| /* |
| * Read-Copy Update mechanism for mutual exclusion (tree-based version) |
| * Internal non-public definitions that provide either classic |
| * or preemptible semantics. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, you can access it online at |
| * http://www.gnu.org/licenses/gpl-2.0.html. |
| * |
| * Copyright Red Hat, 2009 |
| * Copyright IBM Corporation, 2009 |
| * |
| * Author: Ingo Molnar <mingo@elte.hu> |
| * Paul E. McKenney <paulmck@linux.vnet.ibm.com> |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/gfp.h> |
| #include <linux/oom.h> |
| #include <linux/smpboot.h> |
| #include "../time/tick-internal.h" |
| |
| #ifdef CONFIG_RCU_BOOST |
| |
| #include "../locking/rtmutex_common.h" |
| |
| /* |
| * Control variables for per-CPU and per-rcu_node kthreads. These |
| * handle all flavors of RCU. |
| */ |
| static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task); |
| DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status); |
| DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops); |
| DEFINE_PER_CPU(char, rcu_cpu_has_work); |
| |
| #else /* #ifdef CONFIG_RCU_BOOST */ |
| |
| /* |
| * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST, |
| * all uses are in dead code. Provide a definition to keep the compiler |
| * happy, but add WARN_ON_ONCE() to complain if used in the wrong place. |
| * This probably needs to be excluded from -rt builds. |
| */ |
| #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; }) |
| |
| #endif /* #else #ifdef CONFIG_RCU_BOOST */ |
| |
| #ifdef CONFIG_RCU_NOCB_CPU |
| static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ |
| static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */ |
| static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ |
| #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ |
| |
| /* |
| * Check the RCU kernel configuration parameters and print informative |
| * messages about anything out of the ordinary. If you like #ifdef, you |
| * will love this function. |
| */ |
| static void __init rcu_bootup_announce_oddness(void) |
| { |
| if (IS_ENABLED(CONFIG_RCU_TRACE)) |
| pr_info("\tRCU debugfs-based tracing is enabled.\n"); |
| if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) || |
| (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32)) |
| pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n", |
| RCU_FANOUT); |
| if (rcu_fanout_exact) |
| pr_info("\tHierarchical RCU autobalancing is disabled.\n"); |
| if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ)) |
| pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n"); |
| if (IS_ENABLED(CONFIG_PROVE_RCU)) |
| pr_info("\tRCU lockdep checking is enabled.\n"); |
| if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE)) |
| pr_info("\tRCU torture testing starts during boot.\n"); |
| if (RCU_NUM_LVLS >= 4) |
| pr_info("\tFour(or more)-level hierarchy is enabled.\n"); |
| if (RCU_FANOUT_LEAF != 16) |
| pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", |
| RCU_FANOUT_LEAF); |
| if (rcu_fanout_leaf != RCU_FANOUT_LEAF) |
| pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf); |
| if (nr_cpu_ids != NR_CPUS) |
| pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids); |
| if (IS_ENABLED(CONFIG_RCU_BOOST)) |
| pr_info("\tRCU kthread priority: %d.\n", kthread_prio); |
| } |
| |
| #ifdef CONFIG_PREEMPT_RCU |
| |
| RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu); |
| static struct rcu_state *const rcu_state_p = &rcu_preempt_state; |
| static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data; |
| |
| static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, |
| bool wake); |
| |
| /* |
| * Tell them what RCU they are running. |
| */ |
| static void __init rcu_bootup_announce(void) |
| { |
| pr_info("Preemptible hierarchical RCU implementation.\n"); |
| rcu_bootup_announce_oddness(); |
| } |
| |
| /* Flags for rcu_preempt_ctxt_queue() decision table. */ |
| #define RCU_GP_TASKS 0x8 |
| #define RCU_EXP_TASKS 0x4 |
| #define RCU_GP_BLKD 0x2 |
| #define RCU_EXP_BLKD 0x1 |
| |
| /* |
| * Queues a task preempted within an RCU-preempt read-side critical |
| * section into the appropriate location within the ->blkd_tasks list, |
| * depending on the states of any ongoing normal and expedited grace |
| * periods. The ->gp_tasks pointer indicates which element the normal |
| * grace period is waiting on (NULL if none), and the ->exp_tasks pointer |
| * indicates which element the expedited grace period is waiting on (again, |
| * NULL if none). If a grace period is waiting on a given element in the |
| * ->blkd_tasks list, it also waits on all subsequent elements. Thus, |
| * adding a task to the tail of the list blocks any grace period that is |
| * already waiting on one of the elements. In contrast, adding a task |
| * to the head of the list won't block any grace period that is already |
| * waiting on one of the elements. |
| * |
| * This queuing is imprecise, and can sometimes make an ongoing grace |
| * period wait for a task that is not strictly speaking blocking it. |
| * Given the choice, we needlessly block a normal grace period rather than |
| * blocking an expedited grace period. |
| * |
| * Note that an endless sequence of expedited grace periods still cannot |
| * indefinitely postpone a normal grace period. Eventually, all of the |
| * fixed number of preempted tasks blocking the normal grace period that are |
| * not also blocking the expedited grace period will resume and complete |
| * their RCU read-side critical sections. At that point, the ->gp_tasks |
| * pointer will equal the ->exp_tasks pointer, at which point the end of |
| * the corresponding expedited grace period will also be the end of the |
| * normal grace period. |
| */ |
| static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp, |
| unsigned long flags) __releases(rnp->lock) |
| { |
| int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) + |
| (rnp->exp_tasks ? RCU_EXP_TASKS : 0) + |
| (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) + |
| (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0); |
| struct task_struct *t = current; |
| |
| /* |
| * Decide where to queue the newly blocked task. In theory, |
| * this could be an if-statement. In practice, when I tried |
| * that, it was quite messy. |
| */ |
| switch (blkd_state) { |
| case 0: |
| case RCU_EXP_TASKS: |
| case RCU_EXP_TASKS + RCU_GP_BLKD: |
| case RCU_GP_TASKS: |
| case RCU_GP_TASKS + RCU_EXP_TASKS: |
| |
| /* |
| * Blocking neither GP, or first task blocking the normal |
| * GP but not blocking the already-waiting expedited GP. |
| * Queue at the head of the list to avoid unnecessarily |
| * blocking the already-waiting GPs. |
| */ |
| list_add(&t->rcu_node_entry, &rnp->blkd_tasks); |
| break; |
| |
| case RCU_EXP_BLKD: |
| case RCU_GP_BLKD: |
| case RCU_GP_BLKD + RCU_EXP_BLKD: |
| case RCU_GP_TASKS + RCU_EXP_BLKD: |
| case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: |
| case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: |
| |
| /* |
| * First task arriving that blocks either GP, or first task |
| * arriving that blocks the expedited GP (with the normal |
| * GP already waiting), or a task arriving that blocks |
| * both GPs with both GPs already waiting. Queue at the |
| * tail of the list to avoid any GP waiting on any of the |
| * already queued tasks that are not blocking it. |
| */ |
| list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks); |
| break; |
| |
| case RCU_EXP_TASKS + RCU_EXP_BLKD: |
| case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: |
| case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD: |
| |
| /* |
| * Second or subsequent task blocking the expedited GP. |
| * The task either does not block the normal GP, or is the |
| * first task blocking the normal GP. Queue just after |
| * the first task blocking the expedited GP. |
| */ |
| list_add(&t->rcu_node_entry, rnp->exp_tasks); |
| break; |
| |
| case RCU_GP_TASKS + RCU_GP_BLKD: |
| case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD: |
| |
| /* |
| * Second or subsequent task blocking the normal GP. |
| * The task does not block the expedited GP. Queue just |
| * after the first task blocking the normal GP. |
| */ |
| list_add(&t->rcu_node_entry, rnp->gp_tasks); |
| break; |
| |
| default: |
| |
| /* Yet another exercise in excessive paranoia. */ |
| WARN_ON_ONCE(1); |
| break; |
| } |
| |
| /* |
| * We have now queued the task. If it was the first one to |
| * block either grace period, update the ->gp_tasks and/or |
| * ->exp_tasks pointers, respectively, to reference the newly |
| * blocked tasks. |
| */ |
| if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) |
| rnp->gp_tasks = &t->rcu_node_entry; |
| if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD)) |
| rnp->exp_tasks = &t->rcu_node_entry; |
| raw_spin_unlock(&rnp->lock); |
| |
| /* |
| * Report the quiescent state for the expedited GP. This expedited |
| * GP should not be able to end until we report, so there should be |
| * no need to check for a subsequent expedited GP. (Though we are |
| * still in a quiescent state in any case.) |
| */ |
| if (blkd_state & RCU_EXP_BLKD && |
| t->rcu_read_unlock_special.b.exp_need_qs) { |
| t->rcu_read_unlock_special.b.exp_need_qs = false; |
| rcu_report_exp_rdp(rdp->rsp, rdp, true); |
| } else { |
| WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs); |
| } |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * Record a preemptible-RCU quiescent state for the specified CPU. Note |
| * that this just means that the task currently running on the CPU is |
| * not in a quiescent state. There might be any number of tasks blocked |
| * while in an RCU read-side critical section. |
| * |
| * As with the other rcu_*_qs() functions, callers to this function |
| * must disable preemption. |
| */ |
| static void rcu_preempt_qs(void) |
| { |
| if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) { |
| trace_rcu_grace_period(TPS("rcu_preempt"), |
| __this_cpu_read(rcu_data_p->gpnum), |
| TPS("cpuqs")); |
| __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false); |
| barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */ |
| current->rcu_read_unlock_special.b.need_qs = false; |
| } |
| } |
| |
| /* |
| * We have entered the scheduler, and the current task might soon be |
| * context-switched away from. If this task is in an RCU read-side |
| * critical section, we will no longer be able to rely on the CPU to |
| * record that fact, so we enqueue the task on the blkd_tasks list. |
| * The task will dequeue itself when it exits the outermost enclosing |
| * RCU read-side critical section. Therefore, the current grace period |
| * cannot be permitted to complete until the blkd_tasks list entries |
| * predating the current grace period drain, in other words, until |
| * rnp->gp_tasks becomes NULL. |
| * |
| * Caller must disable preemption. |
| */ |
| static void rcu_preempt_note_context_switch(void) |
| { |
| struct task_struct *t = current; |
| unsigned long flags; |
| struct rcu_data *rdp; |
| struct rcu_node *rnp; |
| |
| if (t->rcu_read_lock_nesting > 0 && |
| !t->rcu_read_unlock_special.b.blocked) { |
| |
| /* Possibly blocking in an RCU read-side critical section. */ |
| rdp = this_cpu_ptr(rcu_state_p->rda); |
| rnp = rdp->mynode; |
| raw_spin_lock_irqsave(&rnp->lock, flags); |
| smp_mb__after_unlock_lock(); |
| t->rcu_read_unlock_special.b.blocked = true; |
| t->rcu_blocked_node = rnp; |
| |
| /* |
| * Verify the CPU's sanity, trace the preemption, and |
| * then queue the task as required based on the states |
| * of any ongoing and expedited grace periods. |
| */ |
| WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0); |
| WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); |
| trace_rcu_preempt_task(rdp->rsp->name, |
| t->pid, |
| (rnp->qsmask & rdp->grpmask) |
| ? rnp->gpnum |
| : rnp->gpnum + 1); |
| rcu_preempt_ctxt_queue(rnp, rdp, flags); |
| } else if (t->rcu_read_lock_nesting < 0 && |
| t->rcu_read_unlock_special.s) { |
| |
| /* |
| * Complete exit from RCU read-side critical section on |
| * behalf of preempted instance of __rcu_read_unlock(). |
| */ |
| rcu_read_unlock_special(t); |
| } |
| |
| /* |
| * Either we were not in an RCU read-side critical section to |
| * begin with, or we have now recorded that critical section |
| * globally. Either way, we can now note a quiescent state |
