| /* |
| * Kernel Probes (KProbes) |
| * arch/ppc64/kernel/kprobes.c |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| * |
| * Copyright (C) IBM Corporation, 2002, 2004 |
| * |
| * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel |
| * Probes initial implementation ( includes contributions from |
| * Rusty Russell). |
| * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes |
| * interface to access function arguments. |
| * 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port |
| * for PPC64 |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/kprobes.h> |
| #include <linux/ptrace.h> |
| #include <linux/spinlock.h> |
| #include <linux/preempt.h> |
| #include <asm/cacheflush.h> |
| #include <asm/kdebug.h> |
| #include <asm/sstep.h> |
| |
| static DECLARE_MUTEX(kprobe_mutex); |
| |
| static struct kprobe *current_kprobe; |
| static unsigned long kprobe_status, kprobe_saved_msr; |
| static struct kprobe *kprobe_prev; |
| static unsigned long kprobe_status_prev, kprobe_saved_msr_prev; |
| static struct pt_regs jprobe_saved_regs; |
| |
| int arch_prepare_kprobe(struct kprobe *p) |
| { |
| int ret = 0; |
| kprobe_opcode_t insn = *p->addr; |
| |
| if ((unsigned long)p->addr & 0x03) { |
| printk("Attempt to register kprobe at an unaligned address\n"); |
| ret = -EINVAL; |
| } else if (IS_MTMSRD(insn) || IS_RFID(insn)) { |
| printk("Cannot register a kprobe on rfid or mtmsrd\n"); |
| ret = -EINVAL; |
| } |
| |
| /* insn must be on a special executable page on ppc64 */ |
| if (!ret) { |
| up(&kprobe_mutex); |
| p->ainsn.insn = get_insn_slot(); |
| down(&kprobe_mutex); |
| if (!p->ainsn.insn) |
| ret = -ENOMEM; |
| } |
| return ret; |
| } |
| |
| void arch_copy_kprobe(struct kprobe *p) |
| { |
| memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); |
| p->opcode = *p->addr; |
| } |
| |
| void arch_arm_kprobe(struct kprobe *p) |
| { |
| *p->addr = BREAKPOINT_INSTRUCTION; |
| flush_icache_range((unsigned long) p->addr, |
| (unsigned long) p->addr + sizeof(kprobe_opcode_t)); |
| } |
| |
| void arch_disarm_kprobe(struct kprobe *p) |
| { |
| *p->addr = p->opcode; |
| flush_icache_range((unsigned long) p->addr, |
| (unsigned long) p->addr + sizeof(kprobe_opcode_t)); |
| } |
| |
| void arch_remove_kprobe(struct kprobe *p) |
| { |
| up(&kprobe_mutex); |
| free_insn_slot(p->ainsn.insn); |
| down(&kprobe_mutex); |
| } |
| |
| static inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs) |
| { |
| kprobe_opcode_t insn = *p->ainsn.insn; |
| |
| regs->msr |= MSR_SE; |
| |
| /* single step inline if it is a trap variant */ |
| if (IS_TW(insn) || IS_TD(insn) || IS_TWI(insn) || IS_TDI(insn)) |
| regs->nip = (unsigned long)p->addr; |
| else |
| regs->nip = (unsigned long)p->ainsn.insn; |
| } |
| |
| static inline void save_previous_kprobe(void) |
| { |
| kprobe_prev = current_kprobe; |
| kprobe_status_prev = kprobe_status; |
| kprobe_saved_msr_prev = kprobe_saved_msr; |
| } |
| |
| static inline void restore_previous_kprobe(void) |
| { |
| current_kprobe = kprobe_prev; |
| kprobe_status = kprobe_status_prev; |
| kprobe_saved_msr = kprobe_saved_msr_prev; |
| } |
| |
| void arch_prepare_kretprobe(struct kretprobe *rp, struct pt_regs *regs) |
| { |
| struct kretprobe_instance *ri; |
| |
| if ((ri = get_free_rp_inst(rp)) != NULL) { |
| ri->rp = rp; |
| ri->task = current; |
| ri->ret_addr = (kprobe_opcode_t *)regs->link; |
| |
| /* Replace the return addr with trampoline addr */ |
| regs->link = (unsigned long)kretprobe_trampoline; |
| add_rp_inst(ri); |
| } else { |
| rp->nmissed++; |
| } |
| } |
| |
| static inline int kprobe_handler(struct pt_regs *regs) |
| { |
| struct kprobe *p; |
| int ret = 0; |
| unsigned int *addr = (unsigned int *)regs->nip; |
| |
| /* Check we're not actually recursing */ |
| if (kprobe_running()) { |
| /* We *are* holding lock here, so this is safe. |
| Disarm the probe we just hit, and ignore it. */ |
| p = get_kprobe(addr); |
| if (p) { |
| if (kprobe_status == KPROBE_HIT_SS) { |
| regs->msr &= ~MSR_SE; |
| regs->msr |= kprobe_saved_msr; |
| unlock_kprobes(); |
