| /* |
| * Copyright IBM Corp. 2007, 2011 |
| * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com> |
| */ |
| |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/gfp.h> |
| #include <linux/mm.h> |
| #include <linux/swap.h> |
| #include <linux/smp.h> |
| #include <linux/spinlock.h> |
| #include <linux/rcupdate.h> |
| #include <linux/slab.h> |
| #include <linux/swapops.h> |
| #include <linux/sysctl.h> |
| #include <linux/ksm.h> |
| #include <linux/mman.h> |
| |
| #include <asm/pgtable.h> |
| #include <asm/pgalloc.h> |
| #include <asm/tlb.h> |
| #include <asm/tlbflush.h> |
| #include <asm/mmu_context.h> |
| |
| unsigned long *crst_table_alloc(struct mm_struct *mm) |
| { |
| struct page *page = alloc_pages(GFP_KERNEL, 2); |
| |
| if (!page) |
| return NULL; |
| return (unsigned long *) page_to_phys(page); |
| } |
| |
| void crst_table_free(struct mm_struct *mm, unsigned long *table) |
| { |
| free_pages((unsigned long) table, 2); |
| } |
| |
| static void __crst_table_upgrade(void *arg) |
| { |
| struct mm_struct *mm = arg; |
| |
| if (current->active_mm == mm) { |
| clear_user_asce(); |
| set_user_asce(mm); |
| } |
| __tlb_flush_local(); |
| } |
| |
| int crst_table_upgrade(struct mm_struct *mm) |
| { |
| unsigned long *table, *pgd; |
| |
| /* upgrade should only happen from 3 to 4 levels */ |
| BUG_ON(mm->context.asce_limit != (1UL << 42)); |
| |
| table = crst_table_alloc(mm); |
| if (!table) |
| return -ENOMEM; |
| |
| spin_lock_bh(&mm->page_table_lock); |
| pgd = (unsigned long *) mm->pgd; |
| crst_table_init(table, _REGION2_ENTRY_EMPTY); |
| pgd_populate(mm, (pgd_t *) table, (pud_t *) pgd); |
| mm->pgd = (pgd_t *) table; |
| mm->context.asce_limit = 1UL << 53; |
| mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH | |
| _ASCE_USER_BITS | _ASCE_TYPE_REGION2; |
| mm->task_size = mm->context.asce_limit; |
| spin_unlock_bh(&mm->page_table_lock); |
| |
| on_each_cpu(__crst_table_upgrade, mm, 0); |
| return 0; |
| } |
| |
| void crst_table_downgrade(struct mm_struct *mm) |
| { |
| pgd_t *pgd; |
| |
| /* downgrade should only happen from 3 to 2 levels (compat only) */ |
| BUG_ON(mm->context.asce_limit != (1UL << 42)); |
| |
| if (current->active_mm == mm) { |
| clear_user_asce(); |
| __tlb_flush_mm(mm); |
| } |
| |
| pgd = mm->pgd; |
| mm->pgd = (pgd_t *) (pgd_val(*pgd) & _REGION_ENTRY_ORIGIN); |
| mm->context.asce_limit = 1UL << 31; |
| mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH | |
| _ASCE_USER_BITS | _ASCE_TYPE_SEGMENT; |
| mm->task_size = mm->context.asce_limit; |
| crst_table_free(mm, (unsigned long *) pgd); |
| |
| if (current->active_mm == mm) |
| set_user_asce(mm); |
| } |
| |
| #ifdef CONFIG_PGSTE |
| |
| /** |
| * gmap_alloc - allocate a guest address space |
| * @mm: pointer to the parent mm_struct |
| * @limit: maximum size of the gmap address space |
| * |
| * Returns a guest address space structure. |
| */ |
| struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit) |
| { |
| struct gmap *gmap; |
| struct page *page; |
| unsigned long *table; |
| unsigned long etype, atype; |
| |
| if (limit < (1UL << 31)) { |
| limit = (1UL << 31) - 1; |
| atype = _ASCE_TYPE_SEGMENT; |
| etype = _SEGMENT_ENTRY_EMPTY; |
| } else if (limit < (1UL << 42)) { |
| limit = (1UL << 42) - 1; |
| atype = _ASCE_TYPE_REGION3; |
| etype = _REGION3_ENTRY_EMPTY; |