| * for this CPU. Again, if we were in an RCU read-side critical |
| * section, and if that critical section was blocking the current |
| * grace period, then the fact that the task has been enqueued |
| * means that we continue to block the current grace period. |
| */ |
| rcu_preempt_qs(); |
| } |
| |
| /* |
| * Check for preempted RCU readers blocking the current grace period |
| * for the specified rcu_node structure. If the caller needs a reliable |
| * answer, it must hold the rcu_node's ->lock. |
| */ |
| static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) |
| { |
| return rnp->gp_tasks != NULL; |
| } |
| |
| /* |
| * Advance a ->blkd_tasks-list pointer to the next entry, instead |
| * returning NULL if at the end of the list. |
| */ |
| static struct list_head *rcu_next_node_entry(struct task_struct *t, |
| struct rcu_node *rnp) |
| { |
| struct list_head *np; |
| |
| np = t->rcu_node_entry.next; |
| if (np == &rnp->blkd_tasks) |
| np = NULL; |
| return np; |
| } |
| |
| /* |
| * Return true if the specified rcu_node structure has tasks that were |
| * preempted within an RCU read-side critical section. |
| */ |
| static bool rcu_preempt_has_tasks(struct rcu_node *rnp) |
| { |
| return !list_empty(&rnp->blkd_tasks); |
| } |
| |
| /* |
| * Handle special cases during rcu_read_unlock(), such as needing to |
| * notify RCU core processing or task having blocked during the RCU |
| * read-side critical section. |
| */ |
| void rcu_read_unlock_special(struct task_struct *t) |
| { |
| bool empty_exp; |
| bool empty_norm; |
| bool empty_exp_now; |
| unsigned long flags; |
| struct list_head *np; |
| bool drop_boost_mutex = false; |
| struct rcu_data *rdp; |
| struct rcu_node *rnp; |
| union rcu_special special; |
| |
| /* NMI handlers cannot block and cannot safely manipulate state. */ |
| if (in_nmi()) |
| return; |
| |
| local_irq_save(flags); |
| |
| /* |
| * If RCU core is waiting for this CPU to exit its critical section, |
| * report the fact that it has exited. Because irqs are disabled, |
| * t->rcu_read_unlock_special cannot change. |
| */ |
| special = t->rcu_read_unlock_special; |
| if (special.b.need_qs) { |
| rcu_preempt_qs(); |
| t->rcu_read_unlock_special.b.need_qs = false; |
| if (!t->rcu_read_unlock_special.s) { |
| local_irq_restore(flags); |
| return; |
| } |
| } |
| |
| /* |
| * Respond to a request for an expedited grace period, but only if |
| * we were not preempted, meaning that we were running on the same |
| * CPU throughout. If we were preempted, the exp_need_qs flag |
| * would have been cleared at the time of the first preemption, |
| * and the quiescent state would be reported when we were dequeued. |
| */ |
| if (special.b.exp_need_qs) { |
| WARN_ON_ONCE(special.b.blocked); |
| t->rcu_read_unlock_special.b.exp_need_qs = false; |
| rdp = this_cpu_ptr(rcu_state_p->rda); |
| rcu_report_exp_rdp(rcu_state_p, rdp, true); |
| if (!t->rcu_read_unlock_special.s) { |
| local_irq_restore(flags); |
| return; |
| } |
| } |
| |
| /* Hardware IRQ handlers cannot block, complain if they get here. */ |
| if (in_irq() || in_serving_softirq()) { |
| lockdep_rcu_suspicious(__FILE__, __LINE__, |
| "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n"); |
| pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n", |
| t->rcu_read_unlock_special.s, |
| t->rcu_read_unlock_special.b.blocked, |
| t->rcu_read_unlock_special.b.exp_need_qs, |
| t->rcu_read_unlock_special.b.need_qs); |
| local_irq_restore(flags); |
| return; |
| } |
| |
| /* Clean up if blocked during RCU read-side critical section. */ |
| if (special.b.blocked) { |
| t->rcu_read_unlock_special.b.blocked = false; |
| |
| /* |
| * Remove this task from the list it blocked on. The task |
| * now remains queued on the rcu_node corresponding to |
| * the CPU it first blocked on, so the first attempt to |
| * acquire the task's rcu_node's ->lock will succeed. |
| * Keep the loop and add a WARN_ON() out of sheer paranoia. |
| */ |
| for (;;) { |
| rnp = t->rcu_blocked_node; |
| raw_spin_lock(&rnp->lock); /* irqs already disabled. */ |
| smp_mb__after_unlock_lock(); |
| if (rnp == t->rcu_blocked_node) |
| break; |
| WARN_ON_ONCE(1); |
| raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
| } |
| empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); |
| empty_exp = sync_rcu_preempt_exp_done(rnp); |
| smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ |
| np = rcu_next_node_entry(t, rnp); |
| list_del_init(&t->rcu_node_entry); |
| t->rcu_blocked_node = NULL; |
| trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), |
| rnp->gpnum, t->pid); |
| if (&t->rcu_node_entry == rnp->gp_tasks) |
| rnp->gp_tasks = np; |
| if (&t->rcu_node_entry == rnp->exp_tasks) |
| rnp->exp_tasks = np; |
| if (IS_ENABLED(CONFIG_RCU_BOOST)) { |
| if (&t->rcu_node_entry == rnp->boost_tasks) |
| rnp->boost_tasks = np; |
| /* Snapshot ->boost_mtx ownership w/rnp->lock held. */ |
| drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t; |
| } |
| |
| /* |
| * If this was the last task on the current list, and if |
| * we aren't waiting on any CPUs, report the quiescent state. |
| * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, |
| * so we must take a snapshot of the expedited state. |
| */ |
| empty_exp_now = sync_rcu_preempt_exp_done(rnp); |
| if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { |
| trace_rcu_quiescent_state_report(TPS("preempt_rcu"), |
| rnp->gpnum, |
| 0, rnp->qsmask, |
| rnp->level, |
| rnp->grplo, |
| rnp->grphi, |
| !!rnp->gp_tasks); |
| rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags); |
| } else { |
| raw_spin_unlock_irqrestore(&rnp->lock, flags); |
| } |
| |
| /* Unboost if we were boosted. */ |
| if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex) |
| rt_mutex_unlock(&rnp->boost_mtx); |
| |
| /* |
| * If this was the last task on the expedited lists, |
| * then we need to report up the rcu_node hierarchy. |
| */ |
| if (!empty_exp && empty_exp_now) |
| rcu_report_exp_rnp(rcu_state_p, rnp, true); |
| } else { |
| local_irq_restore(flags); |
| } |
| } |
| |
| /* |
| * Dump detailed information for all tasks blocking the current RCU |
| * grace period on the specified rcu_node structure. |
| */ |
| static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp) |
| { |
| unsigned long flags; |
| struct task_struct *t; |
| |
| raw_spin_lock_irqsave(&rnp->lock, flags); |
| if (!rcu_preempt_blocked_readers_cgp(rnp)) { |
| raw_spin_unlock_irqrestore(&rnp->lock, flags); |
| return; |
| } |
| t = list_entry(rnp->gp_tasks->prev, |
| struct task_struct, rcu_node_entry); |
| list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) |
| sched_show_task(t); |
| raw_spin_unlock_irqrestore(&rnp->lock, flags); |
| } |
| |
| /* |
| * Dump detailed information for all tasks blocking the current RCU |
| * grace period. |
| */ |
| static void rcu_print_detail_task_stall(struct rcu_state *rsp) |
| { |
| struct rcu_node *rnp = rcu_get_root(rsp); |
| |
| rcu_print_detail_task_stall_rnp(rnp); |
| rcu_for_each_leaf_node(rsp, rnp) |
| rcu_print_detail_task_stall_rnp(rnp); |
| } |
| |
| static void rcu_print_task_stall_begin(struct rcu_node *rnp) |
| { |
| pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):", |
| rnp->level, rnp->grplo, rnp->grphi); |
| } |
| |
| static void rcu_print_task_stall_end(void) |
| { |
| pr_cont("\n"); |
| } |
| |
| /* |
| * Scan the current list of tasks blocked within RCU read-side critical |
| * sections, printing out the tid of each. |
| */ |
| static int rcu_print_task_stall(struct rcu_node *rnp) |
| { |
| struct task_struct *t; |
| int ndetected = 0; |
| |
| if (!rcu_preempt_blocked_readers_cgp(rnp)) |
| return 0; |
| rcu_print_task_stall_begin(rnp); |
| t = list_entry(rnp->gp_tasks->prev, |
| struct task_struct, rcu_node_entry); |
| list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { |
| pr_cont(" P%d", t->pid); |
| ndetected++; |
| } |
| rcu_print_task_stall_end(); |
| return ndetected; |
| } |
| |
| /* |
| * Scan the current list of tasks blocked within RCU read-side critical |
| * sections, printing out the tid of each that is blocking the current |
| * expedited grace period. |
| */ |
| static int rcu_print_task_exp_stall(struct rcu_node *rnp) |
| { |
| struct task_struct *t; |
| int ndetected = 0; |
| |
| if (!rnp->exp_tasks) |
| return 0; |
| t = list_entry(rnp->exp_tasks->prev, |
| struct task_struct, rcu_node_entry); |
| list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { |
| pr_cont(" P%d", t->pid); |
| ndetected++; |
| } |
| return ndetected; |
| } |
| |
| /* |
| * Check that the list of blocked tasks for the newly completed grace |
| * period is in fact empty. It is a serious bug to complete a grace |
| * period that still has RCU readers blocked! This function must be |
| * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock |
| * must be held by the caller. |
| * |
| * Also, if there are blocked tasks on the list, they automatically |
| * block the newly created grace period, so set up ->gp_tasks accordingly. |
| */ |
| static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) |
| { |
| WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); |
| if (rcu_preempt_has_tasks(rnp)) |
| rnp->gp_tasks = rnp->blkd_tasks.next; |
| WARN_ON_ONCE(rnp->qsmask); |
| } |
| |
| /* |
| * Check for a quiescent state from the current CPU. When a task blocks, |
| * the task is recorded in the corresponding CPU's rcu_node structure, |
| * which is checked elsewhere. |
| * |
| * Caller must disable hard irqs. |
| */ |
| static void rcu_preempt_check_callbacks(void) |
| { |
| struct task_struct *t = current; |
| |
| if (t->rcu_read_lock_nesting == 0) { |
| rcu_preempt_qs(); |
| return; |
| } |
| if (t->rcu_read_lock_nesting > 0 && |
| __this_cpu_read(rcu_data_p->core_needs_qs) && |
| __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm)) |
| t->rcu_read_unlock_special.b.need_qs = true; |
| } |
| |
| #ifdef CONFIG_RCU_BOOST |
| |
| static void rcu_preempt_do_callbacks(void) |
| { |
| rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p)); |
| } |
| |
| #endif /* #ifdef CONFIG_RCU_BOOST */ |
| |
| /* |
| * Queue a preemptible-RCU callback for invocation after a grace period. |
| */ |
| void call_rcu(struct rcu_head *head, rcu_callback_t func) |
| { |
| __call_rcu(head, func, rcu_state_p, -1, 0); |
| } |
| EXPORT_SYMBOL_GPL(call_rcu); |
| |
| /** |
| * synchronize_rcu - wait until a grace period has elapsed. |
| * |
| * Control will return to the caller some time after a full grace |
| * period has elapsed, in other words after all currently executing RCU |
| * read-side critical sections have completed. Note, however, that |
| * upon return from synchronize_rcu(), the caller might well be executing |
| * concurrently with new RCU read-side critical sections that began while |
| * synchronize_rcu() was waiting. RCU read-side critical sections are |
| * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. |
| * |
| * See the description of synchronize_sched() for more detailed information |
| * on memory ordering guarantees. |
| */ |
| void synchronize_rcu(void) |
| { |
| RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || |
| lock_is_held(&rcu_lock_map) || |
| lock_is_held(&rcu_sched_lock_map), |
| "Illegal synchronize_rcu() in RCU read-side critical section"); |
| if (!rcu_scheduler_active) |
| return; |
| if (rcu_gp_is_expedited()) |
| synchronize_rcu_expedited(); |
| else |
| wait_rcu_gp(call_rcu); |
| } |
| EXPORT_SYMBOL_GPL(synchronize_rcu); |
| |
| /* |
| * Remote handler for smp_call_function_single(). If there is an |
| * RCU read-side critical section in effect, request that the |
| * next rcu_read_unlock() record the quiescent state up the |
| * ->expmask fields in the rcu_node tree. Otherwise, immediately |
| * report the quiescent state. |
| */ |
| static void sync_rcu_exp_handler(void *info) |
| { |
| struct rcu_data *rdp; |
| struct rcu_state *rsp = info; |
| struct task_struct *t = current; |
| |
| /* |
| * Within an RCU read-side critical section, request that the next |
| * rcu_read_unlock() report. Unless this RCU read-side critical |
| * section has already blocked, in which case it is already set |
| * up for the expedited grace period to wait on it. |
| */ |
| if (t->rcu_read_lock_nesting > 0 && |
| !t->rcu_read_unlock_special.b.blocked) { |
| t->rcu_read_unlock_special.b.exp_need_qs = true; |
