blob: b7f5a6566ffd0ca02fb4fb06b348c1e2acdb1bd8 [file] [log] [blame]
/*
* Copyright (c) 2014 Samsung Electronics Co. Ltd.
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#define DEBUG
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/jack.h>
#include <sound/initval.h>
#include <sound/tlv.h>
//#include <sound/exynos_regmap_fw.h>
#include <linux/i2c.h>
#include <linux/regulator/consumer.h>
#include <linux/gpio.h>
#include <linux/of.h>
#include <linux/of_gpio.h>
//#include <linux/switch.h>
#include <linux/input.h>
#include <linux/completion.h>
//#include <sound/exynos-audmixer.h>
//#include <sound/cod3033x.h>
#include "cod3033x.h"
#define COD3033X_SAMPLE_RATE_48KHZ 48000
#define COD3033X_SAMPLE_RATE_192KHZ 192000
#define COD3033X_RESTORE_OTP_COUNT 5
#define COD3033X_RESTORE_REG_COUNT 16
#define COD3033X_OTP_R_OFFSET 0x0
#define COD3033X_MAX_IRQ_CHK_BITS 5
#define COD3033X_START_IRQ_CHK_BIT 2
#define COD3033X_MJ_DET_INVALID (-1)
#ifdef CONFIG_SND_SOC_SAMSUNG_VERBOSE_DEBUG
#ifdef dev_dbg
#undef dev_dbg
#endif
#define dev_dbg dev_err
#endif
struct cod3033x_priv *g_cod3026x;
/* Forward Declarations */
static void cod3033x_save_otp_registers(struct snd_soc_codec *codec);
static void cod3033x_restore_otp_registers(struct snd_soc_codec *codec);
static void cod3033x_reset_io_selector_bits(struct snd_soc_codec *codec);
static int cod3033x_disable(struct device *dev);
static int cod3033x_enable(struct device *dev);
static inline void cod3033x_usleep(unsigned int u_sec)
{
usleep_range(u_sec, u_sec + 10);
}
/**
* Helper functions to read ADC value for button detection
*/
/**
* Return value:
* true: if the register value cannot be cached, hence we have to read from the
* hardware directly
* false: if the register value can be read from cache
*/
static bool cod3033x_volatile_register(struct device *dev, unsigned int reg)
{
/**
* For all the registers for which we want to restore the value during
* regcache_sync operation, we need to return true here. For registers
* whose value need not be cached and restored should return false here.
*
* For the time being, let us cache the value of all registers other
* than the IRQ pending and IRQ status registers.
*/
return false;
}
/**
* Return value:
* true: if the register value can be read
* flase: if the register cannot be read
*/
static bool cod3033x_readable_register(struct device *dev, unsigned int reg)
{
return true;
}
static bool cod3033x_writeable_register(struct device *dev, unsigned int reg)
{
return true;
}
const struct regmap_config cod3033x_regmap = {
.reg_bits = 8,
.val_bits = 8,
.max_register = 0xff,
.readable_reg = cod3033x_readable_register,
.writeable_reg = cod3033x_writeable_register,
.volatile_reg = cod3033x_volatile_register,
.use_single_rw = true,
.cache_type = REGCACHE_RBTREE,
};
/**
* TLV_DB_SCALE_ITEM
*
* (TLV: Threshold Limit Value)
*
* For various properties, the dB values don't change linearly with respect to
* the digital value of related bit-field. At most, they are quasi-linear,
* that means they are linear for various ranges of digital values. Following
* table define such ranges of various properties.
*
* TLV_DB_RANGE_HEAD(num)
* num defines the number of linear ranges of dB values.
*
* s0, e0, TLV_DB_SCALE_ITEM(min, step, mute),
* s0: digital start value of this range (inclusive)
* e0: digital end valeu of this range (inclusive)
* min: dB value corresponding to s0
* step: the delta of dB value in this range
* mute: ?
*
* Example:
* TLV_DB_RANGE_HEAD(3),
* 0, 1, TLV_DB_SCALE_ITEM(-2000, 2000, 0),
* 2, 4, TLV_DB_SCALE_ITEM(1000, 1000, 0),
* 5, 6, TLV_DB_SCALE_ITEM(3800, 8000, 0),
*
* The above code has 3 linear ranges with following digital-dB mapping.
* (0...6) -> (-2000dB, 0dB, 1000dB, 2000dB, 3000dB, 3800dB, 4600dB),
*
* DECLARE_TLV_DB_SCALE
*
* This macro is used in case where there is a linear mapping between
* the digital value and dB value.
*
* DECLARE_TLV_DB_SCALE(name, min, step, mute)
*
* name: name of this dB scale
* min: minimum dB value corresponding to digital 0
* step: the delta of dB value
* mute: ?
*
* NOTE: The information is mostly for user-space consumption, to be viewed
* alongwith amixer.
*/
/**
* cod3033x_ctvol_bst_tlv
*
* Map: (0x0, 0dB), (0x1, 12dB), (0x2, 20dB)
*
* CTVOL_BST1, reg(0x20), shift(5), width(2)
* CTVOL_BST2, reg(0x21), shift(5), width(2)
* CTVOL_BST3, reg(0x22), shift(5), width(2)
*/
static const unsigned int cod3033x_ctvol_bst_tlv[] = {
TLV_DB_RANGE_HEAD(2),
0, 1, TLV_DB_SCALE_ITEM(0, 1200, 0),
2, 2, TLV_DB_SCALE_ITEM(2000, 0, 0),
};
/**
* cod3033x_ctvol_bst_pga_tlv
*
* Range: -16.5dB to +18dB, step 1.5dB
*
* CTVOL_BST_PGA1, reg(0x20), shift(0), width(5), invert(1), max(31)
* CTVOL_BST_PGA2, reg(0x21), shift(0), width(5), invert(1), max(31)
* CTVOL_BST_PGA3, reg(0x22), shift(0), width(5), invert(1), max(31)
*/
static const DECLARE_TLV_DB_SCALE(cod3033x_ctvol_bst_pga_tlv, -1650, 150, 0);
/**
* cod3033x_ctvol_hp_tlv
*
* Range: -57dB to +6dB, step 1dB
*
* CTVOL_HPL, reg(0x30), shift(0), width(6), invert(1), max(63)
* CTVOL_HPR, reg(0x31), shift(0), width(6), invert(1), max(63)
*/
static const DECLARE_TLV_DB_SCALE(cod3033x_ctvol_hp_tlv, -5700, 100, 0);
/**
* cod3019_ctvol_ep_tlv
*
* Range: 0dB to +12dB, step 1dB
*
* CTVOL_EP, reg(0x32), shift(4), width(4), invert(0), max(12)
*/
static const DECLARE_TLV_DB_SCALE(cod3033x_ctvol_ep_tlv, 0, 100, 0);
/**
* cod3033x_ctvol_spk_pga_tlv
*
* Range: -6dB to +3dB, step 1dB
*
* CTVOL_SPK_PGA, reg(0x32), shift(0), width(4), invert(0), max(9)
*/
static const DECLARE_TLV_DB_SCALE(cod3033x_ctvol_spk_pga_tlv, -600, 100, 0);
/**
* cod3033x_dvol_adc_tlv
*
* Map as per data-sheet:
* (0x00 to 0x86) -> (+12dB to -55dB, step 0.5dB)
* (0x87 to 0x91) -> (-56dB to -66dB, step 1dB)
* (0x92 to 0x94) -> (-68dB to -72dB, step 2dB)
* (0x95 to 0x96) -> (-78dB to -84dB, step 6dB)
*
* When the map is in descending order, we need to set the invert bit
* and arrange the map in ascending order. The offsets are calculated as
* (max - offset).