| } else if (limit < (1UL << 53)) { |
| limit = (1UL << 53) - 1; |
| atype = _ASCE_TYPE_REGION2; |
| etype = _REGION2_ENTRY_EMPTY; |
| } else { |
| limit = -1UL; |
| atype = _ASCE_TYPE_REGION1; |
| etype = _REGION1_ENTRY_EMPTY; |
| } |
| gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL); |
| if (!gmap) |
| goto out; |
| INIT_LIST_HEAD(&gmap->crst_list); |
| INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL); |
| INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC); |
| spin_lock_init(&gmap->guest_table_lock); |
| gmap->mm = mm; |
| page = alloc_pages(GFP_KERNEL, 2); |
| if (!page) |
| goto out_free; |
| page->index = 0; |
| list_add(&page->lru, &gmap->crst_list); |
| table = (unsigned long *) page_to_phys(page); |
| crst_table_init(table, etype); |
| gmap->table = table; |
| gmap->asce = atype | _ASCE_TABLE_LENGTH | |
| _ASCE_USER_BITS | __pa(table); |
| gmap->asce_end = limit; |
| down_write(&mm->mmap_sem); |
| list_add(&gmap->list, &mm->context.gmap_list); |
| up_write(&mm->mmap_sem); |
| return gmap; |
| |
| out_free: |
| kfree(gmap); |
| out: |
| return NULL; |
| } |
| EXPORT_SYMBOL_GPL(gmap_alloc); |
| |
| static void gmap_flush_tlb(struct gmap *gmap) |
| { |
| if (MACHINE_HAS_IDTE) |
| __tlb_flush_idte(gmap->asce); |
| else |
| __tlb_flush_global(); |
| } |
| |
| static void gmap_radix_tree_free(struct radix_tree_root *root) |
| { |
| struct radix_tree_iter iter; |
| unsigned long indices[16]; |
| unsigned long index; |
| void **slot; |
| int i, nr; |
| |
| /* A radix tree is freed by deleting all of its entries */ |
| index = 0; |
| do { |
| nr = 0; |
| radix_tree_for_each_slot(slot, root, &iter, index) { |
| indices[nr] = iter.index; |
| if (++nr == 16) |
| break; |
| } |
| for (i = 0; i < nr; i++) { |
| index = indices[i]; |
| radix_tree_delete(root, index); |
| } |
| } while (nr > 0); |
| } |
| |
| /** |
| * gmap_free - free a guest address space |
| * @gmap: pointer to the guest address space structure |
| */ |
| void gmap_free(struct gmap *gmap) |
| { |
| struct page *page, *next; |
| |
| /* Flush tlb. */ |
| if (MACHINE_HAS_IDTE) |
| __tlb_flush_idte(gmap->asce); |
| else |
| __tlb_flush_global(); |
| |
| /* Free all segment & region tables. */ |
| list_for_each_entry_safe(page, next, &gmap->crst_list, lru) |
| __free_pages(page, 2); |
| gmap_radix_tree_free(&gmap->guest_to_host); |
| gmap_radix_tree_free(&gmap->host_to_guest); |
| down_write(&gmap->mm->mmap_sem); |
| list_del(&gmap->list); |
| up_write(&gmap->mm->mmap_sem); |
| kfree(gmap); |
| } |
| EXPORT_SYMBOL_GPL(gmap_free); |
| |
| /** |
| * gmap_enable - switch primary space to the guest address space |
| * @gmap: pointer to the guest address space structure |
| */ |
| void gmap_enable(struct gmap *gmap) |
| { |
| S390_lowcore.gmap = (unsigned long) gmap; |
| } |
| EXPORT_SYMBOL_GPL(gmap_enable); |
| |
| /** |
| * gmap_disable - switch back to the standard primary address space |
| * @gmap: pointer to the guest address space structure |
| */ |
| void gmap_disable(struct gmap *gmap) |
| { |
| S390_lowcore.gmap = 0UL; |
| } |
| EXPORT_SYMBOL_GPL(gmap_disable); |
| |
| /* |
| * gmap_alloc_table is assumed to be called with mmap_sem held |
| */ |
| static int gmap_alloc_table(struct gmap *gmap, unsigned long *table, |
| unsigned long init, unsigned long gaddr) |
| { |
| struct page *page; |