| return; |
| } |
| |
| /* |
| * We are either exiting an RCU read-side critical section (negative |
| * values of t->rcu_read_lock_nesting) or are not in one at all |
| * (zero value of t->rcu_read_lock_nesting). Or we are in an RCU |
| * read-side critical section that blocked before this expedited |
| * grace period started. Either way, we can immediately report |
| * the quiescent state. |
| */ |
| rdp = this_cpu_ptr(rsp->rda); |
| rcu_report_exp_rdp(rsp, rdp, true); |
| } |
| |
| /** |
| * synchronize_rcu_expedited - Brute-force RCU grace period |
| * |
| * Wait for an RCU-preempt grace period, but expedite it. The basic |
| * idea is to invoke synchronize_sched_expedited() to push all the tasks to |
| * the ->blkd_tasks lists and wait for this list to drain. This consumes |
| * significant time on all CPUs and is unfriendly to real-time workloads, |
| * so is thus not recommended for any sort of common-case code. |
| * In fact, if you are using synchronize_rcu_expedited() in a loop, |
| * please restructure your code to batch your updates, and then Use a |
| * single synchronize_rcu() instead. |
| */ |
| void synchronize_rcu_expedited(void) |
| { |
| struct rcu_node *rnp; |
| struct rcu_node *rnp_unlock; |
| struct rcu_state *rsp = rcu_state_p; |
| unsigned long s; |
| |
| s = rcu_exp_gp_seq_snap(rsp); |
| |
| rnp_unlock = exp_funnel_lock(rsp, s); |
| if (rnp_unlock == NULL) |
| return; /* Someone else did our work for us. */ |
| |
| rcu_exp_gp_seq_start(rsp); |
| |
| /* Initialize the rcu_node tree in preparation for the wait. */ |
| sync_rcu_exp_select_cpus(rsp, sync_rcu_exp_handler); |
| |
| /* Wait for snapshotted ->blkd_tasks lists to drain. */ |
| rnp = rcu_get_root(rsp); |
| synchronize_sched_expedited_wait(rsp); |
| |
| /* Clean up and exit. */ |
| rcu_exp_gp_seq_end(rsp); |
| mutex_unlock(&rnp_unlock->exp_funnel_mutex); |
| } |
| EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); |
| |
| /** |
| * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. |
| * |
| * Note that this primitive does not necessarily wait for an RCU grace period |
| * to complete. For example, if there are no RCU callbacks queued anywhere |
| * in the system, then rcu_barrier() is within its rights to return |
| * immediately, without waiting for anything, much less an RCU grace period. |
| */ |
| void rcu_barrier(void) |
| { |
| _rcu_barrier(rcu_state_p); |
| } |
| EXPORT_SYMBOL_GPL(rcu_barrier); |
| |
| /* |
| * Initialize preemptible RCU's state structures. |
| */ |
| static void __init __rcu_init_preempt(void) |
| { |
| rcu_init_one(rcu_state_p, rcu_data_p); |
| } |
| |
| /* |
| * Check for a task exiting while in a preemptible-RCU read-side |
| * critical section, clean up if so. No need to issue warnings, |
| * as debug_check_no_locks_held() already does this if lockdep |
| * is enabled. |
| */ |
| void exit_rcu(void) |
| { |
| struct task_struct *t = current; |
| |
| if (likely(list_empty(¤t->rcu_node_entry))) |
| return; |
| t->rcu_read_lock_nesting = 1; |
| barrier(); |
| t->rcu_read_unlock_special.b.blocked = true; |
| __rcu_read_unlock(); |
| } |
| |
| #else /* #ifdef CONFIG_PREEMPT_RCU */ |
| |
| static struct rcu_state *const rcu_state_p = &rcu_sched_state; |
| static struct rcu_data __percpu *const rcu_data_p = &rcu_sched_data; |
| |
| /* |
| * Tell them what RCU they are running. |
| */ |
| static void __init rcu_bootup_announce(void) |
| { |
| pr_info("Hierarchical RCU implementation.\n"); |
| rcu_bootup_announce_oddness(); |
| } |
| |
| /* |
| * Because preemptible RCU does not exist, we never have to check for |
| * CPUs being in quiescent states. |
| */ |
| static void rcu_preempt_note_context_switch(void) |
| { |
| } |
| |
| /* |
| * Because preemptible RCU does not exist, there are never any preempted |
| * RCU readers. |
| */ |
| static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) |
| { |
| return 0; |
| } |
| |
| /* |
| * Because there is no preemptible RCU, there can be no readers blocked. |
| */ |
| static bool rcu_preempt_has_tasks(struct rcu_node *rnp) |
| { |
| return false; |
| } |
| |
| /* |
| * Because preemptible RCU does not exist, we never have to check for |
| * tasks blocked within RCU read-side critical sections. |
| */ |
| static void rcu_print_detail_task_stall(struct rcu_state *rsp) |
| { |
| } |
| |
| /* |
| * Because preemptible RCU does not exist, we never have to check for |
| * tasks blocked within RCU read-side critical sections. |
| */ |
| static int rcu_print_task_stall(struct rcu_node *rnp) |
| { |
| return 0; |
| } |
| |
| /* |
| * Because preemptible RCU does not exist, we never have to check for |
| * tasks blocked within RCU read-side critical sections that are |
| * blocking the current expedited grace period. |
| */ |
| static int rcu_print_task_exp_stall(struct rcu_node *rnp) |
| { |
| return 0; |
| } |
| |
| /* |
| * Because there is no preemptible RCU, there can be no readers blocked, |
| * so there is no need to check for blocked tasks. So check only for |
| * bogus qsmask values. |
| */ |
| static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) |
| { |
| WARN_ON_ONCE(rnp->qsmask); |
| } |
| |
| /* |
| * Because preemptible RCU does not exist, it never has any callbacks |
| * to check. |
| */ |
| static void rcu_preempt_check_callbacks(void) |
| { |
| } |
| |
| /* |
| * Wait for an rcu-preempt grace period, but make it happen quickly. |
| * But because preemptible RCU does not exist, map to rcu-sched. |
| */ |
| void synchronize_rcu_expedited(void) |
| { |
| synchronize_sched_expedited(); |
| } |
| EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); |
| |
| /* |
| * Because preemptible RCU does not exist, rcu_barrier() is just |
| * another name for rcu_barrier_sched(). |
| */ |
| void rcu_barrier(void) |
| { |
| rcu_barrier_sched(); |
| } |
| EXPORT_SYMBOL_GPL(rcu_barrier); |
| |
| /* |
| * Because preemptible RCU does not exist, it need not be initialized. |
| */ |
| static void __init __rcu_init_preempt(void) |
| { |
| } |
| |
| /* |
| * Because preemptible RCU does not exist, tasks cannot possibly exit |
| * while in preemptible RCU read-side critical sections. |
| */ |
| void exit_rcu(void) |
| { |
| } |
| |
| #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ |
| |
| #ifdef CONFIG_RCU_BOOST |
| |
| #include "../locking/rtmutex_common.h" |
| |
| #ifdef CONFIG_RCU_TRACE |
| |
| static void rcu_initiate_boost_trace(struct rcu_node *rnp) |
| { |
| if (!rcu_preempt_has_tasks(rnp)) |
| rnp->n_balk_blkd_tasks++; |
| else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL) |
| rnp->n_balk_exp_gp_tasks++; |
| else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL) |
| rnp->n_balk_boost_tasks++; |
| else if (rnp->gp_tasks != NULL && rnp->qsmask != 0) |
| rnp->n_balk_notblocked++; |
| else if (rnp->gp_tasks != NULL && |
| ULONG_CMP_LT(jiffies, rnp->boost_time)) |
| rnp->n_balk_notyet++; |
| else |
| rnp->n_balk_nos++; |
| } |
| |
| #else /* #ifdef CONFIG_RCU_TRACE */ |
| |
| static void rcu_initiate_boost_trace(struct rcu_node *rnp) |
| { |
| } |
| |
| #endif /* #else #ifdef CONFIG_RCU_TRACE */ |
| |
| static void rcu_wake_cond(struct task_struct *t, int status) |
| { |
| /* |
| * If the thread is yielding, only wake it when this |
| * is invoked from idle |
| */ |
| if (status != RCU_KTHREAD_YIELDING || is_idle_task(current)) |
| wake_up_process(t); |
| } |
| |
| /* |
| * Carry out RCU priority boosting on the task indicated by ->exp_tasks |
| * or ->boost_tasks, advancing the pointer to the next task in the |
| * ->blkd_tasks list. |
| * |
| * Note that irqs must be enabled: boosting the task can block. |
| * Returns 1 if there are more tasks needing to be boosted. |
| */ |
| static int rcu_boost(struct rcu_node *rnp) |
| { |
| unsigned long flags; |
| struct task_struct *t; |
| struct list_head *tb; |
| |
| if (READ_ONCE(rnp->exp_tasks) == NULL && |
| READ_ONCE(rnp->boost_tasks) == NULL) |
| return 0; /* Nothing left to boost. */ |
| |
| raw_spin_lock_irqsave(&rnp->lock, flags); |
| smp_mb__after_unlock_lock(); |
| |
| /* |
| * Recheck under the lock: all tasks in need of boosting |
| * might exit their RCU read-side critical sections on their own. |
| */ |
| if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { |
| raw_spin_unlock_irqrestore(&rnp->lock, flags); |
| return 0; |
| } |
| |
| /* |
| * Preferentially boost tasks blocking expedited grace periods. |
| * This cannot starve the normal grace periods because a second |
| * expedited grace period must boost all blocked tasks, including |
| * those blocking the pre-existing normal grace period. |
| */ |
| if (rnp->exp_tasks != NULL) { |
| tb = rnp->exp_tasks; |
| rnp->n_exp_boosts++; |
| } else { |
| tb = rnp->boost_tasks; |
| rnp->n_normal_boosts++; |
| } |
| rnp->n_tasks_boosted++; |
| |
| /* |
| * We boost task t by manufacturing an rt_mutex that appears to |
| * be held by task t. We leave a pointer to that rt_mutex where |
| * task t can find it, and task t will release the mutex when it |
| * exits its outermost RCU read-side critical section. Then |
| * simply acquiring this artificial rt_mutex will boost task |
| * t's priority. (Thanks to tglx for suggesting this approach!) |
| * |
| * Note that task t must acquire rnp->lock to remove itself from |
| * the ->blkd_tasks list, which it will do from exit() if from |
| * nowhere else. We therefore are guaranteed that task t will |
| * stay around at least until we drop rnp->lock. Note that |
| * rnp->lock also resolves races between our priority boosting |
| * and task t's exiting its outermost RCU read-side critical |
| * section. |
| */ |
| t = container_of(tb, struct task_struct, rcu_node_entry); |
| rt_mutex_init_proxy_locked(&rnp->boost_mtx, t); |
| raw_spin_unlock_irqrestore(&rnp->lock, flags); |
| /* Lock only for side effect: boosts task t's priority. */ |
| rt_mutex_lock(&rnp->boost_mtx); |
| rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ |
| |
| return READ_ONCE(rnp->exp_tasks) != NULL || |
| READ_ONCE(rnp->boost_tasks) != NULL; |
| } |
| |
| /* |
| * Priority-boosting kthread, one per leaf rcu_node. |
| */ |
| static int rcu_boost_kthread(void *arg) |
| { |
| struct rcu_node *rnp = (struct rcu_node *)arg; |
| int spincnt = 0; |
| int more2boost; |
| |
| trace_rcu_utilization(TPS("Start boost kthread@init")); |
| for (;;) { |
| rnp->boost_kthread_status = RCU_KTHREAD_WAITING; |
| trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); |
| rcu_wait(rnp->boost_tasks || rnp->exp_tasks); |
| trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); |
| rnp->boost_kthread_status = RCU_KTHREAD_RUNNING; |
| more2boost = rcu_boost(rnp); |
| if (more2boost) |
| spincnt++; |
| else |
| spincnt = 0; |
| if (spincnt > 10) { |
| rnp->boost_kthread_status = RCU_KTHREAD_YIELDING; |
| trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); |
| schedule_timeout_interruptible(2); |
| trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); |
| spincnt = 0; |
| } |
| } |
| /* NOTREACHED */ |
| trace_rcu_utilization(TPS("End boost kthread@notreached")); |
| return 0; |
| } |
| |
| /* |
| * Check to see if it is time to start boosting RCU readers that are |
| * blocking the current grace period, and, if so, tell the per-rcu_node |
| * kthread to start boosting them. If there is an expedited grace |
| * period in progress, it is always time to boost. |
| * |
| * The caller must hold rnp->lock, which this function releases. |
| * The ->boost_kthread_task is immortal, so we don't need to worry |
| * about it going away. |
| */ |
| static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) |
| __releases(rnp->lock) |
| { |
| struct task_struct *t; |
| |
| if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { |
| rnp->n_balk_exp_gp_tasks++; |
| raw_spin_unlock_irqrestore(&rnp->lock, flags); |
| return; |
| } |
| if (rnp->exp_tasks != NULL || |
| (rnp->gp_tasks != NULL && |
| rnp->boost_tasks == NULL && |
| rnp->qsmask == 0 && |
| ULONG_CMP_GE(jiffies, rnp->boost_time))) { |
| if (rnp->exp_tasks == NULL) |
| rnp->boost_tasks = rnp->gp_tasks; |
| raw_spin_unlock_irqrestore(&rnp->lock, flags); |
| t = rnp->boost_kthread_task; |
| if (t) |
| rcu_wake_cond(t, rnp->boost_kthread_status); |
| } else { |
| rcu_initiate_boost_trace(rnp); |
| raw_spin_unlock_irqrestore(&rnp->lock, flags); |
| } |
| } |
| |
| /* |
| * Wake up the per-CPU kthread to invoke RCU callbacks. |
| */ |
| static void invoke_rcu_callbacks_kthread(void) |
| { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| __this_cpu_write(rcu_cpu_has_work, 1); |
| if (__this_cpu_read(rcu_cpu_kthread_task) != NULL && |
| current != __this_cpu_read(rcu_cpu_kthread_task)) { |
| rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task), |
| __this_cpu_read(rcu_cpu_kthread_status)); |
| } |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * Is the current CPU running the RCU-callbacks kthread? |
| * Caller must have preemption disabled. |
| */ |
| static bool rcu_is_callbacks_kthread(void) |
| { |
| return __this_cpu_read(rcu_cpu_kthread_task) == current; |
| } |
| |
| #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) |
| |
| /* |
| * Do priority-boost accounting for the start of a new grace period. |
| */ |
| static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) |
| { |
| rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; |
| } |
| |
| /* |
| * Create an RCU-boost kthread for the specified node if one does not |
| * already exist. We only create this kthread for preemptible RCU. |
| * Returns zero if all is well, a negated errno otherwise. |
| */ |
| static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp, |
| struct rcu_node *rnp) |
| { |
| int rnp_index = rnp - &rsp->node[0]; |
| unsigned long flags; |
| struct sched_param sp; |
| struct task_struct *t; |
| |
| if (rcu_state_p != rsp) |
| return 0; |
| |
| if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0) |
| return 0; |
| |
| rsp->boost = 1; |
| if (rnp->boost_kthread_task != NULL) |
| return 0; |
| t = kthread_create(rcu_boost_kthread, (void *)rnp, |
| "rcub/%d", rnp_index); |
| if (IS_ERR(t)) |
| return PTR_ERR(t); |
| raw_spin_lock_irqsave(&rnp->lock, flags); |
| smp_mb__after_unlock_lock(); |
| rnp->boost_kthread_task = t; |
| raw_spin_unlock_irqrestore(&rnp->lock, flags); |
| sp.sched_priority = kthread_prio; |
| sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); |
| wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ |
| return 0; |
| } |
| |
| static void rcu_kthread_do_work(void) |
| { |
| rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data)); |
| rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data)); |
| rcu_preempt_do_callbacks(); |
| } |
| |
| static void rcu_cpu_kthread_setup(unsigned int cpu) |
| { |
| struct sched_param sp; |
| |
| sp.sched_priority = kthread_prio; |
| sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); |
| } |
| |
| static void rcu_cpu_kthread_park(unsigned int cpu) |
| { |
| per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; |
| } |
| |
| static int rcu_cpu_kthread_should_run(unsigned int cpu) |
| { |
| return __this_cpu_read(rcu_cpu_has_work); |
| } |
| |
| /* |
| * Per-CPU kernel thread that invokes RCU callbacks. This replaces the |
| * RCU softirq used in flavors and configurations of RCU that do not |
| * support RCU priority boosting. |
| */ |
| static void rcu_cpu_kthread(unsigned int cpu) |
| { |
| unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status); |
| char work, *workp = this_cpu_ptr(&rcu_cpu_has_work); |
| int spincnt; |
| |
| for (spincnt = 0; spincnt < 10; spincnt++) { |
| trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait")); |
| local_bh_disable(); |
| *statusp = RCU_KTHREAD_RUNNING; |
| this_cpu_inc(rcu_cpu_kthread_loops); |
| local_irq_disable(); |
| work = *workp; |
| *workp = 0; |
| local_irq_enable(); |
| if (work) |
| rcu_kthread_do_work(); |
| local_bh_enable(); |
| if (*workp == 0) { |
| trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); |
| *statusp = RCU_KTHREAD_WAITING; |
| return; |
| } |
| } |
| *statusp = RCU_KTHREAD_YIELDING; |
| trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); |
| schedule_timeout_interruptible(2); |
| trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); |
| *statusp = RCU_KTHREAD_WAITING; |
| } |
| |
| /* |
| * Set the per-rcu_node kthread's affinity to cover all CPUs that are |
| * served by the rcu_node in question. The CPU hotplug lock is still |
| * held, so the value of rnp->qsmaskinit will be stable. |
| * |
| * We don't include outgoingcpu in the affinity set, use -1 if there is |
| * no outgoing CPU. If there are no CPUs left in the affinity set, |
| * this function allows the kthread to execute on any CPU. |
| */ |
| static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) |
| { |
| struct task_struct *t = rnp->boost_kthread_task; |
| unsigned long mask = rcu_rnp_online_cpus(rnp); |
| cpumask_var_t cm; |
| int cpu; |
| |
| if (!t) |
| return; |
| if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) |
| return; |
| for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) |
| if ((mask & 0x1) && cpu != outgoingcpu) |
| cpumask_set_cpu(cpu, cm); |
| if (cpumask_weight(cm) == 0) |
| cpumask_setall(cm); |
| set_cpus_allowed_ptr(t, cm); |
| free_cpumask_var(cm); |
| } |
| |
| static struct smp_hotplug_thread rcu_cpu_thread_spec = { |
| .store = &rcu_cpu_kthread_task, |
| .thread_should_run = rcu_cpu_kthread_should_run, |
| .thread_fn = rcu_cpu_kthread, |
| .thread_comm = "rcuc/%u", |
| .setup = rcu_cpu_kthread_setup, |
| .park = rcu_cpu_kthread_park, |
| }; |
| |
| /* |
| * Spawn boost kthreads -- called as soon as the scheduler is running. |
| */ |
| static void __init rcu_spawn_boost_kthreads(void) |
| { |
| struct rcu_node *rnp; |
| int cpu; |
| |
| for_each_possible_cpu(cpu) |
| per_cpu(rcu_cpu_has_work, cpu) = 0; |
| BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec)); |
| rcu_for_each_leaf_node(rcu_state_p, rnp) |
| (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); |
| } |
| |
| static void rcu_prepare_kthreads(int cpu) |
| { |
| struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); |
| struct rcu_node *rnp = rdp->mynode; |
| |
| /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ |
| if (rcu_scheduler_fully_active) |
| (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); |
| } |
| |
| #else /* #ifdef CONFIG_RCU_BOOST */ |
| |
| static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) |
| __releases(rnp->lock) |
| { |
| raw_spin_unlock_irqrestore(&rnp->lock, flags); |
| } |
| |
| static void invoke_rcu_callbacks_kthread(void) |
| { |
| WARN_ON_ONCE(1); |
| } |
| |
| static bool rcu_is_callbacks_kthread(void) |
| { |
| return false; |
| } |
| |
| static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) |
| { |
| } |
| |
| static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) |
| { |
| } |
| |
| static void __init rcu_spawn_boost_kthreads(void) |
| { |
| } |
| |
| static void rcu_prepare_kthreads(int cpu) |
| { |
| } |
| |
| #endif /* #else #ifdef CONFIG_RCU_BOOST */ |
| |
| #if !defined(CONFIG_RCU_FAST_NO_HZ) |
| |
| /* |
| * Check to see if any future RCU-related work will need to be done |
| * by the current CPU, even if none need be done immediately, returning |
| * 1 if so. This function is part of the RCU implementation; it is -not- |
| * an exported member of the RCU API. |
| * |
| * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs |
| * any flavor of RCU. |
| */ |
| int rcu_needs_cpu(u64 basemono, u64 *nextevt) |
| { |
| *nextevt = KTIME_MAX; |
| return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) |
| ? 0 : rcu_cpu_has_callbacks(NULL); |
| } |
| |
| /* |
| * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up |
| * after it. |
| */ |
| static void rcu_cleanup_after_idle(void) |
| { |
| } |
| |
| /* |
| * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, |
| * is nothing. |
| */ |
| static void rcu_prepare_for_idle(void) |
| { |
| } |
| |
| /* |
| * Don't bother keeping a running count of the number of RCU callbacks |
| * posted because CONFIG_RCU_FAST_NO_HZ=n. |
| */ |
| static void rcu_idle_count_callbacks_posted(void) |
| { |
| } |
| |
| #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ |
| |
| /* |
| * This code is invoked when a CPU goes idle, at which point we want |
| * to have the CPU do everything required for RCU so that it can enter |
| * the energy-efficient dyntick-idle mode. This is handled by a |
| * state machine implemented by rcu_prepare_for_idle() below. |
| * |
| * The following three proprocessor symbols control this state machine: |
| * |
| * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted |
| * to sleep in dyntick-idle mode with RCU callbacks pending. This |
| * is sized to be roughly one RCU grace period. Those energy-efficiency |
| * benchmarkers who might otherwise be tempted to set this to a large |
| * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your |
| * system. And if you are -that- concerned about energy efficiency, |
| * just power the system down and be done with it! |
| * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is |
| * permitted to sleep in dyntick-idle mode with only lazy RCU |
| * callbacks pending. Setting this too high can OOM your system. |
| * |
| * The values below work well in practice. If future workloads require |
| * adjustment, they can be converted into kernel config parameters, though |
| * making the state machine smarter might be a better option. |
| */ |
| #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ |
| #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */ |
| |
| static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; |
| module_param(rcu_idle_gp_delay, int, 0644); |
| static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY; |
| module_param(rcu_idle_lazy_gp_delay, int, 0644); |
| |
| /* |
| * Try to advance callbacks for all flavors of RCU on the current CPU, but |
| * only if it has been awhile since the last time we did so. Afterwards, |
| * if there are any callbacks ready for immediate invocation, return true. |
| */ |
| static bool __maybe_unused rcu_try_advance_all_cbs(void) |
| { |
| bool cbs_ready = false; |
| struct rcu_data *rdp; |
| struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); |
| struct rcu_node *rnp; |
| struct rcu_state *rsp; |
| |
| /* Exit early if we advanced recently. */ |
| if (jiffies == rdtp->last_advance_all) |
| return false; |
| rdtp->last_advance_all = jiffies; |
| |
| for_each_rcu_flavor(rsp) { |
| rdp = this_cpu_ptr(rsp->rda); |
| rnp = rdp->mynode; |
| |
| /* |
| * Don't bother checking unless a grace period has |
| * completed since we last checked and there are |
| * callbacks not yet ready to invoke. |
| */ |
| if ((rdp->completed != rnp->completed || |
| unlikely(READ_ONCE(rdp->gpwrap))) && |
| rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL]) |
| note_gp_changes(rsp, rdp); |
| |
| if (cpu_has_callbacks_ready_to_invoke(rdp)) |
| cbs_ready = true; |
| } |
| return cbs_ready; |
| } |
| |
| /* |
| * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready |
| * to invoke. If the CPU has callbacks, try to advance them. Tell the |
| * caller to set the timeout based on whether or not there are non-lazy |
| * callbacks. |
| * |
| * The caller must have disabled interrupts. |
| */ |
| int rcu_needs_cpu(u64 basemono, u64 *nextevt) |
| { |
| struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); |
| unsigned long dj; |
| |
| if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) { |
| *nextevt = KTIME_MAX; |
| return 0; |
| } |
| |
| /* Snapshot to detect later posting of non-lazy callback. */ |
| rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; |
| |
| /* If no callbacks, RCU doesn't need the CPU. */ |
| if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) { |
| *nextevt = KTIME_MAX; |
| return 0; |
| } |
| |
| /* Attempt to advance callbacks. */ |
| if (rcu_try_advance_all_cbs()) { |
| /* Some ready to invoke, so initiate later invocation. */ |
| invoke_rcu_core(); |
| return 1; |
| } |
| rdtp->last_accelerate = jiffies; |
| |
| /* Request timer delay depending on laziness, and round. */ |
| if (!rdtp->all_lazy) { |
| dj = round_up(rcu_idle_gp_delay + jiffies, |
| rcu_idle_gp_delay) - jiffies; |
| } else { |
| dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies; |
| } |
| *nextevt = basemono + dj * TICK_NSEC; |
| return 0; |
| } |
| |
| /* |
| * Prepare a CPU for idle from an RCU perspective. The first major task |
| * is to sense whether nohz mode has been enabled or disabled via sysfs. |
| * The second major task is to check to see if a non-lazy callback has |
| * arrived at a CPU that previously had only lazy callbacks. The third |
| * major task is to accelerate (that is, assign grace-period numbers to) |