*
* offset_in_table = max - offset_actual;
*
* DVOL_ADL, reg(0x43), shift(0), width(8), invert(1), max(0x96)
* DVOL_ADR, reg(0x44), shift(0), width(8), invert(1), max(0x96)
* DVOL_DAL, reg(0x51), shift(0), width(8), invert(1), max(0x96)
* DVOL_DAR, reg(0x52), shift(0), width(8), invert(1), max(0x96)
*/
static const unsigned int cod3033x_dvol_tlv[] = {
TLV_DB_RANGE_HEAD(4),
0x00, 0x01, TLV_DB_SCALE_ITEM(-8400, 600, 0),
0x02, 0x04, TLV_DB_SCALE_ITEM(-7200, 200, 0),
0x05, 0x09, TLV_DB_SCALE_ITEM(-6600, 100, 0),
0x10, 0x96, TLV_DB_SCALE_ITEM(-5500, 50, 0),
};
/**
* cod3033x_dnc_min_gain_tlv
*
* Range: -6dB to 0dB, step 1dB
*
* DNC_MINGAIN , reg(0x55), shift(5), width(3)
*/
static const unsigned int cod3033x_dnc_min_gain_tlv[] = {
TLV_DB_RANGE_HEAD(1),
0x00, 0x06, TLV_DB_SCALE_ITEM(-600, 0, 0),
};
/**
* cod3033x_dnc_max_gain_tlv
*
* Range: 0dB to 24dB, step 1dB
*
* DNC_MAXGAIN , reg(0x55), shift(0), width(5)
*/
static const unsigned int cod3033x_dnc_max_gain_tlv[] = {
TLV_DB_RANGE_HEAD(1),
0x06, 0x1e, TLV_DB_SCALE_ITEM(0, 2400, 0),
};
/**
* cod3033x_dnc_lvl_tlv
*
* Range: -10.5dB to 0dB, step 1.5dB
*
* DNCLVL_R/L, reg(0x55), shift(0/4), width(3), invert(0), max(7)
*/
static const DECLARE_TLV_DB_SCALE(cod3033x_dnc_lvl_tlv, -1050, 0, 0);
/**
* struct snd_kcontrol_new cod3033x_snd_control
*
* Every distinct bit-fields within the CODEC SFR range may be considered
* as a control elements. Such control elements are defined here.
*
* Depending on the access mode of these registers, different macros are
* used to define these control elements.
*
* SOC_ENUM: 1-to-1 mapping between bit-field value and provided text
* SOC_SINGLE: Single register, value is a number
* SOC_SINGLE_TLV: Single register, value corresponds to a TLV scale
* SOC_SINGLE_TLV_EXT: Above + custom get/set operation for this value
* SOC_SINGLE_RANGE_TLV: Register value is an offset from minimum value
* SOC_DOUBLE: Two bit-fields are updated in a single register
* SOC_DOUBLE_R: Two bit-fields in 2 different registers are updated
*/
/**
* All the data goes into cod3033x_snd_controls.
* All path inter-connections goes into cod3033x_dapm_routes
*/
static const struct snd_kcontrol_new cod3033x_snd_controls[] = {
};
/*
SOC_SINGLE_TLV("MIC1 Boost Volume", COD3033X_20_VOL_AD1,
VOLAD1_CTVOL_BST1_SHIFT,
(BIT(VOLAD1_CTVOL_BST1_WIDTH) - 1), 0,
cod3033x_ctvol_bst_tlv),
SOC_SINGLE_TLV("MIC1 Volume", COD3033X_20_VOL_AD1,
VOLAD1_CTVOL_BST_PGA1_SHIFT,
(BIT(VOLAD1_CTVOL_BST_PGA1_WIDTH) - 1), 1,
cod3033x_ctvol_bst_pga_tlv),
SOC_SINGLE_TLV("MIC2 Boost Volume", COD3033X_21_VOL_AD2,
VOLAD2_CTVOL_BST2_SHIFT,
(BIT(VOLAD2_CTVOL_BST2_WIDTH) - 1), 0,
cod3033x_ctvol_bst_tlv),
SOC_SINGLE_TLV("MIC2 Volume", COD3033X_21_VOL_AD2,
VOLAD2_CTVOL_BST_PGA2_SHIFT,
(BIT(VOLAD2_CTVOL_BST_PGA2_WIDTH) - 1), 1,
cod3033x_ctvol_bst_pga_tlv),
SOC_SINGLE_TLV("MIC3 Boost Volume", COD3033X_22_VOL_AD3,
VOLAD3_CTVOL_BST3_SHIFT,
(BIT(VOLAD3_CTVOL_BST3_WIDTH) - 1), 0,
cod3033x_ctvol_bst_tlv),
SOC_SINGLE_TLV("MIC3 Volume", COD3033X_22_VOL_AD3,
VOLAD3_CTVOL_BST_PGA3_SHIFT,
(BIT(VOLAD3_CTVOL_BST_PGA3_WIDTH) - 1), 1,
cod3033x_ctvol_bst_pga_tlv),
SOC_DOUBLE_R_TLV("Headphone Volume", COD3033X_30_VOL_HPL,
COD3033X_31_VOL_HPR, VOLHP_CTVOL_HP_SHIFT,
(BIT(VOLHP_CTVOL_HP_WIDTH) - 1), 1,
cod3033x_ctvol_hp_tlv),
SOC_SINGLE_TLV("Earphone Volume", COD3033X_32_VOL_EP_SPK,
CTVOL_EP_SHIFT,
(BIT(CTVOL_EP_WIDTH) - 1), 0,
cod3033x_ctvol_ep_tlv),
SOC_SINGLE_TLV("Speaker Volume", COD3033X_32_VOL_EP_SPK,
CTVOL_SPK_PGA_SHIFT,
(BIT(CTVOL_SPK_PGA_WIDTH) - 1), 0,
cod3033x_ctvol_spk_pga_tlv),
SOC_SINGLE_TLV("ADC Left Gain", COD3033X_43_ADC_L_VOL,
AD_DA_DVOL_SHIFT,
AD_DA_DVOL_MAXNUM, 1, cod3033x_dvol_tlv),
SOC_SINGLE_TLV("ADC Right Gain", COD3033X_44_ADC_R_VOL,
AD_DA_DVOL_SHIFT,
AD_DA_DVOL_MAXNUM, 1, cod3033x_dvol_tlv),
SOC_DOUBLE_R_TLV("DAC Gain", COD3033X_51_DAC_L_VOL,
COD3033X_52_DAC_R_VOL, AD_DA_DVOL_SHIFT,
AD_DA_DVOL_MAXNUM, 1, cod3033x_dvol_tlv),
SOC_SINGLE_TLV("DNC Min Gain", COD3033X_55_DNC2,
DNC_MIN_GAIN_SHIFT,
(BIT(DNC_MIN_GAIN_WIDTH) - 2), 0,
cod3033x_dnc_min_gain_tlv),
SOC_SINGLE_TLV("DNC Max Gain", COD3033X_55_DNC2,
DNC_MAX_GAIN_SHIFT,
(BIT(DNC_MAX_GAIN_WIDTH) - 2), 0,
cod3033x_dnc_max_gain_tlv),
SOC_DOUBLE_R_TLV("DNC Level", COD3033X_56_DNC3,
DNC_LVL_L_SHIFT, DNC_LVL_R_SHIFT,
(BIT(DNC_LVL_L_WIDTH) - 1), 0, cod3033x_dnc_lvl_tlv),
SOC_SINGLE("DNC ZCD Timeout", COD3033X_5C_DNC9,
DNC_ZCD_TIMEOUT_SHIFT, DNC_ZCD_TIMEOUT_MASK, 0),
SOC_ENUM("DNC ZCD Enable", cod3033x_dnc_zcd_enable_enum),
SOC_ENUM("MonoMix Mode", cod3033x_mono_mix_mode_enum),
SOC_ENUM("Chargepump Mode", cod3033x_chargepump_mode_enum),
SOC_SINGLE_EXT("DAC Soft Mute",SND_SOC_NOPM, 0, 100, 0,
dac_soft_mute_get, dac_soft_mute_put),
};
*/
static int dac_ev(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol,
int event)
{
struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
dev_dbg(codec->dev, "%s called\n", __func__);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
break;
case SND_SOC_DAPM_PRE_PMD:
break;
default:
break;
}
return 0;
}
static int adc_ev(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol,
int event)
{
struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
dev_dbg(codec->dev, "%s called, event = %d\n", __func__, event);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
break;
case SND_SOC_DAPM_POST_PMU:
break;
case SND_SOC_DAPM_PRE_PMD:
break;
default:
break;
}
return 0;
}
static int cod3033_power_on_mic1(struct snd_soc_codec *codec)
{
dev_dbg(codec->dev, "%s called\n", __func__);
snd_soc_write(codec, 0x70, 0xbf);
snd_soc_write(codec, 0x60, 0x13);
snd_soc_write(codec, 0xb6, 0x03);
snd_soc_write(codec, 0x62, 0x11);
snd_soc_write(codec, 0x8a, 0x30);
snd_soc_write(codec, 0x62, 0x11);
snd_soc_write(codec, 0x75, 0x10);
snd_soc_write(codec, 0x76, 0x00);
snd_soc_write(codec, 0x60, 0x17);
snd_soc_write(codec, 0x70, 0x3f);
snd_soc_write(codec, 0x70, 0xbf);
snd_soc_write(codec, 0x05, 0xe0);
snd_soc_write(codec, 0x10, 0x40);
snd_soc_write(codec, 0xc3, 0x80);
snd_soc_write(codec, 0x70, 0xbe);
return 0;
}
static int cod3033_power_off_mic1(struct snd_soc_codec *codec)
{
//TDB
return 0;
}
static int cod3033_power_on_mic2(struct snd_soc_codec *codec)
{
dev_info(codec->dev, "%s called\n", __func__);
snd_soc_write(codec, 0x70, 0xbf);
snd_soc_write(codec, 0x60, 0x13);
snd_soc_write(codec, 0xb6, 0x03);
snd_soc_write(codec, 0x62, 0x11);
snd_soc_write(codec, 0x8a, 0x30);
snd_soc_write(codec, 0x62, 0x11);
snd_soc_write(codec, 0x75, 0x20);
snd_soc_write(codec, 0x76, 0x00);
snd_soc_write(codec, 0x60, 0x17);
snd_soc_write(codec, 0x70, 0x3f);
snd_soc_write(codec, 0x70, 0xbf);
snd_soc_write(codec, 0x05, 0xe0);
snd_soc_write(codec, 0x10, 0x20);
snd_soc_write(codec, 0xc3, 0x40);
snd_soc_write(codec, 0x70, 0xbe);
return 0;
}
static int cod3033_power_off_mic2(struct snd_soc_codec *codec)
{
//TDB
return 0;
}
static int cod3033_power_on_mic3(struct snd_soc_codec *codec)
{
dev_info(codec->dev, "%s called\n", __func__);
snd_soc_write(codec, 0x70, 0xbf);
snd_soc_write(codec, 0x60, 0x13);
snd_soc_write(codec, 0xb6, 0x03);
snd_soc_write(codec, 0x62, 0x11);
snd_soc_write(codec, 0x8a, 0x30);
snd_soc_write(codec, 0x62, 0x11);
snd_soc_write(codec, 0x75, 0x30);
snd_soc_write(codec, 0x76, 0x00);
snd_soc_write(codec, 0x60, 0x17);
snd_soc_write(codec, 0x70, 0x3f);
snd_soc_write(codec, 0x70, 0xbf);
snd_soc_write(codec, 0x05, 0xe0);
snd_soc_write(codec, 0x10, 0x10);
snd_soc_write(codec, 0xc3, 0x20);
snd_soc_write(codec, 0x70, 0xbe);
dev_info(codec->dev, "%s called\n", __func__);
return 0;
}
static int cod3033_power_on_mic4(struct snd_soc_codec *codec)
{
dev_err(codec->dev, "%s called\n", __func__);
snd_soc_write(codec,0xb3,0x04);
mdelay(10);
snd_soc_write(codec,0x10,0x05);
snd_soc_write(codec,0xb3,0x04);
snd_soc_write(codec,0x11,0x18);
snd_soc_write(codec,0x12,0x18);
/* snd_soc_write(codec,0x10,0x85);
mdelay(10);
snd_soc_write(codec,0x10,0x8d);
snd_soc_write(codec,0x04,0x0e);
snd_soc_write(codec,0x05,0x0e);
snd_soc_write(codec,0x06,0xcc);
snd_soc_write(codec,0x37,0x4f);
snd_soc_write(codec,0x3b,0x02);
// snd_soc_write(codec,0x3b,0x02);
mdelay(10);
snd_soc_write(codec,0x10,0x0d);
*/
mdelay(10);
snd_soc_write(codec,0x67,0x10);
snd_soc_write(codec,0x68,0x20);
snd_soc_write(codec, 0x70, 0xbf);
snd_soc_write(codec, 0x60, 0x13);
snd_soc_write(codec, 0xb6, 0x03);
snd_soc_write(codec, 0x62, 0x11);
snd_soc_write(codec, 0x8a, 0x30);
snd_soc_write(codec, 0x62, 0x11);
snd_soc_write(codec, 0x75, 0x30);
snd_soc_write(codec, 0x76, 0x30);
snd_soc_write(codec, 0x60, 0x17);
snd_soc_write(codec, 0x70, 0x3f);
snd_soc_write(codec, 0x70, 0xbf);
snd_soc_write(codec, 0x05, 0xe0);
snd_soc_write(codec, 0x00, 0x0e);
snd_soc_write(codec, 0xc3, 0x10);
mdelay(140);
snd_soc_write(codec, 0x70, 0xbe);
return 0;
}
static int cod3033_power_off_mic4(struct snd_soc_codec *codec)
{
return 0;
}
static int cod3033_power_off_mic3(struct snd_soc_codec *codec)
{
return 0;
}
static int vmid_ev(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
dev_dbg(codec->dev, "%s called\n", __func__);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
break;
case SND_SOC_DAPM_POST_PMU:
break;
case SND_SOC_DAPM_PRE_PMD:
break;
default:
break;
}
return 0;
}
static int spkdrv_ev(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
// empty
return 0;
}
static int hpdrv_ev(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
dev_dbg(codec->dev, "%s called, event = %d\n", __func__, event);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
snd_soc_write(codec,0x67,0x10);
snd_soc_write(codec,0x68,0x20);
break;
case SND_SOC_DAPM_POST_PMU:
snd_soc_write(codec,0xF0,0x0F);
snd_soc_write(codec,0x66,0x01);
snd_soc_write(codec,0x6A,0x01);
snd_soc_write(codec,0x00,0x08);
snd_soc_write(codec,0x60,0x1B);
snd_soc_write(codec,0x64,0x17);
snd_soc_write(codec,0x65,0x0F);
snd_soc_write(codec,0x8E,0x81);
snd_soc_write(codec,0xD0,0x48);
snd_soc_write(codec,0xDB,0x30);
snd_soc_write(codec,0x9D,0x61);
snd_soc_write(codec,0xa4,0x00);