| unsigned long *new; |
| |
| /* since we dont free the gmap table until gmap_free we can unlock */ |
| page = alloc_pages(GFP_KERNEL, 2); |
| if (!page) |
| return -ENOMEM; |
| new = (unsigned long *) page_to_phys(page); |
| crst_table_init(new, init); |
| spin_lock(&gmap->mm->page_table_lock); |
| if (*table & _REGION_ENTRY_INVALID) { |
| list_add(&page->lru, &gmap->crst_list); |
| *table = (unsigned long) new | _REGION_ENTRY_LENGTH | |
| (*table & _REGION_ENTRY_TYPE_MASK); |
| page->index = gaddr; |
| page = NULL; |
| } |
| spin_unlock(&gmap->mm->page_table_lock); |
| if (page) |
| __free_pages(page, 2); |
| return 0; |
| } |
| |
| /** |
| * __gmap_segment_gaddr - find virtual address from segment pointer |
| * @entry: pointer to a segment table entry in the guest address space |
| * |
| * Returns the virtual address in the guest address space for the segment |
| */ |
| static unsigned long __gmap_segment_gaddr(unsigned long *entry) |
| { |
| struct page *page; |
| unsigned long offset, mask; |
| |
| offset = (unsigned long) entry / sizeof(unsigned long); |
| offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE; |
| mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); |
| page = virt_to_page((void *)((unsigned long) entry & mask)); |
| return page->index + offset; |
| } |
| |
| /** |
| * __gmap_unlink_by_vmaddr - unlink a single segment via a host address |
| * @gmap: pointer to the guest address space structure |
| * @vmaddr: address in the host process address space |
| * |
| * Returns 1 if a TLB flush is required |
| */ |
| static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr) |
| { |
| unsigned long *entry; |
| int flush = 0; |
| |
| spin_lock(&gmap->guest_table_lock); |
| entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT); |
| if (entry) { |
| flush = (*entry != _SEGMENT_ENTRY_INVALID); |
| *entry = _SEGMENT_ENTRY_INVALID; |
| } |
| spin_unlock(&gmap->guest_table_lock); |
| return flush; |
| } |
| |
| /** |
| * __gmap_unmap_by_gaddr - unmap a single segment via a guest address |
| * @gmap: pointer to the guest address space structure |
| * @gaddr: address in the guest address space |
| * |
| * Returns 1 if a TLB flush is required |
| */ |
| static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr) |
| { |
| unsigned long vmaddr; |
| |
| vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host, |
| gaddr >> PMD_SHIFT); |
| return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0; |
| } |
| |
| /** |
| * gmap_unmap_segment - unmap segment from the guest address space |
| * @gmap: pointer to the guest address space structure |
| * @to: address in the guest address space |
| * @len: length of the memory area to unmap |
| * |
| * Returns 0 if the unmap succeeded, -EINVAL if not. |
| */ |
| int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len) |
| { |
| unsigned long off; |
| int flush; |
| |
| if ((to | len) & (PMD_SIZE - 1)) |
| return -EINVAL; |
| if (len == 0 || to + len < to) |
| return -EINVAL; |
| |
| flush = 0; |
| down_write(&gmap->mm->mmap_sem); |
| for (off = 0; off < len; off += PMD_SIZE) |
| flush |= __gmap_unmap_by_gaddr(gmap, to + off); |
| up_write(&gmap->mm->mmap_sem); |
| if (flush) |
| gmap_flush_tlb(gmap); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(gmap_unmap_segment); |
| |
| /** |