| * any recently arrived callbacks. |
| * |
| * The caller must have disabled interrupts. |
| */ |
| static void rcu_prepare_for_idle(void) |
| { |
| bool needwake; |
| struct rcu_data *rdp; |
| struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); |
| struct rcu_node *rnp; |
| struct rcu_state *rsp; |
| int tne; |
| |
| if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) |
| return; |
| |
| /* Handle nohz enablement switches conservatively. */ |
| tne = READ_ONCE(tick_nohz_active); |
| if (tne != rdtp->tick_nohz_enabled_snap) { |
| if (rcu_cpu_has_callbacks(NULL)) |
| invoke_rcu_core(); /* force nohz to see update. */ |
| rdtp->tick_nohz_enabled_snap = tne; |
| return; |
| } |
| if (!tne) |
| return; |
| |
| /* If this is a no-CBs CPU, no callbacks, just return. */ |
| if (rcu_is_nocb_cpu(smp_processor_id())) |
| return; |
| |
| /* |
| * If a non-lazy callback arrived at a CPU having only lazy |
| * callbacks, invoke RCU core for the side-effect of recalculating |
| * idle duration on re-entry to idle. |
| */ |
| if (rdtp->all_lazy && |
| rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) { |
| rdtp->all_lazy = false; |
| rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; |
| invoke_rcu_core(); |
| return; |
| } |
| |
| /* |
| * If we have not yet accelerated this jiffy, accelerate all |
| * callbacks on this CPU. |
| */ |
| if (rdtp->last_accelerate == jiffies) |
| return; |
| rdtp->last_accelerate = jiffies; |
| for_each_rcu_flavor(rsp) { |
| rdp = this_cpu_ptr(rsp->rda); |
| if (!*rdp->nxttail[RCU_DONE_TAIL]) |
| continue; |
| rnp = rdp->mynode; |
| raw_spin_lock(&rnp->lock); /* irqs already disabled. */ |
| smp_mb__after_unlock_lock(); |
| needwake = rcu_accelerate_cbs(rsp, rnp, rdp); |
| raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
| if (needwake) |
| rcu_gp_kthread_wake(rsp); |
| } |
| } |
| |
| /* |
| * Clean up for exit from idle. Attempt to advance callbacks based on |
| * any grace periods that elapsed while the CPU was idle, and if any |
| * callbacks are now ready to invoke, initiate invocation. |
| */ |
| static void rcu_cleanup_after_idle(void) |
| { |
| if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) || |
| rcu_is_nocb_cpu(smp_processor_id())) |
| return; |
| if (rcu_try_advance_all_cbs()) |
| invoke_rcu_core(); |
| } |
| |
| /* |
| * Keep a running count of the number of non-lazy callbacks posted |
| * on this CPU. This running counter (which is never decremented) allows |
| * rcu_prepare_for_idle() to detect when something out of the idle loop |
| * posts a callback, even if an equal number of callbacks are invoked. |
| * Of course, callbacks should only be posted from within a trace event |
| * designed to be called from idle or from within RCU_NONIDLE(). |
| */ |
| static void rcu_idle_count_callbacks_posted(void) |
| { |
| __this_cpu_add(rcu_dynticks.nonlazy_posted, 1); |
| } |
| |
| /* |
| * Data for flushing lazy RCU callbacks at OOM time. |
| */ |
| static atomic_t oom_callback_count; |
| static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq); |
| |
| /* |
| * RCU OOM callback -- decrement the outstanding count and deliver the |
| * wake-up if we are the last one. |
| */ |
| static void rcu_oom_callback(struct rcu_head *rhp) |
| { |
| if (atomic_dec_and_test(&oom_callback_count)) |
| wake_up(&oom_callback_wq); |
| } |
| |
| /* |
| * Post an rcu_oom_notify callback on the current CPU if it has at |
| * least one lazy callback. This will unnecessarily post callbacks |
| * to CPUs that already have a non-lazy callback at the end of their |
| * callback list, but this is an infrequent operation, so accept some |
| * extra overhead to keep things simple. |
| */ |
| static void rcu_oom_notify_cpu(void *unused) |
| { |
| struct rcu_state *rsp; |
| struct rcu_data *rdp; |
| |
| for_each_rcu_flavor(rsp) { |
| rdp = raw_cpu_ptr(rsp->rda); |
| if (rdp->qlen_lazy != 0) { |
| atomic_inc(&oom_callback_count); |
| rsp->call(&rdp->oom_head, rcu_oom_callback); |
| } |
| } |
| } |
| |
| /* |
| * If low on memory, ensure that each CPU has a non-lazy callback. |
| * This will wake up CPUs that have only lazy callbacks, in turn |
| * ensuring that they free up the corresponding memory in a timely manner. |
| * Because an uncertain amount of memory will be freed in some uncertain |
| * timeframe, we do not claim to have freed anything. |
| */ |
| static int rcu_oom_notify(struct notifier_block *self, |
| unsigned long notused, void *nfreed) |
| { |
| int cpu; |
| |
| /* Wait for callbacks from earlier instance to complete. */ |
| wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0); |
| smp_mb(); /* Ensure callback reuse happens after callback invocation. */ |
| |
| /* |
| * Prevent premature wakeup: ensure that all increments happen |
| * before there is a chance of the counter reaching zero. |
| */ |
| atomic_set(&oom_callback_count, 1); |
| |
| for_each_online_cpu(cpu) { |
| smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1); |
| cond_resched_rcu_qs(); |
| } |
| |
| /* Unconditionally decrement: no need to wake ourselves up. */ |
| atomic_dec(&oom_callback_count); |
| |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block rcu_oom_nb = { |
| .notifier_call = rcu_oom_notify |
| }; |
| |
| static int __init rcu_register_oom_notifier(void) |
| { |
| register_oom_notifier(&rcu_oom_nb); |
| return 0; |
| } |
| early_initcall(rcu_register_oom_notifier); |
| |
| #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ |
| |
| #ifdef CONFIG_RCU_FAST_NO_HZ |
| |
| static void print_cpu_stall_fast_no_hz(char *cp, int cpu) |
| { |
| struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); |
| unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap; |
| |
| sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c", |
| rdtp->last_accelerate & 0xffff, jiffies & 0xffff, |
| ulong2long(nlpd), |
| rdtp->all_lazy ? 'L' : '.', |
| rdtp->tick_nohz_enabled_snap ? '.' : 'D'); |
| } |
| |
| #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */ |
| |
| static void print_cpu_stall_fast_no_hz(char *cp, int cpu) |
| { |
| *cp = '\0'; |
| } |
| |
| #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */ |
| |
| /* Initiate the stall-info list. */ |
| static void print_cpu_stall_info_begin(void) |
| { |
| pr_cont("\n"); |
| } |
| |
| /* |
| * Print out diagnostic information for the specified stalled CPU. |
| * |
| * If the specified CPU is aware of the current RCU grace period |
| * (flavor specified by rsp), then print the number of scheduling |
| * clock interrupts the CPU has taken during the time that it has |
| * been aware. Otherwise, print the number of RCU grace periods |
| * that this CPU is ignorant of, for example, "1" if the CPU was |
| * aware of the previous grace period. |
| * |
| * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info. |
| */ |
| static void print_cpu_stall_info(struct rcu_state *rsp, int cpu) |
| { |
| char fast_no_hz[72]; |
| struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); |
| struct rcu_dynticks *rdtp = rdp->dynticks; |
| char *ticks_title; |
| unsigned long ticks_value; |
| |
| if (rsp->gpnum == rdp->gpnum) { |
| ticks_title = "ticks this GP"; |
| ticks_value = rdp->ticks_this_gp; |
| } else { |
| ticks_title = "GPs behind"; |
| ticks_value = rsp->gpnum - rdp->gpnum; |
| } |
| print_cpu_stall_fast_no_hz(fast_no_hz, cpu); |
| pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n", |
| cpu, |
| "O."[!!cpu_online(cpu)], |
| "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)], |
| "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)], |
| ticks_value, ticks_title, |
| atomic_read(&rdtp->dynticks) & 0xfff, |
| rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting, |
| rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu), |
| READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart, |
| fast_no_hz); |
| } |
| |
| /* Terminate the stall-info list. */ |
| static void print_cpu_stall_info_end(void) |
| { |
| pr_err("\t"); |
| } |
| |
| /* Zero ->ticks_this_gp for all flavors of RCU. */ |
| static void zero_cpu_stall_ticks(struct rcu_data *rdp) |
| { |
| rdp->ticks_this_gp = 0; |
| rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id()); |
| } |
| |
| /* Increment ->ticks_this_gp for all flavors of RCU. */ |
| static void increment_cpu_stall_ticks(void) |
| { |
| struct rcu_state *rsp; |
| |
| for_each_rcu_flavor(rsp) |
| raw_cpu_inc(rsp->rda->ticks_this_gp); |
| } |
| |
| #ifdef CONFIG_RCU_NOCB_CPU |
| |
| /* |
| * Offload callback processing from the boot-time-specified set of CPUs |
| * specified by rcu_nocb_mask. For each CPU in the set, there is a |
| * kthread created that pulls the callbacks from the corresponding CPU, |
| * waits for a grace period to elapse, and invokes the callbacks. |
| * The no-CBs CPUs do a wake_up() on their kthread when they insert |
| * a callback into any empty list, unless the rcu_nocb_poll boot parameter |
| * has been specified, in which case each kthread actively polls its |
| * CPU. (Which isn't so great for energy efficiency, but which does |
| * reduce RCU's overhead on that CPU.) |
| * |
| * This is intended to be used in conjunction with Frederic Weisbecker's |
| * adaptive-idle work, which would seriously reduce OS jitter on CPUs |
| * running CPU-bound user-mode computations. |
| * |
| * Offloading of callback processing could also in theory be used as |
| * an energy-efficiency measure because CPUs with no RCU callbacks |
| * queued are more aggressive about entering dyntick-idle mode. |
| */ |
| |
| |
| /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */ |
| static int __init rcu_nocb_setup(char *str) |
| { |
| alloc_bootmem_cpumask_var(&rcu_nocb_mask); |
| have_rcu_nocb_mask = true; |
| cpulist_parse(str, rcu_nocb_mask); |
| return 1; |
| } |
| __setup("rcu_nocbs=", rcu_nocb_setup); |
| |
| static int __init parse_rcu_nocb_poll(char *arg) |
| { |
| rcu_nocb_poll = 1; |
| return 0; |
| } |
| early_param("rcu_nocb_poll", parse_rcu_nocb_poll); |
| |
| /* |
| * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended |
| * grace period. |
| */ |
| static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) |
| { |
| wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]); |
| } |
| |
| /* |
| * Set the root rcu_node structure's ->need_future_gp field |
| * based on the sum of those of all rcu_node structures. This does |
| * double-count the root rcu_node structure's requests, but this |
| * is necessary to handle the possibility of a rcu_nocb_kthread() |
| * having awakened during the time that the rcu_node structures |
| * were being updated for the end of the previous grace period. |
| */ |
| static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) |
| { |
| rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq; |
| } |
| |
| static void rcu_init_one_nocb(struct rcu_node *rnp) |
| { |
| init_waitqueue_head(&rnp->nocb_gp_wq[0]); |
| init_waitqueue_head(&rnp->nocb_gp_wq[1]); |
| } |
| |
| #ifndef CONFIG_RCU_NOCB_CPU_ALL |
| /* Is the specified CPU a no-CBs CPU? */ |
| bool rcu_is_nocb_cpu(int cpu) |
| { |
| if (have_rcu_nocb_mask) |
| return cpumask_test_cpu(cpu, rcu_nocb_mask); |
| return false; |
| } |
| #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ |
| |
| /* |
| * Kick the leader kthread for this NOCB group. |
| */ |
| static void wake_nocb_leader(struct rcu_data *rdp, bool force) |
| { |
| struct rcu_data *rdp_leader = rdp->nocb_leader; |
| |
| if (!READ_ONCE(rdp_leader->nocb_kthread)) |
| return; |
| if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) { |
| /* Prior smp_mb__after_atomic() orders against prior enqueue. */ |
| WRITE_ONCE(rdp_leader->nocb_leader_sleep, false); |
| wake_up(&rdp_leader->nocb_wq); |
| } |
| } |
| |
| /* |
| * Does the specified CPU need an RCU callback for the specified flavor |
| * of rcu_barrier()? |
| */ |
| static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) |
| { |
| struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); |
| unsigned long ret; |
| #ifdef CONFIG_PROVE_RCU |
| struct rcu_head *rhp; |
| #endif /* #ifdef CONFIG_PROVE_RCU */ |
| |
| /* |
| * Check count of all no-CBs callbacks awaiting invocation. |
| * There needs to be a barrier before this function is called, |
| * but associated with a prior determination that no more |
| * callbacks would be posted. In the worst case, the first |
| * barrier in _rcu_barrier() suffices (but the caller cannot |