| goto no_kprobe; |
| } |
| /* We have reentered the kprobe_handler(), since |
| * another probe was hit while within the handler. |
| * We here save the original kprobes variables and |
| * just single step on the instruction of the new probe |
| * without calling any user handlers. |
| */ |
| save_previous_kprobe(); |
| current_kprobe = p; |
| kprobe_saved_msr = regs->msr; |
| p->nmissed++; |
| prepare_singlestep(p, regs); |
| kprobe_status = KPROBE_REENTER; |
| return 1; |
| } else { |
| p = current_kprobe; |
| if (p->break_handler && p->break_handler(p, regs)) { |
| goto ss_probe; |
| } |
| } |
| /* If it's not ours, can't be delete race, (we hold lock). */ |
| goto no_kprobe; |
| } |
| |
| lock_kprobes(); |
| p = get_kprobe(addr); |
| if (!p) { |
| unlock_kprobes(); |
| if (*addr != BREAKPOINT_INSTRUCTION) { |
| /* |
| * PowerPC has multiple variants of the "trap" |
| * instruction. If the current instruction is a |
| * trap variant, it could belong to someone else |
| */ |
| kprobe_opcode_t cur_insn = *addr; |
| if (IS_TW(cur_insn) || IS_TD(cur_insn) || |
| IS_TWI(cur_insn) || IS_TDI(cur_insn)) |
| goto no_kprobe; |
| /* |
| * The breakpoint instruction was removed right |
| * after we hit it. Another cpu has removed |
| * either a probepoint or a debugger breakpoint |
| * at this address. In either case, no further |
| * handling of this interrupt is appropriate. |
| */ |
| ret = 1; |
| } |
| /* Not one of ours: let kernel handle it */ |
| goto no_kprobe; |
| } |
| |
| kprobe_status = KPROBE_HIT_ACTIVE; |
| current_kprobe = p; |
| kprobe_saved_msr = regs->msr; |
| if (p->pre_handler && p->pre_handler(p, regs)) |
| /* handler has already set things up, so skip ss setup */ |
| return 1; |
| |
| ss_probe: |
| prepare_singlestep(p, regs); |
| kprobe_status = KPROBE_HIT_SS; |
| /* |
| * This preempt_disable() matches the preempt_enable_no_resched() |
| * in post_kprobe_handler(). |
| */ |
| preempt_disable(); |
| return 1; |
| |
| no_kprobe: |
| return ret; |
| } |
| |
| /* |
| * Function return probe trampoline: |
| * - init_kprobes() establishes a probepoint here |
| * - When the probed function returns, this probe |
| * causes the handlers to fire |
| */ |
| void kretprobe_trampoline_holder(void) |
| { |
| asm volatile(".global kretprobe_trampoline\n" |
| "kretprobe_trampoline:\n" |
| "nop\n"); |
| } |
| |
| /* |
| * Called when the probe at kretprobe trampoline is hit |
| */ |
| int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| struct kretprobe_instance *ri = NULL; |
| struct hlist_head *head; |
| struct hlist_node *node, *tmp; |
| unsigned long orig_ret_address = 0; |
| unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline; |
| |
| head = kretprobe_inst_table_head(current); |
| |
| /* |
| * It is possible to have multiple instances associated with a given |
| * task either because an multiple functions in the call path |
| * have a return probe installed on them, and/or more then one return |
| * return probe was registered for a target function. |
| * |
| * We can handle this because: |
| * - instances are always inserted at the head of the list |
| * - when multiple return probes are registered for the same |
| * function, the first instance's ret_addr will point to the |
| * real return address, and all the rest will point to |
| * kretprobe_trampoline |
| */ |
| hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { |
| if (ri->task != current) |
| /* another task is sharing our hash bucket */ |
| continue; |
| |
| if (ri->rp && ri->rp->handler) |
| ri->rp->handler(ri, regs); |
| |
| orig_ret_address = (unsigned long)ri->ret_addr; |
| recycle_rp_inst(ri); |
| |
| if (orig_ret_address != trampoline_address) |
| /* |
| * This is the real return address. Any other |
| * instances associated with this task are for |
| * other calls deeper on the call stack |
| */ |
| break; |
| } |
| |
| BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address)); |
| regs->nip = orig_ret_address; |
| |
| unlock_kprobes(); |
| |
| /* |
| * By returning a non-zero value, we are telling |