| * gmap_mmap_segment - map a segment to the guest address space |
| * @gmap: pointer to the guest address space structure |
| * @from: source address in the parent address space |
| * @to: target address in the guest address space |
| * @len: length of the memory area to map |
| * |
| * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not. |
| */ |
| int gmap_map_segment(struct gmap *gmap, unsigned long from, |
| unsigned long to, unsigned long len) |
| { |
| unsigned long off; |
| int flush; |
| |
| if ((from | to | len) & (PMD_SIZE - 1)) |
| return -EINVAL; |
| if (len == 0 || from + len < from || to + len < to || |
| from + len > TASK_MAX_SIZE || to + len > gmap->asce_end) |
| return -EINVAL; |
| |
| flush = 0; |
| down_write(&gmap->mm->mmap_sem); |
| for (off = 0; off < len; off += PMD_SIZE) { |
| /* Remove old translation */ |
| flush |= __gmap_unmap_by_gaddr(gmap, to + off); |
| /* Store new translation */ |
| if (radix_tree_insert(&gmap->guest_to_host, |
| (to + off) >> PMD_SHIFT, |
| (void *) from + off)) |
| break; |
| } |
| up_write(&gmap->mm->mmap_sem); |
| if (flush) |
| gmap_flush_tlb(gmap); |
| if (off >= len) |
| return 0; |
| gmap_unmap_segment(gmap, to, len); |
| return -ENOMEM; |
| } |
| EXPORT_SYMBOL_GPL(gmap_map_segment); |
| |
| /** |
| * __gmap_translate - translate a guest address to a user space address |
| * @gmap: pointer to guest mapping meta data structure |
| * @gaddr: guest address |
| * |
| * Returns user space address which corresponds to the guest address or |
| * -EFAULT if no such mapping exists. |
| * This function does not establish potentially missing page table entries. |
| * The mmap_sem of the mm that belongs to the address space must be held |
| * when this function gets called. |
| */ |
| unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr) |
| { |
| unsigned long vmaddr; |
| |
| vmaddr = (unsigned long) |
| radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT); |
| return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT; |
| } |
| EXPORT_SYMBOL_GPL(__gmap_translate); |
| |
| /** |
| * gmap_translate - translate a guest address to a user space address |
| * @gmap: pointer to guest mapping meta data structure |
| * @gaddr: guest address |
| * |
| * Returns user space address which corresponds to the guest address or |
| * -EFAULT if no such mapping exists. |
| * This function does not establish potentially missing page table entries. |
| */ |
| unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr) |
| { |
| unsigned long rc; |
| |
| down_read(&gmap->mm->mmap_sem); |
| rc = __gmap_translate(gmap, gaddr); |
| up_read(&gmap->mm->mmap_sem); |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(gmap_translate); |
| |
| /** |
| * gmap_unlink - disconnect a page table from the gmap shadow tables |
| * @gmap: pointer to guest mapping meta data structure |
| * @table: pointer to the host page table |
| * @vmaddr: vm address associated with the host page table |
| */ |
| static void gmap_unlink(struct mm_struct *mm, unsigned long *table, |
| unsigned long vmaddr) |
| { |
| struct gmap *gmap; |
| int flush; |
| |
| list_for_each_entry(gmap, &mm->context.gmap_list, list) { |
| flush = __gmap_unlink_by_vmaddr(gmap, vmaddr); |
| if (flush) |
| gmap_flush_tlb(gmap); |
| } |
| } |
| |
| /** |
| * gmap_link - set up shadow page tables to connect a host to a guest address |