snd_soc_write(codec,0x82,0x54);
snd_soc_write(codec,0x83,0x54);
snd_soc_write(codec,0xB6,0x00);
snd_soc_write(codec,0xB7,0x8D);
snd_soc_write(codec,0xD4,0x03);
snd_soc_write(codec,0xD5,0x4C);
snd_soc_write(codec,0xD6,0xCD);
snd_soc_write(codec,0xD7,0xA0);
snd_soc_write(codec,0xD8,0x20);
snd_soc_write(codec,0xA5,0x05);
snd_soc_write(codec,0xD7,0xE0);
snd_soc_write(codec,0x45,0x40);
snd_soc_write(codec,0x91,0x0A);
snd_soc_write(codec,0xC5,0x17);
snd_soc_write(codec,0xC6,0x01);
snd_soc_write(codec,0x8D,0x0F);
break;
case SND_SOC_DAPM_PRE_PMD:
break;
default:
break;
}
return 0;
}
static int epdrv_ev(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
dev_dbg(codec->dev, "%s called, event = %d\n", __func__, event);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
snd_soc_write(codec, 0x00, 0x08);
snd_soc_write(codec, 0x60, 0x1B);
snd_soc_write(codec, 0x64, 0x17);
snd_soc_write(codec, 0x65, 0x1F);
snd_soc_write(codec, 0x8E, 0x21);
snd_soc_write(codec, 0xD0, 0xC1);
snd_soc_write(codec, 0xDB, 0x30);
snd_soc_write(codec, 0x9D, 0x6A);
snd_soc_write(codec, 0xa4, 0x70);
snd_soc_write(codec, 0x82, 0x54);
snd_soc_write(codec, 0x83, 0x54);
snd_soc_write(codec, 0xB6, 0x00);
snd_soc_write(codec, 0xB7, 0x3C);
snd_soc_write(codec, 0xD4, 0x03);
snd_soc_write(codec, 0xD5, 0x4C);
snd_soc_write(codec, 0xD6, 0xCD);
snd_soc_write(codec, 0xD7, 0x00);
snd_soc_write(codec, 0xD8, 0x20);
snd_soc_write(codec, 0xA5, 0x05);
snd_soc_write(codec, 0xD7, 0xC0);
snd_soc_write(codec, 0x45, 0x40);
snd_soc_write(codec, 0x91, 0x0A);
snd_soc_write(codec, 0xC7, 0x01);
snd_soc_write(codec, 0x8D, 0x07);
break;
case SND_SOC_DAPM_PRE_PMD:
default:
break;
}
return 0;
}
static int mic2_pga_ev(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
dev_err(codec->dev, "%s called, event = %d\n", __func__, event);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
cod3033_power_on_mic2(codec);
break;
case SND_SOC_DAPM_PRE_PMD:
cod3033_power_off_mic2(codec);
break;
default:
break;
}
return 0;
}
static int mic1_pga_ev(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
dev_dbg(codec->dev, "%s called, event = %d\n", __func__, event);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
cod3033_power_on_mic1(codec);
break;
case SND_SOC_DAPM_PRE_PMD:
cod3033_power_off_mic1(codec);
break;
default:
break;
}
return 0;
}
static int mic3_pga_ev(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
dev_dbg(codec->dev, "%s called, event = %d\n", __func__, event);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
cod3033_power_on_mic3(codec);
break;
case SND_SOC_DAPM_PRE_PMD:
cod3033_power_off_mic3(codec);
break;
default:
break;
}
return 0;
}
static int mic4_pga_ev(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
dev_err(codec->dev, "%s called, event = %d\n", __func__, event);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
cod3033_power_on_mic4(codec);
break;
case SND_SOC_DAPM_PRE_PMD:
cod3033_power_off_mic4(codec);
break;
default:
break;
}
return 0;
}
static const struct snd_kcontrol_new adcl_mix[] = {
SOC_DAPM_SINGLE("MIC1L Switch", COD3033X_23_MIX_AD1,
EN_MIX_MIC1L_SHIFT, 1, 0),
SOC_DAPM_SINGLE("MIC2L Switch", COD3033X_23_MIX_AD1,
EN_MIX_MIC2L_SHIFT, 1, 0),
SOC_DAPM_SINGLE("MIC3L Switch", COD3033X_23_MIX_AD1,
EN_MIX_MIC3L_SHIFT, 1, 0),
SOC_DAPM_SINGLE("LINELL Switch", COD3033X_23_MIX_AD1,
EN_MIX_LNLL_SHIFT, 1, 0),
SOC_DAPM_SINGLE("LINERL Switch", COD3033X_24_MIX_AD2,
EN_MIX_LNRL_SHIFT, 1, 0),
};
static const struct snd_kcontrol_new adcr_mix[] = {
SOC_DAPM_SINGLE("MIC1R Switch", COD3033X_23_MIX_AD1,
EN_MIX_MIC1R_SHIFT, 1, 0),
SOC_DAPM_SINGLE("MIC2R Switch", COD3033X_23_MIX_AD1,
EN_MIX_MIC2R_SHIFT, 1, 0),
SOC_DAPM_SINGLE("MIC3R Switch", COD3033X_23_MIX_AD1,
EN_MIX_MIC3R_SHIFT, 1, 0),
SOC_DAPM_SINGLE("LINELR Switch", COD3033X_24_MIX_AD2,
EN_MIX_LNLR_SHIFT, 1, 0),
SOC_DAPM_SINGLE("LINERR Switch", COD3033X_23_MIX_AD1,
EN_MIX_LNRR_SHIFT, 1, 0),
};
static const struct snd_kcontrol_new hpl_mix[] = {
SOC_DAPM_SINGLE("DACL Switch", COD3033X_36_MIX_DA1,
EN_HP_MIXL_DCTL_SHIFT, 1, 0),
SOC_DAPM_SINGLE("DACR Switch", COD3033X_36_MIX_DA1,
EN_HP_MIXL_DCTR_SHIFT, 1, 0),
SOC_DAPM_SINGLE("ADCL Switch", COD3033X_36_MIX_DA1,
EN_HP_MIXL_MIXL_SHIFT, 1, 0),
SOC_DAPM_SINGLE("ADCR Switch", COD3033X_36_MIX_DA1,
EN_HP_MIXL_MIXR_SHIFT, 1, 0),
};
static const struct snd_kcontrol_new hpr_mix[] = {
SOC_DAPM_SINGLE("DACL Switch", COD3033X_36_MIX_DA1,
EN_HP_MIXR_DCTL_SHIFT, 1, 0),
SOC_DAPM_SINGLE("DACR Switch", COD3033X_36_MIX_DA1,
EN_HP_MIXR_DCTR_SHIFT, 1, 0),
SOC_DAPM_SINGLE("ADCL Switch", COD3033X_36_MIX_DA1,
EN_HP_MIXR_MIXL_SHIFT, 1, 0),
SOC_DAPM_SINGLE("ADCR Switch", COD3033X_36_MIX_DA1,
EN_HP_MIXR_MIXR_SHIFT, 1, 0),
};
static const struct snd_kcontrol_new ep_mix[] = {
SOC_DAPM_SINGLE("DACL Switch", COD3033X_37_MIX_DA2,
EN_EP_MIX_DCTL_SHIFT, 1, 0),
SOC_DAPM_SINGLE("DACR Switch", COD3033X_37_MIX_DA2,
EN_EP_MIX_DCTR_SHIFT, 1, 0),
SOC_DAPM_SINGLE("ADCL Switch", COD3033X_37_MIX_DA2,
EN_EP_MIX_MIXL_SHIFT, 1, 0),
SOC_DAPM_SINGLE("ADCR Switch", COD3033X_37_MIX_DA2,