| * necessarily rely on this, not a substitute for the caller |
| * getting the concurrency design right!). There must also be |
| * a barrier between the following load an posting of a callback |
| * (if a callback is in fact needed). This is associated with an |
| * atomic_inc() in the caller. |
| */ |
| ret = atomic_long_read(&rdp->nocb_q_count); |
| |
| #ifdef CONFIG_PROVE_RCU |
| rhp = READ_ONCE(rdp->nocb_head); |
| if (!rhp) |
| rhp = READ_ONCE(rdp->nocb_gp_head); |
| if (!rhp) |
| rhp = READ_ONCE(rdp->nocb_follower_head); |
| |
| /* Having no rcuo kthread but CBs after scheduler starts is bad! */ |
| if (!READ_ONCE(rdp->nocb_kthread) && rhp && |
| rcu_scheduler_fully_active) { |
| /* RCU callback enqueued before CPU first came online??? */ |
| pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n", |
| cpu, rhp->func); |
| WARN_ON_ONCE(1); |
| } |
| #endif /* #ifdef CONFIG_PROVE_RCU */ |
| |
| return !!ret; |
| } |
| |
| /* |
| * Enqueue the specified string of rcu_head structures onto the specified |
| * CPU's no-CBs lists. The CPU is specified by rdp, the head of the |
| * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy |
| * counts are supplied by rhcount and rhcount_lazy. |
| * |
| * If warranted, also wake up the kthread servicing this CPUs queues. |
| */ |
| static void __call_rcu_nocb_enqueue(struct rcu_data *rdp, |
| struct rcu_head *rhp, |
| struct rcu_head **rhtp, |
| int rhcount, int rhcount_lazy, |
| unsigned long flags) |
| { |
| int len; |
| struct rcu_head **old_rhpp; |
| struct task_struct *t; |
| |
| /* Enqueue the callback on the nocb list and update counts. */ |
| atomic_long_add(rhcount, &rdp->nocb_q_count); |
| /* rcu_barrier() relies on ->nocb_q_count add before xchg. */ |
| old_rhpp = xchg(&rdp->nocb_tail, rhtp); |
| WRITE_ONCE(*old_rhpp, rhp); |
| atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy); |
| smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */ |
| |
| /* If we are not being polled and there is a kthread, awaken it ... */ |
| t = READ_ONCE(rdp->nocb_kthread); |
| if (rcu_nocb_poll || !t) { |
| trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, |
| TPS("WakeNotPoll")); |
| return; |
| } |
| len = atomic_long_read(&rdp->nocb_q_count); |
| if (old_rhpp == &rdp->nocb_head) { |
| if (!irqs_disabled_flags(flags)) { |
| /* ... if queue was empty ... */ |
| wake_nocb_leader(rdp, false); |
| trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, |
| TPS("WakeEmpty")); |
| } else { |
| rdp->nocb_defer_wakeup = RCU_NOGP_WAKE; |
| trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, |
| TPS("WakeEmptyIsDeferred")); |
| } |
| rdp->qlen_last_fqs_check = 0; |
| } else if (len > rdp->qlen_last_fqs_check + qhimark) { |
| /* ... or if many callbacks queued. */ |
| if (!irqs_disabled_flags(flags)) { |
| wake_nocb_leader(rdp, true); |
| trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, |
| TPS("WakeOvf")); |
| } else { |
| rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE; |
| trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, |
| TPS("WakeOvfIsDeferred")); |
| } |
| rdp->qlen_last_fqs_check = LONG_MAX / 2; |
| } else { |
| trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot")); |
| } |
| return; |
| } |
| |
| /* |
| * This is a helper for __call_rcu(), which invokes this when the normal |
| * callback queue is inoperable. If this is not a no-CBs CPU, this |
| * function returns failure back to __call_rcu(), which can complain |
| * appropriately. |
| * |
| * Otherwise, this function queues the callback where the corresponding |
| * "rcuo" kthread can find it. |
| */ |
| static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, |
| bool lazy, unsigned long flags) |
| { |
| |
| if (!rcu_is_nocb_cpu(rdp->cpu)) |
| return false; |
| __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags); |
| if (__is_kfree_rcu_offset((unsigned long)rhp->func)) |
| trace_rcu_kfree_callback(rdp->rsp->name, rhp, |
| (unsigned long)rhp->func, |
| -atomic_long_read(&rdp->nocb_q_count_lazy), |
| -atomic_long_read(&rdp->nocb_q_count)); |
| else |
| trace_rcu_callback(rdp->rsp->name, rhp, |
| -atomic_long_read(&rdp->nocb_q_count_lazy), |
| -atomic_long_read(&rdp->nocb_q_count)); |
| |
| /* |
| * If called from an extended quiescent state with interrupts |
| * disabled, invoke the RCU core in order to allow the idle-entry |
| * deferred-wakeup check to function. |
| */ |
| if (irqs_disabled_flags(flags) && |
| !rcu_is_watching() && |
| cpu_online(smp_processor_id())) |
| invoke_rcu_core(); |
| |
| return true; |
| } |
| |
| /* |
| * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is |
| * not a no-CBs CPU. |
| */ |
| static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp, |
| struct rcu_data *rdp, |
| unsigned long flags) |
| { |
| long ql = rsp->qlen; |
| long qll = rsp->qlen_lazy; |
| |
| /* If this is not a no-CBs CPU, tell the caller to do it the old way. */ |
| if (!rcu_is_nocb_cpu(smp_processor_id())) |
| return false; |
| rsp->qlen = 0; |
| rsp->qlen_lazy = 0; |
| |
| /* First, enqueue the donelist, if any. This preserves CB ordering. */ |
| if (rsp->orphan_donelist != NULL) { |
| __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist, |
| rsp->orphan_donetail, ql, qll, flags); |
| ql = qll = 0; |
| rsp->orphan_donelist = NULL; |
| rsp->orphan_donetail = &rsp->orphan_donelist; |
| } |
| if (rsp->orphan_nxtlist != NULL) { |
| __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist, |
| rsp->orphan_nxttail, ql, qll, flags); |
| ql = qll = 0; |
| rsp->orphan_nxtlist = NULL; |
| rsp->orphan_nxttail = &rsp->orphan_nxtlist; |
| } |
| return true; |
| } |
| |
| /* |
| * If necessary, kick off a new grace period, and either way wait |
| * for a subsequent grace period to complete. |
| */ |
| static void rcu_nocb_wait_gp(struct rcu_data *rdp) |
| { |
| unsigned long c; |
| bool d; |
| unsigned long flags; |
| bool needwake; |
| struct rcu_node *rnp = rdp->mynode; |
| |
| raw_spin_lock_irqsave(&rnp->lock, flags); |
| smp_mb__after_unlock_lock(); |
| needwake = rcu_start_future_gp(rnp, rdp, &c); |
| raw_spin_unlock_irqrestore(&rnp->lock, flags); |
| if (needwake) |
| rcu_gp_kthread_wake(rdp->rsp); |
| |
| /* |
| * Wait for the grace period. Do so interruptibly to avoid messing |
| * up the load average. |
| */ |
| trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait")); |
| for (;;) { |
| wait_event_interruptible( |
| rnp->nocb_gp_wq[c & 0x1], |
| (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c))); |
| if (likely(d)) |
| break; |
| WARN_ON(signal_pending(current)); |
| trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait")); |
| } |
| trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait")); |
| smp_mb(); /* Ensure that CB invocation happens after GP end. */ |
| } |
| |
| /* |
| * Leaders come here to wait for additional callbacks to show up. |
| * This function does not return until callbacks appear. |
| */ |
| static void nocb_leader_wait(struct rcu_data *my_rdp) |
| { |
| bool firsttime = true; |
| bool gotcbs; |
| struct rcu_data *rdp; |
| struct rcu_head **tail; |
| |
| wait_again: |
| |
| /* Wait for callbacks to appear. */ |
| if (!rcu_nocb_poll) { |
| trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep"); |
| wait_event_interruptible(my_rdp->nocb_wq, |
| !READ_ONCE(my_rdp->nocb_leader_sleep)); |
| /* Memory barrier handled by smp_mb() calls below and repoll. */ |
| } else if (firsttime) { |
| firsttime = false; /* Don't drown trace log with "Poll"! */ |
| trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll"); |
| } |
| |
| /* |
| * Each pass through the following loop checks a follower for CBs. |
| * We are our own first follower. Any CBs found are moved to |
| * nocb_gp_head, where they await a grace period. |
| */ |
| gotcbs = false; |
| for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { |
| rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head); |
| if (!rdp->nocb_gp_head) |
| continue; /* No CBs here, try next follower. */ |
| |
| /* Move callbacks to wait-for-GP list, which is empty. */ |
| WRITE_ONCE(rdp->nocb_head, NULL); |
| rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head); |
| gotcbs = true; |
| } |
| |
| /* |
| * If there were no callbacks, sleep a bit, rescan after a |
| * memory barrier, and go retry. |
| */ |
| if (unlikely(!gotcbs)) { |
| if (!rcu_nocb_poll) |
| trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, |
| "WokeEmpty"); |
| WARN_ON(signal_pending(current)); |
| schedule_timeout_interruptible(1); |
| |
| /* Rescan in case we were a victim of memory ordering. */ |
| my_rdp->nocb_leader_sleep = true; |
| smp_mb(); /* Ensure _sleep true before scan. */ |
| for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) |
| if (READ_ONCE(rdp->nocb_head)) { |
| /* Found CB, so short-circuit next wait. */ |
| my_rdp->nocb_leader_sleep = false; |
| break; |
| } |
| goto wait_again; |
| } |
| |
| /* Wait for one grace period. */ |
| rcu_nocb_wait_gp(my_rdp); |
| |
| /* |
| * We left ->nocb_leader_sleep unset to reduce cache thrashing. |
| * We set it now, but recheck for new callbacks while |
| * traversing our follower list. |
| */ |
| my_rdp->nocb_leader_sleep = true; |
| smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */ |
| |
| /* Each pass through the following loop wakes a follower, if needed. */ |
| for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { |
| if (READ_ONCE(rdp->nocb_head)) |
| my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/ |
| if (!rdp->nocb_gp_head) |
| continue; /* No CBs, so no need to wake follower. */ |
| |
| /* Append callbacks to follower's "done" list. */ |
| tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail); |
| *tail = rdp->nocb_gp_head; |
| smp_mb__after_atomic(); /* Store *tail before wakeup. */ |
| if (rdp != my_rdp && tail == &rdp->nocb_follower_head) { |
| /* |
| * List was empty, wake up the follower. |
| * Memory barriers supplied by atomic_long_add(). |
| */ |
| wake_up(&rdp->nocb_wq); |
| } |
| } |
| |
| /* If we (the leader) don't have CBs, go wait some more. */ |
| if (!my_rdp->nocb_follower_head) |
| goto wait_again; |
| } |
| |
| /* |
| * Followers come here to wait for additional callbacks to show up. |
| * This function does not return until callbacks appear. |
| */ |
| static void nocb_follower_wait(struct rcu_data *rdp) |
| { |
| bool firsttime = true; |
| |
| for (;;) { |
| if (!rcu_nocb_poll) { |
| trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, |
| "FollowerSleep"); |
| wait_event_interruptible(rdp->nocb_wq, |
| READ_ONCE(rdp->nocb_follower_head)); |
| } else if (firsttime) { |
| /* Don't drown trace log with "Poll"! */ |
| firsttime = false; |
| trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll"); |
| } |
| if (smp_load_acquire(&rdp->nocb_follower_head)) { |
| /* ^^^ Ensure CB invocation follows _head test. */ |
| return; |
| } |
| if (!rcu_nocb_poll) |
| trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, |
| "WokeEmpty"); |
| WARN_ON(signal_pending(current)); |
| schedule_timeout_interruptible(1); |
| } |
| } |
| |
| /* |
| * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes |
| * callbacks queued by the corresponding no-CBs CPU, however, there is |
| * an optional leader-follower relationship so that the grace-period |
| * kthreads don't have to do quite so many wakeups. |
| */ |
| static int rcu_nocb_kthread(void *arg) |
| { |
| int c, cl; |
| struct rcu_head *list; |
| struct rcu_head *next; |
| struct rcu_head **tail; |
| struct rcu_data *rdp = arg; |
| |
| /* Each pass through this loop invokes one batch of callbacks */ |
| for (;;) { |
| /* Wait for callbacks. */ |
| if (rdp->nocb_leader == rdp) |
| nocb_leader_wait(rdp); |
| else |
| nocb_follower_wait(rdp); |
| |
| /* Pull the ready-to-invoke callbacks onto local list. */ |
| list = READ_ONCE(rdp->nocb_follower_head); |
| BUG_ON(!list); |
| trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty"); |
| WRITE_ONCE(rdp->nocb_follower_head, NULL); |
| tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head); |
| |
| /* Each pass through the following loop invokes a callback. */ |
| trace_rcu_batch_start(rdp->rsp->name, |
| atomic_long_read(&rdp->nocb_q_count_lazy), |
| atomic_long_read(&rdp->nocb_q_count), -1); |
| c = cl = 0; |
| while (list) { |
| next = list->next; |
| /* Wait for enqueuing to complete, if needed. */ |
| while (next == NULL && &list->next != tail) { |
| trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, |
| TPS("WaitQueue")); |
| schedule_timeout_interruptible(1); |
| trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, |
| TPS("WokeQueue")); |
| next = list->next; |
| } |
| debug_rcu_head_unqueue(list); |
| local_bh_disable(); |
| if (__rcu_reclaim(rdp->rsp->name, list)) |
| cl++; |
| c++; |
| local_bh_enable(); |
| cond_resched_rcu_qs(); |
| list = next; |
| } |
| trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1); |
| smp_mb__before_atomic(); /* _add after CB invocation. */ |
| atomic_long_add(-c, &rdp->nocb_q_count); |
| atomic_long_add(-cl, &rdp->nocb_q_count_lazy); |
| rdp->n_nocbs_invoked += c; |
| } |
| return 0; |
| } |
| |
| /* Is a deferred wakeup of rcu_nocb_kthread() required? */ |
| static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) |
| { |
| return READ_ONCE(rdp->nocb_defer_wakeup); |
| } |
| |
| /* Do a deferred wakeup of rcu_nocb_kthread(). */ |
| static void do_nocb_deferred_wakeup(struct rcu_data *rdp) |
| { |
| int ndw; |
| |
| if (!rcu_nocb_need_deferred_wakeup(rdp)) |
| return; |
| ndw = READ_ONCE(rdp->nocb_defer_wakeup); |
| WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT); |
| wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE); |
| trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake")); |
| } |
| |
| void __init rcu_init_nohz(void) |
| { |
| int cpu; |
| bool need_rcu_nocb_mask = true; |
| struct rcu_state *rsp; |
| |
| #ifdef CONFIG_RCU_NOCB_CPU_NONE |
| need_rcu_nocb_mask = false; |
| #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */ |
| |
| #if defined(CONFIG_NO_HZ_FULL) |
| if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask)) |
| need_rcu_nocb_mask = true; |
| #endif /* #if defined(CONFIG_NO_HZ_FULL) */ |
| |
| if (!have_rcu_nocb_mask && need_rcu_nocb_mask) { |
| if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { |
| pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); |
| return; |
| } |
| have_rcu_nocb_mask = true; |
| } |
| if (!have_rcu_nocb_mask) |
| return; |
| |
| #ifdef CONFIG_RCU_NOCB_CPU_ZERO |
| pr_info("\tOffload RCU callbacks from CPU 0\n"); |
| cpumask_set_cpu(0, rcu_nocb_mask); |
| #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */ |
| #ifdef CONFIG_RCU_NOCB_CPU_ALL |
| pr_info("\tOffload RCU callbacks from all CPUs\n"); |
| cpumask_copy(rcu_nocb_mask, cpu_possible_mask); |
| #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */ |
| #if defined(CONFIG_NO_HZ_FULL) |
| if (tick_nohz_full_running) |
| cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask); |
| #endif /* #if defined(CONFIG_NO_HZ_FULL) */ |
| |
| if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { |
| pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n"); |
| cpumask_and(rcu_nocb_mask, cpu_possible_mask, |
| rcu_nocb_mask); |
| } |
| pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", |
| cpumask_pr_args(rcu_nocb_mask)); |
| if (rcu_nocb_poll) |
| pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); |
| |
| for_each_rcu_flavor(rsp) { |
| for_each_cpu(cpu, rcu_nocb_mask) |
| init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu)); |
| rcu_organize_nocb_kthreads(rsp); |
| } |
| } |
| |
| /* Initialize per-rcu_data variables for no-CBs CPUs. */ |
| static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) |
| { |
| rdp->nocb_tail = &rdp->nocb_head; |
| init_waitqueue_head(&rdp->nocb_wq); |
| rdp->nocb_follower_tail = &rdp->nocb_follower_head; |
| } |
| |
| /* |
| * If the specified CPU is a no-CBs CPU that does not already have its |
| * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are |
| * brought online out of order, this can require re-organizing the |
| * leader-follower relationships. |
| */ |
| static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu) |
| { |
| struct rcu_data *rdp; |
| struct rcu_data *rdp_last; |
| struct rcu_data *rdp_old_leader; |
| struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu); |
| struct task_struct *t; |
| |
| /* |
| * If this isn't a no-CBs CPU or if it already has an rcuo kthread, |
| * then nothing to do. |
| */ |
| if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread) |
| return; |
| |
| /* If we didn't spawn the leader first, reorganize! */ |
| rdp_old_leader = rdp_spawn->nocb_leader; |
| if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) { |
| rdp_last = NULL; |
| rdp = rdp_old_leader; |
| do { |
| rdp->nocb_leader = rdp_spawn; |
| if (rdp_last && rdp != rdp_spawn) |
| rdp_last->nocb_next_follower = rdp; |
| if (rdp == rdp_spawn) { |
| rdp = rdp->nocb_next_follower; |
| } else { |
| rdp_last = rdp; |
| rdp = rdp->nocb_next_follower; |
| rdp_last->nocb_next_follower = NULL; |
| } |
| } while (rdp); |
| rdp_spawn->nocb_next_follower = rdp_old_leader; |
| } |
| |
| /* Spawn the kthread for this CPU and RCU flavor. */ |
| t = kthread_run(rcu_nocb_kthread, rdp_spawn, |
| "rcuo%c/%d", rsp->abbr, cpu); |
| BUG_ON(IS_ERR(t)); |
| WRITE_ONCE(rdp_spawn->nocb_kthread, t); |
| } |
| |
| /* |
| * If the specified CPU is a no-CBs CPU that does not already have its |
| * rcuo kthreads, spawn them. |
| */ |
| static void rcu_spawn_all_nocb_kthreads(int cpu) |
| { |
| struct rcu_state *rsp; |
| |
| if (rcu_scheduler_fully_active) |
| for_each_rcu_flavor(rsp) |
| rcu_spawn_one_nocb_kthread(rsp, cpu); |
| } |
| |
| /* |
| * Once the scheduler is running, spawn rcuo kthreads for all online |
| * no-CBs CPUs. This assumes that the early_initcall()s happen before |
| * non-boot CPUs come online -- if this changes, we will need to add |
| * some mutual exclusion. |
| */ |
| static void __init rcu_spawn_nocb_kthreads(void) |
| { |
| int cpu; |
| |
| for_each_online_cpu(cpu) |
| rcu_spawn_all_nocb_kthreads(cpu); |
| } |
| |
| /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */ |
| static int rcu_nocb_leader_stride = -1; |
| module_param(rcu_nocb_leader_stride, int, 0444); |
| |
| /* |
| * Initialize leader-follower relationships for all no-CBs CPU. |
| */ |
| static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp) |
| { |
| int cpu; |
| int ls = rcu_nocb_leader_stride; |
| int nl = 0; /* Next leader. */ |
| struct rcu_data *rdp; |
| struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */ |
| struct rcu_data *rdp_prev = NULL; |
| |
| if (!have_rcu_nocb_mask) |
| return; |
| if (ls == -1) { |
| ls = int_sqrt(nr_cpu_ids); |
| rcu_nocb_leader_stride = ls; |
| } |
| |
| /* |
| * Each pass through this loop sets up one rcu_data structure and |
| * spawns one rcu_nocb_kthread(). |
| */ |
| for_each_cpu(cpu, rcu_nocb_mask) { |
| rdp = per_cpu_ptr(rsp->rda, cpu); |
| if (rdp->cpu >= nl) { |
| /* New leader, set up for followers & next leader. */ |
| nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; |
| rdp->nocb_leader = rdp; |
| rdp_leader = rdp; |
| } else { |
| /* Another follower, link to previous leader. */ |
| rdp->nocb_leader = rdp_leader; |
| rdp_prev->nocb_next_follower = rdp; |
| } |
| rdp_prev = rdp; |
| } |
| } |
| |
| /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */ |
| static bool init_nocb_callback_list(struct rcu_data *rdp) |
| { |
| if (!rcu_is_nocb_cpu(rdp->cpu)) |
| return false; |
| |
| /* If there are early-boot callbacks, move them to nocb lists. */ |
| if (rdp->nxtlist) { |
| rdp->nocb_head = rdp->nxtlist; |
| rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL]; |
| atomic_long_set(&rdp->nocb_q_count, rdp->qlen); |
| atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy); |
| rdp->nxtlist = NULL; |
| rdp->qlen = 0; |
| rdp->qlen_lazy = 0; |
| } |
| rdp->nxttail[RCU_NEXT_TAIL] = NULL; |
| return true; |
| } |
| |
| #else /* #ifdef CONFIG_RCU_NOCB_CPU */ |
| |
| static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) |
| { |
| WARN_ON_ONCE(1); /* Should be dead code. */ |
| return false; |
| } |
| |
| static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) |
| { |
| } |
| |
| static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) |
| { |
| } |
| |
| static void rcu_init_one_nocb(struct rcu_node *rnp) |
| { |
| } |
| |
| static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, |
| bool lazy, unsigned long flags) |
| { |
| return false; |
| } |
| |
| static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp, |
| struct rcu_data *rdp, |
| unsigned long flags) |
| { |
| return false; |
| } |
| |
| static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) |
| { |
| } |
| |
| static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) |
| { |
| return false; |
| } |
| |
| static void do_nocb_deferred_wakeup(struct rcu_data *rdp) |
| { |
| } |
| |
| static void rcu_spawn_all_nocb_kthreads(int cpu) |
| { |
| } |
| |
| static void __init rcu_spawn_nocb_kthreads(void) |
| { |
| } |
| |
| static bool init_nocb_callback_list(struct rcu_data *rdp) |
| { |
| return false; |
| } |
| |
| #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ |
| |
| /* |
| * An adaptive-ticks CPU can potentially execute in kernel mode for an |
| * arbitrarily long period of time with the scheduling-clock tick turned |
| * off. RCU will be paying attention to this CPU because it is in the |
| * kernel, but the CPU cannot be guaranteed to be executing the RCU state |
| * machine because the scheduling-clock tick has been disabled. Therefore, |
| * if an adaptive-ticks CPU is failing to respond to the current grace |
| * period and has not be idle from an RCU perspective, kick it. |
| */ |
| static void __maybe_unused rcu_kick_nohz_cpu(int cpu) |
| { |
| #ifdef CONFIG_NO_HZ_FULL |
| if (tick_nohz_full_cpu(cpu)) |
| smp_send_reschedule(cpu); |
| #endif /* #ifdef CONFIG_NO_HZ_FULL */ |
| } |
| |
| |
| #ifdef CONFIG_NO_HZ_FULL_SYSIDLE |
| |
| static int full_sysidle_state; /* Current system-idle state. */ |
| #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */ |
| #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */ |
| #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */ |
| #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */ |
| #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */ |
| |
| /* |
| * Invoked to note exit from irq or task transition to idle. Note that |
| * usermode execution does -not- count as idle here! After all, we want |
| * to detect full-system idle states, not RCU quiescent states and grace |
| * periods. The caller must have disabled interrupts. |
| */ |
| static void rcu_sysidle_enter(int irq) |
| { |
| unsigned long j; |
| struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); |
| |
| /* If there are no nohz_full= CPUs, no need to track this. */ |
| if (!tick_nohz_full_enabled()) |
| return; |
| |
| /* Adjust nesting, check for fully idle. */ |
| if (irq) { |
| rdtp->dynticks_idle_nesting--; |
| WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0); |
| if (rdtp->dynticks_idle_nesting != 0) |
| return; /* Still not fully idle. */ |
| } else { |
| if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) == |
| DYNTICK_TASK_NEST_VALUE) { |
| rdtp->dynticks_idle_nesting = 0; |
| } else { |
| rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE; |
| WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0); |
| return; /* Still not fully idle. */ |
| } |
| } |
| |
| /* Record start of fully idle period. */ |
| j = jiffies; |
| WRITE_ONCE(rdtp->dynticks_idle_jiffies, j); |
| smp_mb__before_atomic(); |
| atomic_inc(&rdtp->dynticks_idle); |
| smp_mb__after_atomic(); |
| WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1); |
| } |
| |
| /* |
| * Unconditionally force exit from full system-idle state. This is |
| * invoked when a normal CPU exits idle, but must be called separately |
| * for the timekeeping CPU (tick_do_timer_cpu). The reason for this |
| * is that the timekeeping CPU is permitted to take scheduling-clock |
| * interrupts while the system is in system-idle state, and of course |
| * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock |
| * interrupt from any other type of interrupt. |
| */ |
| void rcu_sysidle_force_exit(void) |
| { |
| int oldstate = READ_ONCE(full_sysidle_state); |
| int newoldstate; |
| |
| /* |
| * Each pass through the following loop attempts to exit full |
| * system-idle state. If contention proves to be a problem, |
| * a trylock-based contention tree could be used here. |
| */ |
| while (oldstate > RCU_SYSIDLE_SHORT) { |
| newoldstate = cmpxchg(&full_sysidle_state, |
| oldstate, RCU_SYSIDLE_NOT); |
| if (oldstate == newoldstate && |