| * @gmap: pointer to guest mapping meta data structure |
| * @gaddr: guest address |
| * @vmaddr: vm address |
| * |
| * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT |
| * if the vm address is already mapped to a different guest segment. |
| * The mmap_sem of the mm that belongs to the address space must be held |
| * when this function gets called. |
| */ |
| int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr) |
| { |
| struct mm_struct *mm; |
| unsigned long *table; |
| spinlock_t *ptl; |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| int rc; |
| |
| /* Create higher level tables in the gmap page table */ |
| table = gmap->table; |
| if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) { |
| table += (gaddr >> 53) & 0x7ff; |
| if ((*table & _REGION_ENTRY_INVALID) && |
| gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY, |
| gaddr & 0xffe0000000000000UL)) |
| return -ENOMEM; |
| table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); |
| } |
| if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) { |
| table += (gaddr >> 42) & 0x7ff; |
| if ((*table & _REGION_ENTRY_INVALID) && |
| gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY, |
| gaddr & 0xfffffc0000000000UL)) |
| return -ENOMEM; |
| table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); |
| } |
| if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) { |
| table += (gaddr >> 31) & 0x7ff; |
| if ((*table & _REGION_ENTRY_INVALID) && |
| gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY, |
| gaddr & 0xffffffff80000000UL)) |
| return -ENOMEM; |
| table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); |
| } |
| table += (gaddr >> 20) & 0x7ff; |
| /* Walk the parent mm page table */ |
| mm = gmap->mm; |
| pgd = pgd_offset(mm, vmaddr); |
| VM_BUG_ON(pgd_none(*pgd)); |
| pud = pud_offset(pgd, vmaddr); |
| VM_BUG_ON(pud_none(*pud)); |
| pmd = pmd_offset(pud, vmaddr); |
| VM_BUG_ON(pmd_none(*pmd)); |
| /* large pmds cannot yet be handled */ |
| if (pmd_large(*pmd)) |
| return -EFAULT; |
| /* Link gmap segment table entry location to page table. */ |
| rc = radix_tree_preload(GFP_KERNEL); |
| if (rc) |
| return rc; |
| ptl = pmd_lock(mm, pmd); |
| spin_lock(&gmap->guest_table_lock); |
| if (*table == _SEGMENT_ENTRY_INVALID) { |
| rc = radix_tree_insert(&gmap->host_to_guest, |
| vmaddr >> PMD_SHIFT, table); |
| if (!rc) |
| *table = pmd_val(*pmd); |
| } else |
| rc = 0; |
| spin_unlock(&gmap->guest_table_lock); |
| spin_unlock(ptl); |
| radix_tree_preload_end(); |
| return rc; |
| } |
| |
| /** |
| * gmap_fault - resolve a fault on a guest address |
| * @gmap: pointer to guest mapping meta data structure |
| * @gaddr: guest address |
| * @fault_flags: flags to pass down to handle_mm_fault() |
| * |
| * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT |
| * if the vm address is already mapped to a different guest segment. |
| */ |
| int gmap_fault(struct gmap *gmap, unsigned long gaddr, |
| unsigned int fault_flags) |
| { |
| unsigned long vmaddr; |
| int rc; |
| |
| down_read(&gmap->mm->mmap_sem); |
| vmaddr = __gmap_translate(gmap, gaddr); |
| if (IS_ERR_VALUE(vmaddr)) { |
| rc = vmaddr; |
| goto out_up; |
| } |
| if (fixup_user_fault(current, gmap->mm, vmaddr, fault_flags)) { |
| rc = -EFAULT; |
| goto out_up; |
| } |
| rc = __gmap_link(gmap, gaddr, vmaddr); |