EN_EP_MIX_MIXR_SHIFT, 1, 0),
};
static const struct snd_kcontrol_new spk_mix[] = {
SOC_DAPM_SINGLE("DACL Switch", COD3033X_37_MIX_DA2,
EN_SPK_MIX_DCTL_SHIFT, 1, 0),
SOC_DAPM_SINGLE("DACR Switch", COD3033X_37_MIX_DA2,
EN_SPK_MIX_DCTR_SHIFT, 1, 0),
SOC_DAPM_SINGLE("ADCL Switch", COD3033X_37_MIX_DA2,
EN_SPK_MIX_MIXL_SHIFT, 1, 0),
SOC_DAPM_SINGLE("ADCR Switch", COD3033X_37_MIX_DA2,
EN_SPK_MIX_MIXR_SHIFT, 1, 0),
};
static const struct snd_kcontrol_new spk_on[] = {
SOC_DAPM_SINGLE("SPK On", COD3033X_76_CHOP_DA,
EN_SPK_PGA_CHOP_SHIFT, 1, 0),
};
static const struct snd_kcontrol_new hp_on[] = {
SOC_DAPM_SINGLE("HP On", COD3033X_76_CHOP_DA, EN_HP_CHOP_SHIFT, 1, 0),
};
static const struct snd_kcontrol_new ep_on[] = {
SOC_DAPM_SINGLE("EP On", COD3033X_76_CHOP_DA, EN_EP_CHOP_SHIFT, 1, 0),
};
static const struct snd_kcontrol_new mic1_on[] = {
SOC_DAPM_SINGLE("MIC1 On", COD3033X_78_MIC_ON,
EN_MIC1_SHIFT, 1, 0),
};
static const struct snd_kcontrol_new mic2_on[] = {
SOC_DAPM_SINGLE("MIC2 On", COD3033X_78_MIC_ON,
EN_MIC2_SHIFT, 1, 0),
};
static const struct snd_kcontrol_new mic3_on[] = {
SOC_DAPM_SINGLE("MIC3 On", COD3033X_78_MIC_ON,
EN_MIC3_SHIFT, 1, 0),
};
static const struct snd_kcontrol_new mic4_on[] = {
SOC_DAPM_SINGLE("MIC4IN On", COD3033X_78_MIC_ON,
EN_LN_SHIFT, 1, 0),
};
static const struct snd_soc_dapm_widget cod3033x_dapm_widgets[] = {
SND_SOC_DAPM_SWITCH("SPK", SND_SOC_NOPM, 0, 0, spk_on),
SND_SOC_DAPM_SWITCH("HP", SND_SOC_NOPM, 0, 0, hp_on),
SND_SOC_DAPM_SWITCH("EP", SND_SOC_NOPM, 0, 0, ep_on),
SND_SOC_DAPM_SWITCH("MIC1", SND_SOC_NOPM, 0, 0, mic1_on),
SND_SOC_DAPM_SWITCH("MIC2", SND_SOC_NOPM, 0, 0, mic2_on),
SND_SOC_DAPM_SWITCH("MIC3", SND_SOC_NOPM, 0, 0, mic3_on),
SND_SOC_DAPM_SWITCH("MIC4IN", SND_SOC_NOPM, 0, 0, mic4_on),
SND_SOC_DAPM_SUPPLY("VMID", SND_SOC_NOPM, 0, 0, vmid_ev,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_OUT_DRV_E("SPKDRV", SND_SOC_NOPM, 0, 0, NULL, 0,
spkdrv_ev, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_OUT_DRV_E("EPDRV", SND_SOC_NOPM, 0, 0, NULL, 0,
epdrv_ev, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_OUT_DRV_E("HPDRV", SND_SOC_NOPM, 0, 0, NULL, 0,
hpdrv_ev, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_PGA_E("MIC1_PGA", SND_SOC_NOPM, 0, 0,
NULL, 0, mic1_pga_ev,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_PGA_E("MIC2_PGA", SND_SOC_NOPM, 0, 0,
NULL, 0, mic2_pga_ev,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_PGA_E("MIC3_PGA", SND_SOC_NOPM, 0, 0,
NULL, 0, mic3_pga_ev,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_PGA_E("MIC4IN_PGA", SND_SOC_NOPM, 0, 0,
NULL, 0, mic4_pga_ev,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_MIXER("ADCL Mixer", SND_SOC_NOPM, 0, 0, adcl_mix,
ARRAY_SIZE(adcl_mix)),
SND_SOC_DAPM_MIXER("ADCR Mixer", SND_SOC_NOPM, 0, 0, adcr_mix,
ARRAY_SIZE(adcr_mix)),
SND_SOC_DAPM_MIXER("HPL Mixer", SND_SOC_NOPM, 0, 0, hpl_mix,
ARRAY_SIZE(hpl_mix)),
SND_SOC_DAPM_MIXER("HPR Mixer", SND_SOC_NOPM, 0, 0, hpr_mix,
ARRAY_SIZE(hpr_mix)),
SND_SOC_DAPM_MIXER("EP Mixer", SND_SOC_NOPM, 0, 0, ep_mix,
ARRAY_SIZE(ep_mix)),
SND_SOC_DAPM_MIXER("SPK Mixer", SND_SOC_NOPM, 0, 0, spk_mix,
ARRAY_SIZE(spk_mix)),
SND_SOC_DAPM_DAC_E("DAC", "AIF Playback", SND_SOC_NOPM, 0, 0,
dac_ev, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_DAC_E("DAC", "AIF2 Playback", SND_SOC_NOPM, 0, 0,
dac_ev, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_ADC_E("ADC", "AIF Capture", SND_SOC_NOPM, 0, 0,
adc_ev, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_ADC_E("ADC", "AIF2 Capture", SND_SOC_NOPM, 0, 0,
adc_ev, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_OUTPUT("SPKOUTLN"),
SND_SOC_DAPM_OUTPUT("HPOUTLN"),
SND_SOC_DAPM_OUTPUT("EPOUTN"),
SND_SOC_DAPM_OUTPUT("AIF4OUT"),
SND_SOC_DAPM_INPUT("IN1L"),
SND_SOC_DAPM_INPUT("IN2L"),
SND_SOC_DAPM_INPUT("IN3L"),
SND_SOC_DAPM_INPUT("IN4L"),
SND_SOC_DAPM_INPUT("AIF4IN"),
};
static const struct snd_soc_dapm_route cod3033x_dapm_routes[] = {
/* Sink, Control, Source */
{"SPK Mixer", "ADCL Switch", "ADCL Mixer"},
{"SPK Mixer", "ADCR Switch", "ADCR Mixer"},
{"SPK Mixer", "DACL Switch", "DAC"},
{"SPK Mixer", "DACR Switch", "DAC"},
{"SPKDRV", NULL, "SPK Mixer"},
{"SPKDRV", NULL, "DAC"},
{"SPK" , "SPK On", "SPKDRV"},
{"SPKOUTLN", NULL, "SPK"},
{"EP Mixer", "ADCL Switch", "ADCL Mixer"},
{"EP Mixer", "ADCR Switch", "ADCR Mixer"},
{"EP Mixer", "DACL Switch", "DAC"},
{"EP Mixer", "DACR Switch", "DAC"},
{"EPDRV", NULL, "EP Mixer"},
{"EPDRV", NULL, "DAC"},
{"EP", "EP On", "EPDRV"},
{"EPOUTN", NULL, "EP"},
{"HPL Mixer", "ADCL Switch", "ADCL Mixer"},
{"HPL Mixer", "ADCR Switch", "ADCR Mixer"},
{"HPL Mixer", "DACL Switch", "DAC"},
{"HPL Mixer", "DACR Switch", "DAC"},
{"HPR Mixer", "ADCL Switch", "ADCL Mixer"},
{"HPR Mixer", "ADCR Switch", "ADCR Mixer"},
{"HPR Mixer", "DACL Switch", "DAC"},
{"HPR Mixer", "DACR Switch", "DAC"},
{"HPDRV", NULL, "HPL Mixer"},
{"HPDRV", NULL, "HPR Mixer"},
{"HPDRV", NULL, "DAC"},
{"HP", "HP On", "HPDRV"},
{"HPOUTLN", NULL, "HP"},