| oldstate == RCU_SYSIDLE_FULL_NOTED) { |
| rcu_kick_nohz_cpu(tick_do_timer_cpu); |
| return; /* We cleared it, done! */ |
| } |
| oldstate = newoldstate; |
| } |
| smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */ |
| } |
| |
| /* |
| * Invoked to note entry to irq or task transition from idle. Note that |
| * usermode execution does -not- count as idle here! The caller must |
| * have disabled interrupts. |
| */ |
| static void rcu_sysidle_exit(int irq) |
| { |
| struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); |
| |
| /* If there are no nohz_full= CPUs, no need to track this. */ |
| if (!tick_nohz_full_enabled()) |
| return; |
| |
| /* Adjust nesting, check for already non-idle. */ |
| if (irq) { |
| rdtp->dynticks_idle_nesting++; |
| WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0); |
| if (rdtp->dynticks_idle_nesting != 1) |
| return; /* Already non-idle. */ |
| } else { |
| /* |
| * Allow for irq misnesting. Yes, it really is possible |
| * to enter an irq handler then never leave it, and maybe |
| * also vice versa. Handle both possibilities. |
| */ |
| if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) { |
| rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE; |
| WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0); |
| return; /* Already non-idle. */ |
| } else { |
| rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE; |
| } |
| } |
| |
| /* Record end of idle period. */ |
| smp_mb__before_atomic(); |
| atomic_inc(&rdtp->dynticks_idle); |
| smp_mb__after_atomic(); |
| WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1)); |
| |
| /* |
| * If we are the timekeeping CPU, we are permitted to be non-idle |
| * during a system-idle state. This must be the case, because |
| * the timekeeping CPU has to take scheduling-clock interrupts |
| * during the time that the system is transitioning to full |
| * system-idle state. This means that the timekeeping CPU must |
| * invoke rcu_sysidle_force_exit() directly if it does anything |
| * more than take a scheduling-clock interrupt. |
| */ |
| if (smp_processor_id() == tick_do_timer_cpu) |
| return; |
| |
| /* Update system-idle state: We are clearly no longer fully idle! */ |
| rcu_sysidle_force_exit(); |
| } |
| |
| /* |
| * Check to see if the current CPU is idle. Note that usermode execution |
| * does not count as idle. The caller must have disabled interrupts, |
| * and must be running on tick_do_timer_cpu. |
| */ |
| static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle, |
| unsigned long *maxj) |
| { |
| int cur; |
| unsigned long j; |
| struct rcu_dynticks *rdtp = rdp->dynticks; |
| |
| /* If there are no nohz_full= CPUs, don't check system-wide idleness. */ |
| if (!tick_nohz_full_enabled()) |
| return; |
| |
| /* |
| * If some other CPU has already reported non-idle, if this is |
| * not the flavor of RCU that tracks sysidle state, or if this |
| * is an offline or the timekeeping CPU, nothing to do. |
| */ |
| if (!*isidle || rdp->rsp != rcu_state_p || |
| cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu) |
| return; |
| /* Verify affinity of current kthread. */ |
| WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu); |
| |
| /* Pick up current idle and NMI-nesting counter and check. */ |
| cur = atomic_read(&rdtp->dynticks_idle); |
| if (cur & 0x1) { |
| *isidle = false; /* We are not idle! */ |
| return; |
| } |
| smp_mb(); /* Read counters before timestamps. */ |
| |
| /* Pick up timestamps. */ |
| j = READ_ONCE(rdtp->dynticks_idle_jiffies); |
| /* If this CPU entered idle more recently, update maxj timestamp. */ |
| if (ULONG_CMP_LT(*maxj, j)) |
| *maxj = j; |
| } |
| |
| /* |
| * Is this the flavor of RCU that is handling full-system idle? |
| */ |
| static bool is_sysidle_rcu_state(struct rcu_state *rsp) |
| { |
| return rsp == rcu_state_p; |
| } |
| |
| /* |
| * Return a delay in jiffies based on the number of CPUs, rcu_node |
| * leaf fanout, and jiffies tick rate. The idea is to allow larger |
| * systems more time to transition to full-idle state in order to |
| * avoid the cache thrashing that otherwise occur on the state variable. |
| * Really small systems (less than a couple of tens of CPUs) should |
| * instead use a single global atomically incremented counter, and later |
| * versions of this will automatically reconfigure themselves accordingly. |
| */ |
| static unsigned long rcu_sysidle_delay(void) |
| { |
| if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) |
| return 0; |
| return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000); |
| } |
| |
| /* |
| * Advance the full-system-idle state. This is invoked when all of |
| * the non-timekeeping CPUs are idle. |
| */ |
| static void rcu_sysidle(unsigned long j) |
| { |
| /* Check the current state. */ |
| switch (READ_ONCE(full_sysidle_state)) { |
| case RCU_SYSIDLE_NOT: |
| |
| /* First time all are idle, so note a short idle period. */ |
| WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT); |
| break; |
| |
| case RCU_SYSIDLE_SHORT: |
| |
| /* |
| * Idle for a bit, time to advance to next state? |
| * cmpxchg failure means race with non-idle, let them win. |
| */ |
| if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay())) |
| (void)cmpxchg(&full_sysidle_state, |
| RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG); |
| break; |
| |
| case RCU_SYSIDLE_LONG: |
| |
| /* |
| * Do an additional check pass before advancing to full. |
| * cmpxchg failure means race with non-idle, let them win. |
| */ |
| if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay())) |
| (void)cmpxchg(&full_sysidle_state, |
| RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| /* |
| * Found a non-idle non-timekeeping CPU, so kick the system-idle state |
| * back to the beginning. |
| */ |
| static void rcu_sysidle_cancel(void) |
| { |
| smp_mb(); |
| if (full_sysidle_state > RCU_SYSIDLE_SHORT) |
| WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT); |
| } |
| |
| /* |
| * Update the sysidle state based on the results of a force-quiescent-state |
| * scan of the CPUs' dyntick-idle state. |
| */ |
| static void rcu_sysidle_report(struct rcu_state *rsp, int isidle, |
| unsigned long maxj, bool gpkt) |
| { |
| if (rsp != rcu_state_p) |
| return; /* Wrong flavor, ignore. */ |
| if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) |
| return; /* Running state machine from timekeeping CPU. */ |
| if (isidle) |
| rcu_sysidle(maxj); /* More idle! */ |
| else |
| rcu_sysidle_cancel(); /* Idle is over. */ |
| } |
| |
| /* |
| * Wrapper for rcu_sysidle_report() when called from the grace-period |
| * kthread's context. |
| */ |
| static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle, |
| unsigned long maxj) |
| { |
| /* If there are no nohz_full= CPUs, no need to track this. */ |
| if (!tick_nohz_full_enabled()) |
| return; |
| |
| rcu_sysidle_report(rsp, isidle, maxj, true); |
| } |
| |
| /* Callback and function for forcing an RCU grace period. */ |
| struct rcu_sysidle_head { |
| struct rcu_head rh; |
| int inuse; |
| }; |
| |
| static void rcu_sysidle_cb(struct rcu_head *rhp) |
| { |
| struct rcu_sysidle_head *rshp; |
| |
| /* |
| * The following memory barrier is needed to replace the |
| * memory barriers that would normally be in the memory |
| * allocator. |
| */ |
| smp_mb(); /* grace period precedes setting inuse. */ |
| |
| rshp = container_of(rhp, struct rcu_sysidle_head, rh); |
| WRITE_ONCE(rshp->inuse, 0); |
| } |
| |
| /* |
| * Check to see if the system is fully idle, other than the timekeeping CPU. |
| * The caller must have disabled interrupts. This is not intended to be |
| * called unless tick_nohz_full_enabled(). |
| */ |
| bool rcu_sys_is_idle(void) |
| { |
| static struct rcu_sysidle_head rsh; |
| int rss = READ_ONCE(full_sysidle_state); |
| |
| if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu)) |
| return false; |
| |
| /* Handle small-system case by doing a full scan of CPUs. */ |
| if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) { |
| int oldrss = rss - 1; |
| |
| /* |
| * One pass to advance to each state up to _FULL. |
| * Give up if any pass fails to advance the state. |
| */ |
| while (rss < RCU_SYSIDLE_FULL && oldrss < rss) { |
| int cpu; |
| bool isidle = true; |
| unsigned long maxj = jiffies - ULONG_MAX / 4; |
| struct rcu_data *rdp; |
| |
| /* Scan all the CPUs looking for nonidle CPUs. */ |
| for_each_possible_cpu(cpu) { |
| rdp = per_cpu_ptr(rcu_state_p->rda, cpu); |
| rcu_sysidle_check_cpu(rdp, &isidle, &maxj); |
| if (!isidle) |
| break; |
| } |
| rcu_sysidle_report(rcu_state_p, isidle, maxj, false); |
| oldrss = rss; |
| rss = READ_ONCE(full_sysidle_state); |
| } |
| } |
| |
| /* If this is the first observation of an idle period, record it. */ |
| if (rss == RCU_SYSIDLE_FULL) { |
| rss = cmpxchg(&full_sysidle_state, |
| RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED); |
| return rss == RCU_SYSIDLE_FULL; |
| } |
| |
| smp_mb(); /* ensure rss load happens before later caller actions. */ |
| |
| /* If already fully idle, tell the caller (in case of races). */ |
| if (rss == RCU_SYSIDLE_FULL_NOTED) |
| return true; |
| |
| /* |
| * If we aren't there yet, and a grace period is not in flight, |
| * initiate a grace period. Either way, tell the caller that |
| * we are not there yet. We use an xchg() rather than an assignment |
| * to make up for the memory barriers that would otherwise be |
| * provided by the memory allocator. |
| */ |
| if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL && |
| !rcu_gp_in_progress(rcu_state_p) && |
| !rsh.inuse && xchg(&rsh.inuse, 1) == 0) |
| call_rcu(&rsh.rh, rcu_sysidle_cb); |
| return false; |
| } |
| |
| /* |
| * Initialize dynticks sysidle state for CPUs coming online. |
| */ |
| static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp) |
| { |
| rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE; |
| } |
| |
| #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ |
| |
| static void rcu_sysidle_enter(int irq) |
| { |
| } |
| |
| static void rcu_sysidle_exit(int irq) |
| { |
| } |
| |
| static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle, |
| unsigned long *maxj) |
| { |
| } |
| |
| static bool is_sysidle_rcu_state(struct rcu_state *rsp) |
| { |
| return false; |
| } |
| |
| static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle, |
| unsigned long maxj) |
| { |
| } |
| |
| static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp) |
| { |
| } |
| |
| #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ |
| |
| /* |
| * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the |
| * grace-period kthread will do force_quiescent_state() processing? |
| * The idea is to avoid waking up RCU core processing on such a |
| * CPU unless the grace period has extended for too long. |
| * |
| * This code relies on the fact that all NO_HZ_FULL CPUs are also |
| * CONFIG_RCU_NOCB_CPU CPUs. |
| */ |
| static bool rcu_nohz_full_cpu(struct rcu_state *rsp) |
| { |
| #ifdef CONFIG_NO_HZ_FULL |
| if (tick_nohz_full_cpu(smp_processor_id()) && |
| (!rcu_gp_in_progress(rsp) || |
| ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ))) |
| return true; |
| #endif /* #ifdef CONFIG_NO_HZ_FULL */ |
| return false; |
| } |
| |
| /* |
| * Bind the grace-period kthread for the sysidle flavor of RCU to the |
| * timekeeping CPU. |
| */ |
| static void rcu_bind_gp_kthread(void) |
| { |
| int __maybe_unused cpu; |
| |
| if (!tick_nohz_full_enabled()) |
| return; |
| #ifdef CONFIG_NO_HZ_FULL_SYSIDLE |
| cpu = tick_do_timer_cpu; |
| if (cpu >= 0 && cpu < nr_cpu_ids) |
| set_cpus_allowed_ptr(current, cpumask_of(cpu)); |
| #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ |
| housekeeping_affine(current); |
| #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ |
| } |
| |
| /* Record the current task on dyntick-idle entry. */ |
| static void rcu_dynticks_task_enter(void) |
| { |
| #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) |
| WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); |
| #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ |
| } |
| |
| /* Record no current task on dyntick-idle exit. */ |
| static void rcu_dynticks_task_exit(void) |
| { |
| #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) |
| WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); |
| #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ |
| } |