| out_up: |
| up_read(&gmap->mm->mmap_sem); |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(gmap_fault); |
| |
| static void gmap_zap_swap_entry(swp_entry_t entry, struct mm_struct *mm) |
| { |
| if (!non_swap_entry(entry)) |
| dec_mm_counter(mm, MM_SWAPENTS); |
| else if (is_migration_entry(entry)) { |
| struct page *page = migration_entry_to_page(entry); |
| |
| if (PageAnon(page)) |
| dec_mm_counter(mm, MM_ANONPAGES); |
| else |
| dec_mm_counter(mm, MM_FILEPAGES); |
| } |
| free_swap_and_cache(entry); |
| } |
| |
| /* |
| * this function is assumed to be called with mmap_sem held |
| */ |
| void __gmap_zap(struct gmap *gmap, unsigned long gaddr) |
| { |
| unsigned long vmaddr, ptev, pgstev; |
| pte_t *ptep, pte; |
| spinlock_t *ptl; |
| pgste_t pgste; |
| |
| /* Find the vm address for the guest address */ |
| vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host, |
| gaddr >> PMD_SHIFT); |
| if (!vmaddr) |
| return; |
| vmaddr |= gaddr & ~PMD_MASK; |
| /* Get pointer to the page table entry */ |
| ptep = get_locked_pte(gmap->mm, vmaddr, &ptl); |
| if (unlikely(!ptep)) |
| return; |
| pte = *ptep; |
| if (!pte_swap(pte)) |
| goto out_pte; |
| /* Zap unused and logically-zero pages */ |
| pgste = pgste_get_lock(ptep); |
| pgstev = pgste_val(pgste); |
| ptev = pte_val(pte); |
| if (((pgstev & _PGSTE_GPS_USAGE_MASK) == _PGSTE_GPS_USAGE_UNUSED) || |
| ((pgstev & _PGSTE_GPS_ZERO) && (ptev & _PAGE_INVALID))) { |
| gmap_zap_swap_entry(pte_to_swp_entry(pte), gmap->mm); |
| pte_clear(gmap->mm, vmaddr, ptep); |
| } |
| pgste_set_unlock(ptep, pgste); |
| out_pte: |
| pte_unmap_unlock(ptep, ptl); |
| } |
| EXPORT_SYMBOL_GPL(__gmap_zap); |
| |
| void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to) |
| { |
| unsigned long gaddr, vmaddr, size; |
| struct vm_area_struct *vma; |
| |
| down_read(&gmap->mm->mmap_sem); |
| for (gaddr = from; gaddr < to; |
| gaddr = (gaddr + PMD_SIZE) & PMD_MASK) { |
| /* Find the vm address for the guest address */ |
| vmaddr = (unsigned long) |
| radix_tree_lookup(&gmap->guest_to_host, |
| gaddr >> PMD_SHIFT); |
| if (!vmaddr) |
| continue; |
| vmaddr |= gaddr & ~PMD_MASK; |
| /* Find vma in the parent mm */ |
| vma = find_vma(gmap->mm, vmaddr); |
| if (!vma) |
| continue; |
| size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK)); |
| zap_page_range(vma, vmaddr, size, NULL); |
| } |
| up_read(&gmap->mm->mmap_sem); |
| } |
| EXPORT_SYMBOL_GPL(gmap_discard); |
| |
| static LIST_HEAD(gmap_notifier_list); |
| static DEFINE_SPINLOCK(gmap_notifier_lock); |
| |
| /** |
| * gmap_register_ipte_notifier - register a pte invalidation callback |
| * @nb: pointer to the gmap notifier block |
| */ |
| void gmap_register_ipte_notifier(struct gmap_notifier *nb) |
| { |
| spin_lock(&gmap_notifier_lock); |
| list_add(&nb->list, &gmap_notifier_list); |
| spin_unlock(&gmap_notifier_lock); |
| } |
| EXPORT_SYMBOL_GPL(gmap_register_ipte_notifier); |
| |
| /** |
| * gmap_unregister_ipte_notifier - remove a pte invalidation callback |
| * @nb: pointer to the gmap notifier block |
| */ |
| void gmap_unregister_ipte_notifier(struct gmap_notifier *nb) |
| { |
| spin_lock(&gmap_notifier_lock); |
| list_del_init(&nb->list); |
| spin_unlock(&gmap_notifier_lock); |
| } |
| EXPORT_SYMBOL_GPL(gmap_unregister_ipte_notifier); |
| |
| /** |