{"DAC" , NULL, "AIF Playback"},
{"DAC" , NULL, "AIF2 Playback"},
{"MIC1_PGA", NULL, "IN1L"},
{"MIC1_PGA", NULL, "VMID"},
{"MIC1", "MIC1 On", "MIC1_PGA"},
{"ADC", NULL, "MIC1"},
{"ADC", NULL, "MIC1"},
{"MIC2_PGA", NULL, "IN2L"},
{"MIC2_PGA", NULL, "VMID"},
{"MIC2", "MIC2 On", "MIC2_PGA"},
{"ADC", NULL, "MIC2"},
{"ADC", NULL, "MIC2"},
{"MIC3_PGA", NULL, "IN3L"},
{"MIC3_PGA", NULL, "VMID"},
{"MIC3", "MIC3 On", "MIC3_PGA"},
{"ADC", NULL, "MIC3"},
{"ADC", NULL, "MIC3"},
{"MIC4IN_PGA", NULL, "IN4L"},
{"MIC4IN_PGA", NULL, "VMID"},
{"MIC4IN", "MIC4IN On", "MIC4IN_PGA"},
{"ADC", NULL, "MIC4IN"},
{"ADC", NULL, "MIC4IN"},
{"AIF Capture", NULL, "ADC"},
{"AIF2 Capture", NULL, "ADC"},
{"FM Link", "FM On", "ADC"},
{"DAC", NULL, "FM Link"},
};
static int cod3033x_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct snd_soc_codec *codec = dai->codec;
int bclk = 0, lrclk = 0;
dev_dbg(codec->dev, "%s called\n", __func__);
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_LEFT_J:
fmt = LRJ_AUDIO_FORMAT_MASK;
break;
case SND_SOC_DAIFMT_I2S:
fmt = I2S_AUDIO_FORMAT_MASK;
break;
default:
pr_err("Unsupported DAI format %d\n",
fmt & SND_SOC_DAIFMT_FORMAT_MASK);
return -EINVAL;
}
// snd_soc_update_bits(codec, COD3033X_41_FORMAT,
// I2S_AUDIO_FORMAT_MASK | LRJ_AUDIO_FORMAT_MASK, fmt);
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
break;
case SND_SOC_DAIFMT_IB_IF:
bclk = BCLK_POL_MASK;
lrclk = LRCLK_POL_MASK;
break;
case SND_SOC_DAIFMT_IB_NF:
bclk = BCLK_POL_MASK;
break;
case SND_SOC_DAIFMT_NB_IF:
lrclk = LRCLK_POL_MASK;
break;
default:
pr_err("Unsupported Polartiy selection %d\n",
fmt & SND_SOC_DAIFMT_INV_MASK);
return -EINVAL;
}
// snd_soc_update_bits(codec, COD3033X_41_FORMAT,
// BCLK_POL_MASK | LRCLK_POL_MASK, bclk | lrclk);
return 0;
}
static int cod3033x_dai_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_codec *codec = dai->codec;
dev_dbg(codec->dev, "(%s) %s completed\n",
substream->stream ? "C" : "P", __func__);
return 0;
}
static void cod3033x_dai_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_codec *codec = dai->codec;
dev_dbg(codec->dev, "(%s) %s completed\n",
substream->stream ? "C" : "P", __func__);
}
static int cod3033x_dai_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_codec *codec = dai->codec;
struct cod3033x_priv *cod3033x = snd_soc_codec_get_drvdata(codec);
unsigned int cur_aifrate;
int ret=0;
dev_dbg(codec->dev, "%s called\n", __func__);
/* 192 KHz support */
cur_aifrate = params_rate(params);
if (cod3033x->aifrate != cur_aifrate) {
/* DNC needs to be disabled while switching samplerate */
/* Need to reset H/W while switching from 192KHz to 48KHz */
/*
* If HP is already on, then change the 'current' setting based
* on samplerate
*/
/* DNC mode can be restored after the samplerate switch */
}
/*
* Codec supports only 24bits per sample, Mixer performs the required
* conversion to 24 bits. BFS is fixed at 64fs for mixer<->codec
* interface.
*/
if (ret < 0) {
dev_err(codec->dev, "%s failed to set bits per sample\n",
__func__);
return ret;
}
return 0;
}
static const struct snd_soc_dai_ops cod3033x_dai_ops = {
.set_fmt = cod3033x_dai_set_fmt,
.startup = cod3033x_dai_startup,
.shutdown = cod3033x_dai_shutdown,
.hw_params = cod3033x_dai_hw_params,
};
#define COD3033X_RATES SNDRV_PCM_RATE_8000_192000
#define COD3033X_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | \
SNDRV_PCM_FMTBIT_S20_3LE | \
SNDRV_PCM_FMTBIT_S24_LE | \
SNDRV_PCM_FMTBIT_S32_LE)
static struct snd_soc_dai_driver cod3033x_dai[] = {
{
.name = "cod3033x-aif",
.id = 1,
.playback = {
.stream_name = "AIF Playback",
.channels_min = 1,
.channels_max = 8,
.rates = COD3033X_RATES,
.formats = COD3033X_FORMATS,
},
.capture = {
.stream_name = "AIF Capture",
.channels_min = 1,
.channels_max = 8,
.rates = COD3033X_RATES,
.formats = COD3033X_FORMATS,
},
.ops = &cod3033x_dai_ops,
.symmetric_rates = 1,
},
{
.name = "cod3033x-aif2",
.id = 2,
.playback = {
.stream_name = "AIF2 Playback",
.channels_min = 1,
.channels_max = 2,
.rates = COD3033X_RATES,
.formats = COD3033X_FORMATS,
},
.capture = {
.stream_name = "AIF2 Capture",
.channels_min = 1,
.channels_max = 2,
.rates = COD3033X_RATES,
.formats = COD3033X_FORMATS,
},
.ops = &cod3033x_dai_ops,
.symmetric_rates = 1,
},
};
/* The clock for COD3033X is provided by the Audio sub-system. Hence we need to
* ensure that the audio subsystem is active during codec operation. The
* easiest way to do this is by calling s2803x_{get/put}_sync() helper
* functions.
*/
static void cod3033x_save_otp_registers(struct snd_soc_codec *codec)
{
}
static void cod3033x_restore_otp_registers(struct snd_soc_codec *codec)
{
}
static void cod3033x_reset_io_selector_bits(struct snd_soc_codec *codec)
{
}
/**
* cod3033x_post_fw_update_failure: To be called if f/w update fails
*
* In case the firmware is not present or corrupt, we should still be able to
* run the codec with decent parameters. This values are updated as per the
* latest stable firmware.
