C) 2004-2005, IBM Corp. |
| * |
| * Created by: Milton D Miller II |
| * |
| * This source code is licensed under the GNU General Public License, |
| * Version 2. See the file COPYING for more details. |
| */ |
| |
| |
| #include <linux/cpumask.h> |
| #include <linux/kexec.h> |
| #include <linux/smp.h> |
| #include <linux/thread_info.h> |
| #include <linux/errno.h> |
| |
| #include <asm/page.h> |
| #include <asm/current.h> |
| #include <asm/machdep.h> |
| #include <asm/cacheflush.h> |
| #include <asm/paca.h> |
| #include <asm/mmu.h> |
| #include <asm/sections.h> /* _end */ |
| #include <asm/prom.h> |
| |
| #define HASH_GROUP_SIZE 0x80 /* size of each hash group, asm/mmu.h */ |
| |
| /* Have this around till we move it into crash specific file */ |
| note_buf_t crash_notes[NR_CPUS]; |
| |
| /* Dummy for now. Not sure if we need to have a crash shutdown in here |
| * and if what it will achieve. Letting it be now to compile the code |
| * in generic kexec environment |
| */ |
| void machine_crash_shutdown(struct pt_regs *regs) |
| { |
| /* do nothing right now */ |
| /* smp_relase_cpus() if we want smp on panic kernel */ |
| /* cpu_irq_down to isolate us until we are ready */ |
| } |
| |
| int machine_kexec_prepare(struct kimage *image) |
| { |
| int i; |
| unsigned long begin, end; /* limits of segment */ |
| unsigned long low, high; /* limits of blocked memory range */ |
| struct device_node *node; |
| unsigned long *basep; |
| unsigned int *sizep; |
| |
| if (!ppc_md.hpte_clear_all) |
| return -ENOENT; |
| |
| /* |
| * Since we use the kernel fault handlers and paging code to |
| * handle the virtual mode, we must make sure no destination |
| * overlaps kernel static data or bss. |
| */ |
| for (i = 0; i < image->nr_segments; i++) |
| if (image->segment[i].mem < __pa(_end)) |
| return -ETXTBSY; |
| |
| /* |
| * For non-LPAR, we absolutely can not overwrite the mmu hash |
| * table, since we are still using the bolted entries in it to |
| * do the copy. Check that here. |
| * |
| * It is safe if the end is below the start of the blocked |
| * region (end <= low), or if the beginning is after the |
| * end of the blocked region (begin >= high). Use the |
| * boolean identity !(a || b) === (!a && !b). |
| */ |
| if (htab_address) { |
| low = __pa(htab_address); |
| high = low + (htab_hash_mask + 1) * HASH_GROUP_SIZE; |
| |
| for (i = 0; i < image->nr_segments; i++) { |
| begin = image->segment[i].mem; |
| end = begin + image->segment[i].memsz; |
| |
| if ((begin < high) && (end > low)) |
| return -ETXTBSY; |
| } |
| } |
| |
| /* We also should not overwrite the tce tables */ |
| for (node = of_find_node_by_type(NULL, "pci"); node != NULL; |
| node = of_find_node_by_type(node, "pci")) { |
| basep = (unsigned long *)get_property(node, "linux,tce-base", |
| NULL); |
| sizep = (unsigned int *)get_property(node, "linux,tce-size", |
| NULL); |
| if (basep == NULL || sizep == NULL) |
| continue; |
| |
| low = *basep; |
| high = low + (*sizep); |
| |
| for (i = 0; i < image->nr_segments; i++) { |
| begin = image->segment[i].mem; |
| end = begin + image->segment[i].memsz; |
| |
| if ((begin < high) && (end > low)) |
| return -ETXTBSY; |
| } |
| } |
| |
| return 0; |
| } |
| |
| void machine_kexec_cleanup(struct kimage *image) |
| { |
| /* we do nothing in prepare that needs to be undone */ |
| } |
| |
| #define IND_FLAGS (IND_DESTINATION | IND_INDIRECTION | IND_DONE | IND_SOURCE) |
| |
| static void copy_segments(unsigned long ind) |
| { |
| unsigned long entry; |
| unsigned long *ptr; |
| void *dest; |
| void *addr; |
| |
| /* |
| * We rely on kexec_load to create a lists that properly |
| * initializes these pointers before they are used. |
| * We will still crash if the list is wrong, but at least |
| * the compiler will be quiet. |
| */ |
| ptr = NULL; |
| dest = NULL; |
| |
| for (entry = ind; !(entry & IND_DONE); entry = *ptr++) { |
| addr = __va(entry & PAGE_MASK); |
| |
| switch (entry & IND_FLAGS) { |
| case IND_DESTINATION: |
| dest = addr; |
| break; |
| case IND_INDIRECTION: |
| ptr = addr; |
| break; |
| case IND_SOURCE: |
| copy_page(dest, addr); |
| dest += PAGE_SIZE; |
| } |
| } |
| } |
| |
| void kexec_copy_flush(struct kimage *image) |