| * gmap_ipte_notify - mark a range of ptes for invalidation notification |
| * @gmap: pointer to guest mapping meta data structure |
| * @gaddr: virtual address in the guest address space |
| * @len: size of area |
| * |
| * Returns 0 if for each page in the given range a gmap mapping exists and |
| * the invalidation notification could be set. If the gmap mapping is missing |
| * for one or more pages -EFAULT is returned. If no memory could be allocated |
| * -ENOMEM is returned. This function establishes missing page table entries. |
| */ |
| int gmap_ipte_notify(struct gmap *gmap, unsigned long gaddr, unsigned long len) |
| { |
| unsigned long addr; |
| spinlock_t *ptl; |
| pte_t *ptep, entry; |
| pgste_t pgste; |
| int rc = 0; |
| |
| if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK)) |
| return -EINVAL; |
| down_read(&gmap->mm->mmap_sem); |
| while (len) { |
| /* Convert gmap address and connect the page tables */ |
| addr = __gmap_translate(gmap, gaddr); |
| if (IS_ERR_VALUE(addr)) { |
| rc = addr; |
| break; |
| } |
| /* Get the page mapped */ |
| if (fixup_user_fault(current, gmap->mm, addr, FAULT_FLAG_WRITE)) { |
| rc = -EFAULT; |
| break; |
| } |
| rc = __gmap_link(gmap, gaddr, addr); |
| if (rc) |
| break; |
| /* Walk the process page table, lock and get pte pointer */ |
| ptep = get_locked_pte(gmap->mm, addr, &ptl); |
| VM_BUG_ON(!ptep); |
| /* Set notification bit in the pgste of the pte */ |
| entry = *ptep; |
| if ((pte_val(entry) & (_PAGE_INVALID | _PAGE_PROTECT)) == 0) { |
| pgste = pgste_get_lock(ptep); |
| pgste_val(pgste) |= PGSTE_IN_BIT; |
| pgste_set_unlock(ptep, pgste); |
| gaddr += PAGE_SIZE; |
| len -= PAGE_SIZE; |
| } |
| pte_unmap_unlock(ptep, ptl); |
| } |
| up_read(&gmap->mm->mmap_sem); |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(gmap_ipte_notify); |
| |
| /** |
| * gmap_do_ipte_notify - call all invalidation callbacks for a specific pte. |
| * @mm: pointer to the process mm_struct |
| * @addr: virtual address in the process address space |
| * @pte: pointer to the page table entry |
| * |
| * This function is assumed to be called with the page table lock held |
| * for the pte to notify. |
| */ |
| void gmap_do_ipte_notify(struct mm_struct *mm, unsigned long vmaddr, pte_t *pte) |
| { |
| unsigned long offset, gaddr; |
| unsigned long *table; |
| struct gmap_notifier *nb; |
| struct gmap *gmap; |
| |
| offset = ((unsigned long) pte) & (255 * sizeof(pte_t)); |
| offset = offset * (4096 / sizeof(pte_t)); |
| spin_lock(&gmap_notifier_lock); |
| list_for_each_entry(gmap, &mm->context.gmap_list, list) { |
| table = radix_tree_lookup(&gmap->host_to_guest, |
| vmaddr >> PMD_SHIFT); |
| if (!table) |
| continue; |
| gaddr = __gmap_segment_gaddr(table) + offset; |
| list_for_each_entry(nb, &gmap_notifier_list, list) |
| nb->notifier_call(gmap, gaddr); |
| } |
| spin_unlock(&gmap_notifier_lock); |
| } |
| EXPORT_SYMBOL_GPL(gmap_do_ipte_notify); |
| |
| int set_guest_storage_key(struct mm_struct *mm, unsigned long addr, |
| unsigned long key, bool nq) |
| { |
| spinlock_t *ptl; |
| pgste_t old, new; |
| pte_t *ptep; |
| |
| down_read(&mm->mmap_sem); |
| retry: |
| ptep = get_locked_pte(mm, addr, &ptl); |
| if (unlikely(!ptep)) { |
| up_read(&mm->mmap_sem); |
| return -EFAULT; |
| } |
| if (!(pte_val(*ptep) & _PAGE_INVALID) && |
| (pte_val(*ptep) & _PAGE_PROTECT)) { |