*
* The values provided in this function are hard-coded register values, and we
* need not update these values as per bit-fields.
*/
static void cod3033x_post_fw_update_failure(void *context)
{
}
static void cod3033x_regmap_sync(struct device *dev)
{
struct cod3033x_priv *cod3033x = dev_get_drvdata(dev);
unsigned char reg[0xff]={0,};
int i;
/* Read from Cache */
for (i = 0; i < 0xff ; i++)
if (cod3033x_readable_register(dev, i) &&
(!cod3033x_volatile_register(dev,i)))
reg[i] = (unsigned char)
snd_soc_read(cod3033x->codec, i);
regcache_cache_bypass(cod3033x->regmap, true);
/* Update HW */
for (i = 0; i < 0xff ; i++)
if (cod3033x_writeable_register(dev, i) &&
(!cod3033x_volatile_register(dev,i)))
snd_soc_write(cod3033x->codec, i, reg[i]);
regcache_cache_bypass(cod3033x->regmap, false);
}
static void cod3033x_reg_restore(struct snd_soc_codec *codec)
{
struct cod3033x_priv *cod3033x = snd_soc_codec_get_drvdata(codec);
/*
* The OTP values are the boot-time values. For registers D0-DE, we need
* to save these register values during boot time. After system reset,
* these values are lost and we need to restore them using saved values.
*/
if (!cod3033x->is_probe_done) {
cod3033x_regmap_sync(codec->dev);
cod3033x_reset_io_selector_bits(codec);
cod3033x_save_otp_registers(codec);
} else {
cod3033x_regmap_sync(codec->dev);
cod3033x_restore_otp_registers(cod3033x->codec);
}
}
static void cod3033x_i2c_parse_dt(struct cod3033x_priv *cod3033x)
{
/* todo .. Need to add DT parsing for 3033 */
struct device *dev = cod3033x->dev;
struct device_node *np = dev->of_node;
unsigned int bias_v_conf;
int mic_range, mic_delay, btn_rel_val;
struct of_phandle_args args;
int i = 0;
int ret;
cod3033x->int_gpio = of_get_gpio(np, 0);
if (cod3033x->int_gpio < 0)
dev_err(dev, "(*)Error in getting Codec-3033 Interrupt gpio\n");
/* Default Bias Voltages */
cod3033x->mic_bias1_voltage = MIC_BIAS1_VO_3_0V;
cod3033x->mic_bias2_voltage = MIC_BIAS2_VO_3_0V;
cod3033x->mic_bias_ldo_voltage = MIC_BIAS_LDO_VO_3_3V;
ret = of_property_read_u32(dev->of_node,
"mic-bias1-voltage", &bias_v_conf);
if ((!ret) && ((bias_v_conf >= MIC_BIAS1_VO_2_8V) &&
(bias_v_conf <= MIC_BIAS1_VO_3_0V)))
cod3033x->mic_bias1_voltage = bias_v_conf;
else
dev_dbg(dev, "Property 'mic-bias1-voltage' %s",
ret ? "not found" : "invalid value (use:1-3)");
ret = of_property_read_u32(dev->of_node,
"mic-bias2-voltage", &bias_v_conf);
if ((!ret) && ((bias_v_conf >= MIC_BIAS2_VO_2_8V) &&
(bias_v_conf <= MIC_BIAS2_VO_3_0V)))
cod3033x->mic_bias2_voltage = bias_v_conf;
else
dev_dbg(dev, "Property 'mic-bias2-voltage' %s",
ret ? "not found" : "invalid value (use:1-3)");
ret = of_property_read_u32(dev->of_node, "mic-adc-range", &mic_range);
if (!ret)
cod3033x->mic_adc_range = mic_range;
else
cod3033x->mic_adc_range = 1120;
ret = of_property_read_u32(dev->of_node, "mic-det-delay", &mic_delay);
if (!ret)
cod3033x->mic_det_delay = mic_delay;
else
cod3033x->mic_det_delay = 50;
ret = of_property_read_u32(dev->of_node, "btn-release-value", &btn_rel_val);
if (!ret)
cod3033x->btn_release_value = btn_rel_val;
else
cod3033x->btn_release_value = 1100;
ret = of_property_read_u32(dev->of_node,
"mic-bias-ldo-voltage", &bias_v_conf);
if ((!ret) && ((bias_v_conf >= MIC_BIAS_LDO_VO_2_8V) &&
(bias_v_conf <= MIC_BIAS_LDO_VO_3_3V)))
cod3033x->mic_bias_ldo_voltage = bias_v_conf;
else
dev_dbg(dev, "Property 'mic-bias-ldo-voltage' %s",
ret ? "not found" : "invalid value (use:1-3)");
dev_dbg(dev, "Bias voltage values: bias1 = %d, bias2= %d, ldo = %d\n",
cod3033x->mic_bias1_voltage,
cod3033x->mic_bias2_voltage,
cod3033x->mic_bias_ldo_voltage);
if (of_find_property(dev->of_node,
"update-firmware", NULL))
cod3033x->update_fw = true;
else
cod3033x->update_fw = false;
if (of_find_property(dev->of_node, "use-det-adc-mode", NULL) != NULL)
cod3033x->use_det_adc_mode = true;
dev_err(dev, "Using %s for jack/button detection\n",
cod3033x->use_det_adc_mode ? "GPADC" : "internal h/w");
if (cod3033x->use_det_adc_mode) {
/* Parsing but-zones, a maximum of 4 buttons are supported */
for (i = 0; i < 4; i++) {
if (of_parse_phandle_with_args(dev->of_node,
"but-zones-list", "#list-but-cells", i, &args))
break;
cod3033x->jack_buttons_zones[i].code = args.args[0];
cod3033x->jack_buttons_zones[i].adc_low = args.args[1];
cod3033x->jack_buttons_zones[i].adc_high = args.args[2];
}
/* initialize button status */
for (i = 0; i < 4; i++)
dev_err(dev, "[DEBUG]: buttons: code(%d), low(%d), high(%d)\n",
cod3033x->jack_buttons_zones[i].code,
cod3033x->jack_buttons_zones[i].adc_low,
cod3033x->jack_buttons_zones[i].adc_high);
}
}
static int cod3033x_codec_probe(struct snd_soc_codec *codec)
{
struct cod3033x_priv *cod3033x = snd_soc_codec_get_drvdata(codec);
struct snd_soc_card *card = codec->component.card;
dev_dbg(codec->dev, "(*) %s\n", __func__);
cod3033x->codec = codec;
#ifdef CONFIG_PM_RUNTIME
pm_runtime_get_sync(codec->dev);
#else
cod3033x_enable(codec->dev);
#endif
cod3033x->is_probe_done = true;
cod3033x->aifrate = COD3033X_SAMPLE_RATE_48KHZ;
cod3033x_i2c_parse_dt(cod3033x);
cod3033x_post_fw_update_failure(codec);
snd_soc_dapm_ignore_suspend(&card->dapm, "SPKOUTLN");
snd_soc_dapm_ignore_suspend(&card->dapm, "HPOUTLN");
snd_soc_dapm_ignore_suspend(&card->dapm, "EPOUTN");
snd_soc_dapm_ignore_suspend(&card->dapm, "IN1L");
snd_soc_dapm_ignore_suspend(&card->dapm, "IN2L");
snd_soc_dapm_ignore_suspend(&card->dapm, "IN3L");
snd_soc_dapm_ignore_suspend(&card->dapm, "IN4L");
snd_soc_dapm_ignore_suspend(&card->dapm, "AIF Playback");