| * kprobe_handler() that we have handled unlocking |
| * and re-enabling preemption. |
| */ |
| return 1; |
| } |
| |
| /* |
| * Called after single-stepping. p->addr is the address of the |
| * instruction whose first byte has been replaced by the "breakpoint" |
| * instruction. To avoid the SMP problems that can occur when we |
| * temporarily put back the original opcode to single-step, we |
| * single-stepped a copy of the instruction. The address of this |
| * copy is p->ainsn.insn. |
| */ |
| static void resume_execution(struct kprobe *p, struct pt_regs *regs) |
| { |
| int ret; |
| unsigned int insn = *p->ainsn.insn; |
| |
| regs->nip = (unsigned long)p->addr; |
| ret = emulate_step(regs, insn); |
| if (ret == 0) |
| regs->nip = (unsigned long)p->addr + 4; |
| } |
| |
| static inline int post_kprobe_handler(struct pt_regs *regs) |
| { |
| if (!kprobe_running()) |
| return 0; |
| |
| if ((kprobe_status != KPROBE_REENTER) && current_kprobe->post_handler) { |
| kprobe_status = KPROBE_HIT_SSDONE; |
| current_kprobe->post_handler(current_kprobe, regs, 0); |
| } |
| |
| resume_execution(current_kprobe, regs); |
| regs->msr |= kprobe_saved_msr; |
| |
| /*Restore back the original saved kprobes variables and continue. */ |
| if (kprobe_status == KPROBE_REENTER) { |
| restore_previous_kprobe(); |
| goto out; |
| } |
| unlock_kprobes(); |
| out: |
| preempt_enable_no_resched(); |
| |
| /* |
| * if somebody else is singlestepping across a probe point, msr |
| * will have SE set, in which case, continue the remaining processing |
| * of do_debug, as if this is not a probe hit. |
| */ |
| if (regs->msr & MSR_SE) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* Interrupts disabled, kprobe_lock held. */ |
| static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr) |
| { |
| if (current_kprobe->fault_handler |
| && current_kprobe->fault_handler(current_kprobe, regs, trapnr)) |
| return 1; |
| |
| if (kprobe_status & KPROBE_HIT_SS) { |
| resume_execution(current_kprobe, regs); |
| regs->msr &= ~MSR_SE; |
| regs->msr |= kprobe_saved_msr; |
| |
| unlock_kprobes(); |
| preempt_enable_no_resched(); |
| } |
| return 0; |
| } |
| |
| /* |
| * Wrapper routine to for handling exceptions. |
| */ |
| int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, |
| void *data) |
| { |
| struct die_args *args = (struct die_args *)data; |
| int ret = NOTIFY_DONE; |
| |
| /* |
| * Interrupts are not disabled here. We need to disable |
| * preemption, because kprobe_running() uses smp_processor_id(). |
| */ |
| preempt_disable(); |
| switch (val) { |
| case DIE_BPT: |
| if (kprobe_handler(args->regs)) |
| ret = NOTIFY_STOP; |
| break; |
| case DIE_SSTEP: |
| if (post_kprobe_handler(args->regs)) |
| ret = NOTIFY_STOP; |
| break; |
| case DIE_GPF: |
| case DIE_PAGE_FAULT: |
| if (kprobe_running() && |
| kprobe_fault_handler(args->regs, args->trapnr)) |
| ret = NOTIFY_STOP; |
| break; |
| default: |
| break; |
| } |
| preempt_enable(); |
| return ret; |
| } |
| |
| int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| struct jprobe *jp = container_of(p, struct jprobe, kp); |
| |
| memcpy(&jprobe_saved_regs, regs, sizeof(struct pt_regs)); |
| |
| /* setup return addr to the jprobe handler routine */ |
| regs->nip = (unsigned long)(((func_descr_t *)jp->entry)->entry); |
| regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc); |
| |
| return 1; |
| } |
| |
| void jprobe_return(void) |
| { |
| asm volatile("trap" ::: "memory"); |
| } |
| |
| void jprobe_return_end(void) |
| { |
| }; |
| |
| int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| /* |
| * FIXME - we should ideally be validating that we got here 'cos |
| * of the "trap" in jprobe_return() above, before restoring the |
| * saved regs... |
| */ |
| memcpy(regs, &jprobe_saved_regs, sizeof(struct pt_regs)); |
| return 1; |
| } |
| |
| static struct kprobe trampoline_p = { |
| .addr = (kprobe_opcode_t *) &kretprobe_trampoline, |
| .pre_handler = trampoline_probe_handler |
| }; |
| |
| int __init arch_init(void) |
| { |
| return register_kprobe(&trampoline_p); |
| } |