| { |
| long i, nr_segments = image->nr_segments; |
| struct kexec_segment ranges[KEXEC_SEGMENT_MAX]; |
| |
| /* save the ranges on the stack to efficiently flush the icache */ |
| memcpy(ranges, image->segment, sizeof(ranges)); |
| |
| /* |
| * After this call we may not use anything allocated in dynamic |
| * memory, including *image. |
| * |
| * Only globals and the stack are allowed. |
| */ |
| copy_segments(image->head); |
| |
| /* |
| * we need to clear the icache for all dest pages sometime, |
| * including ones that were in place on the original copy |
| */ |
| for (i = 0; i < nr_segments; i++) |
| flush_icache_range(ranges[i].mem + KERNELBASE, |
| ranges[i].mem + KERNELBASE + |
| ranges[i].memsz); |
| } |
| |
| #ifdef CONFIG_SMP |
| |
| /* FIXME: we should schedule this function to be called on all cpus based |
| * on calling the interrupts, but we would like to call it off irq level |
| * so that the interrupt controller is clean. |
| */ |
| void kexec_smp_down(void *arg) |
| { |
| if (ppc_md.cpu_irq_down) |
| ppc_md.cpu_irq_down(); |
| |
| local_irq_disable(); |
| kexec_smp_wait(); |
| /* NOTREACHED */ |
| } |
| |
| static void kexec_prepare_cpus(void) |
| { |
| int my_cpu, i, notified=-1; |
| |
| smp_call_function(kexec_smp_down, NULL, 0, /* wait */0); |
| my_cpu = get_cpu(); |
| |
| /* check the others cpus are now down (via paca hw cpu id == -1) */ |
| for (i=0; i < NR_CPUS; i++) { |
| if (i == my_cpu) |
| continue; |
| |
| while (paca[i].hw_cpu_id != -1) { |
| if (!cpu_possible(i)) { |
| printk("kexec: cpu %d hw_cpu_id %d is not" |
| " possible, ignoring\n", |
| i, paca[i].hw_cpu_id); |
| break; |
| } |
| if (!cpu_online(i)) { |
| /* Fixme: this can be spinning in |
| * pSeries_secondary_wait with a paca |
| * waiting for it to go online. |
| */ |
| printk("kexec: cpu %d hw_cpu_id %d is not" |
| " online, ignoring\n", |
| i, paca[i].hw_cpu_id); |
| break; |
| } |
| if (i != notified) { |
| printk( "kexec: waiting for cpu %d (physical" |
| " %d) to go down\n", |
| i, paca[i].hw_cpu_id); |
| notified = i; |
| } |
| } |
| } |
| |
| /* after we tell the others to go down */ |
| if (ppc_md.cpu_irq_down) |
| ppc_md.cpu_irq_down(); |
| |
| put_cpu(); |
| |
| local_irq_disable(); |
| } |
| |
| #else /* ! SMP */ |
| |
| static void kexec_prepare_cpus(void) |
| { |
| /* |
| * move the secondarys to us so that we can copy |
| * the new kernel 0-0x100 safely |
| * |
| * do this if kexec in setup.c ? |
| */ |
| smp_relase_cpus(); |
| if (ppc_md.cpu_irq_down) |
| ppc_md.cpu_irq_down(); |
| local_irq_disable(); |
| } |
| |
| #endif /* SMP */ |
| |
| /* |
| * kexec thread structure and stack. |
| * |
| * We need to make sure that this is 16384-byte aligned due to the |
| * way process stacks are handled. It also must be statically allocated |
| * or allocated as part of the kimage, because everything else may be |
| * overwritten when we copy the kexec image. We piggyback on the |
| * "init_task" linker section here to statically allocate a stack. |
| * |
| * We could use a smaller stack if we don't care about anything using |
| * current, but that audit has not been performed. |
| */ |
| union thread_union kexec_stack |
| __attribute__((__section__(".data.init_task"))) = { }; |
| |
| /* Our assembly helper, in kexec_stub.S */ |
| extern NORET_TYPE void kexec_sequence(void *newstack, unsigned long start, |
| void *image, void *control, |
| void (*clear_all)(void)) ATTRIB_NORET; |
| |
| /* too late to fail here */ |
| void machine_kexec(struct kimage *image) |
| { |
| |
| /* prepare control code if any */ |
| |
| /* shutdown other cpus into our wait loop and quiesce interrupts */ |
| kexec_prepare_cpus(); |
| |
| /* switch to a staticly allocated stack. Based on irq stack code. |
| * XXX: the task struct will likely be invalid once we do the copy! |
| */ |
| kexec_stack.thread_info.task = current_thread_info()->task; |
| kexec_stack.thread_info.flags = 0; |
| |
| /* Some things are best done in assembly. Finding globals with |
| * a toc is easier in C, so pass in what we can. |
| */ |
| kexec_sequence(&kexec_stack, image->start, image, |
| page_address(image->control_code_page), |
| ppc_md.hpte_clear_all); |
| /* NOTREACHED */ |
| } |