snd_soc_dapm_ignore_suspend(&card->dapm, "AIF Capture");
snd_soc_dapm_ignore_suspend(&card->dapm, "AIF2 Playback");
snd_soc_dapm_ignore_suspend(&card->dapm, "AIF2 Capture");
snd_soc_dapm_sync(&card->dapm);
#ifdef CONFIG_PM_RUNTIME
pm_runtime_put_sync(codec->dev);
#else
cod3033x_disable(codec->dev);
#endif
return 0;
}
static int cod3033x_codec_remove(struct snd_soc_codec *codec)
{
struct cod3033x_priv *cod3033x = snd_soc_codec_get_drvdata(codec);
dev_dbg(codec->dev, "(*) %s called\n", __func__);
cancel_delayed_work_sync(&cod3033x->key_work);
if (cod3033x->int_gpio) {
free_irq(gpio_to_irq(cod3033x->int_gpio), cod3033x);
gpio_free(cod3033x->int_gpio);
}
return 0;
}
static struct snd_soc_codec_driver soc_codec_dev_cod3033x = {
.probe = cod3033x_codec_probe,
.remove = cod3033x_codec_remove,
.controls = cod3033x_snd_controls,
.num_controls = ARRAY_SIZE(cod3033x_snd_controls),
.dapm_widgets = cod3033x_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(cod3033x_dapm_widgets),
.dapm_routes = cod3033x_dapm_routes,
.num_dapm_routes = ARRAY_SIZE(cod3033x_dapm_routes),
.ignore_pmdown_time = true,
.idle_bias_off = true,
};
static int cod3033x_i2c_probe(struct i2c_client *i2c,
const struct i2c_device_id *id)
{
struct cod3033x_priv *cod3033x;
struct pinctrl *pinctrl;
int ret;
cod3033x = kzalloc(sizeof(struct cod3033x_priv), GFP_KERNEL);
if (cod3033x == NULL)
return -ENOMEM;
cod3033x->dev = &i2c->dev;
cod3033x->i2c_addr = i2c->addr;
cod3033x->regmap = devm_regmap_init_i2c(i2c, &cod3033x_regmap);
if (IS_ERR(cod3033x->regmap)) {
dev_err(&i2c->dev, "Failed to allocate regmap: %li\n",
PTR_ERR(cod3033x->regmap));
kfree(cod3033x);
return -ENOMEM;
}
regcache_mark_dirty(cod3033x->regmap);
pinctrl = devm_pinctrl_get(&i2c->dev);
if (IS_ERR(pinctrl)) {
dev_warn(&i2c->dev, "did not get pins for codec: %li\n",
PTR_ERR(pinctrl));
} else {
cod3033x->pinctrl = pinctrl;
}
i2c_set_clientdata(i2c, cod3033x);
ret = snd_soc_register_codec(&i2c->dev, &soc_codec_dev_cod3033x,
cod3033x_dai, ARRAY_SIZE(cod3033x_dai));
if (ret < 0)
dev_err(&i2c->dev, "Failed to register codec: %d\n", ret);
#ifdef CONFIG_PM_RUNTIME
pm_runtime_enable(cod3033x->dev);
#endif
return ret;
}
static int cod3033x_i2c_remove(struct i2c_client *i2c)
{
snd_soc_unregister_codec(&i2c->dev);
return 0;
}
static void cod3033x_cfg_gpio(struct device *dev, const char *name)
{
struct pinctrl_state *pin_state;
struct cod3033x_priv *cod3033x = dev_get_drvdata(dev);
pin_state = pinctrl_lookup_state(cod3033x->pinctrl, name);
if (IS_ERR(pin_state))
goto err;
if (pinctrl_select_state(cod3033x->pinctrl, pin_state) < 0)
goto err;
return;
err:
dev_err(dev, "Unable to configure codec gpio as %s\n", name);
return;
}
static int cod3033x_enable(struct device *dev)
{
struct cod3033x_priv *cod3033x = dev_get_drvdata(dev);
dev_dbg(dev, "(*) %s\n", __func__);
cod3033x_cfg_gpio(dev, "default");
/*
* Below sequence should be maintained, so that even the jd interupt
* changes the cache mode between below two line should not cause
* issue
*/
cod3033x->is_suspend = false;
/* Disable cache_only feature and sync the cache with h/w */
regcache_cache_only(cod3033x->regmap, false);
cod3033x_reg_restore(cod3033x->codec);
return 0;
}
static int cod3033x_disable(struct device *dev)
{
struct cod3033x_priv *cod3033x = dev_get_drvdata(dev);
dev_dbg(dev, "(*) %s\n", __func__);
/*
* Below sequence should be maintained, so that even the jd interupt
* changes the cache mode between below two line should not cause
* issue
*/
cod3033x->is_suspend = true;
/* As device is going to suspend-state, limit the writes to cache */
// regcache_cache_only(cod3033x->regmap, true);
return 0;
}
static int cod3033x_sys_suspend(struct device *dev)
{
#ifndef CONFIG_PM_RUNTIME
//$$$_kjc struct cod3033x_priv *cod3026x = dev_get_drvdata(dev);
/* if (is_cp_aud_enabled()) {
dev_dbg(dev, "(*)Don't suspend Codec-3033, cp functioning\n");
return 0;
}
dev_dbg(dev, "(*) %s\n", __func__);
*/ cod3033x_disable(dev);
#endif
return 0;
}
static int cod3033x_sys_resume(struct device *dev)
{
#ifndef CONFIG_PM_RUNTIME
struct cod3033x_priv *cod3033x = dev_get_drvdata(dev);
if (!cod3033x->is_suspend) {
dev_dbg(dev, "(*)Codec-3033 not resuming, cp functioning\n");
return 0;
}
dev_dbg(dev, "(*) %s\n", __func__);
cod3033x_enable(dev);
#endif
return 0;
}
#ifdef CONFIG_PM_RUNTIME
static int cod3033x_runtime_resume(struct device *dev)
{
dev_dbg(dev, "(*) %s\n", __func__);
cod3033x_enable(dev);
return 0;
}
static int cod3033x_runtime_suspend(struct device *dev)
{
dev_dbg(dev, "(*) %s\n", __func__);
cod3033x_disable(dev);
return 0;
}
#endif
static const struct dev_pm_ops cod3033x_pm = {
SET_SYSTEM_SLEEP_PM_OPS(
cod3033x_sys_suspend,
cod3033x_sys_resume
)
#ifdef CONFIG_PM_RUNTIME
SET_RUNTIME_PM_OPS(
cod3033x_runtime_suspend,
cod3033x_runtime_resume,
NULL
)
#endif
};
static const struct i2c_device_id cod3033x_i2c_id[] = {
{ "cod3033x", 3033 },
{ }
};
MODULE_DEVICE_TABLE(i2c, cod3033x_i2c_id);
const struct of_device_id cod3033x_of_match[] = {
{ .compatible = "codec,cod3033x",},
{},
};
static struct i2c_driver cod3033x_i2c_driver = {
.driver = {
.name = "cod3033x",
.owner = THIS_MODULE,
.pm = &cod3033x_pm,
.of_match_table = of_match_ptr(cod3033x_of_match),
},
.probe = cod3033x_i2c_probe,
.remove = cod3033x_i2c_remove,
.id_table = cod3033x_i2c_id,
};
module_i2c_driver(cod3033x_i2c_driver);
MODULE_DESCRIPTION("ASoC COD3033X driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:COD3033X-codec");
MODULE_FIRMWARE(COD3033X_FIRMWARE_NAME);