| pte_unmap_unlock(ptep, ptl); |
| if (fixup_user_fault(current, mm, addr, FAULT_FLAG_WRITE)) { |
| up_read(&mm->mmap_sem); |
| return -EFAULT; |
| } |
| goto retry; |
| } |
| |
| new = old = pgste_get_lock(ptep); |
| pgste_val(new) &= ~(PGSTE_GR_BIT | PGSTE_GC_BIT | |
| PGSTE_ACC_BITS | PGSTE_FP_BIT); |
| pgste_val(new) |= (key & (_PAGE_CHANGED | _PAGE_REFERENCED)) << 48; |
| pgste_val(new) |= (key & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56; |
| if (!(pte_val(*ptep) & _PAGE_INVALID)) { |
| unsigned long address, bits, skey; |
| |
| address = pte_val(*ptep) & PAGE_MASK; |
| skey = (unsigned long) page_get_storage_key(address); |
| bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED); |
| skey = key & (_PAGE_ACC_BITS | _PAGE_FP_BIT); |
| /* Set storage key ACC and FP */ |
| page_set_storage_key(address, skey, !nq); |
| /* Merge host changed & referenced into pgste */ |
| pgste_val(new) |= bits << 52; |
| } |
| /* changing the guest storage key is considered a change of the page */ |
| if ((pgste_val(new) ^ pgste_val(old)) & |
| (PGSTE_ACC_BITS | PGSTE_FP_BIT | PGSTE_GR_BIT | PGSTE_GC_BIT)) |
| pgste_val(new) |= PGSTE_UC_BIT; |
| |
| pgste_set_unlock(ptep, new); |
| pte_unmap_unlock(ptep, ptl); |
| up_read(&mm->mmap_sem); |
| return 0; |
| } |
| EXPORT_SYMBOL(set_guest_storage_key); |
| |
| unsigned long get_guest_storage_key(struct mm_struct *mm, unsigned long addr) |
| { |
| spinlock_t *ptl; |
| pgste_t pgste; |
| pte_t *ptep; |
| uint64_t physaddr; |
| unsigned long key = 0; |
| |
| down_read(&mm->mmap_sem); |
| ptep = get_locked_pte(mm, addr, &ptl); |
| if (unlikely(!ptep)) { |
| up_read(&mm->mmap_sem); |
| return -EFAULT; |
| } |
| pgste = pgste_get_lock(ptep); |
| |
| if (pte_val(*ptep) & _PAGE_INVALID) { |
| key |= (pgste_val(pgste) & PGSTE_ACC_BITS) >> 56; |
| key |= (pgste_val(pgste) & PGSTE_FP_BIT) >> 56; |
| key |= (pgste_val(pgste) & PGSTE_GR_BIT) >> 48; |
| key |= (pgste_val(pgste) & PGSTE_GC_BIT) >> 48; |
| } else { |
| physaddr = pte_val(*ptep) & PAGE_MASK; |
| key = page_get_storage_key(physaddr); |
| |
| /* Reflect guest's logical view, not physical */ |
| if (pgste_val(pgste) & PGSTE_GR_BIT) |
| key |= _PAGE_REFERENCED; |
| if (pgste_val(pgste) & PGSTE_GC_BIT) |
| key |= _PAGE_CHANGED; |
| } |
| |
| pgste_set_unlock(ptep, pgste); |
| pte_unmap_unlock(ptep, ptl); |
| up_read(&mm->mmap_sem); |
| return key; |
| } |
| EXPORT_SYMBOL(get_guest_storage_key); |
| |
| static int page_table_allocate_pgste_min = 0; |
| static int page_table_allocate_pgste_max = 1; |
| int page_table_allocate_pgste = 0; |
| EXPORT_SYMBOL(page_table_allocate_pgste); |
| |
| static struct ctl_table page_table_sysctl[] = { |
| { |
| .procname = "allocate_pgste", |
| .data = &page_table_allocate_pgste, |
| .maxlen = sizeof(int), |
| .mode = S_IRUGO | S_IWUSR, |
| .proc_handler = proc_dointvec, |
| .extra1 = &page_table_allocate_pgste_min, |
| .extra2 = &page_table_allocate_pgste_max, |
| }, |
| { } |
| }; |
| |
| static struct ctl_table page_table_sysctl_dir[] = { |
| { |
| .procname = "vm", |
| .maxlen = 0, |
| .mode = 0555, |
| .child = page_table_sysctl, |
| }, |
| { } |
| }; |
| |
| static int __init page_table_register_sysctl(void) |
| { |
| return register_sysctl_table(page_table_sysctl_dir) ? 0 : -ENOMEM; |
| } |
| __initcall(page_table_register_sysctl); |
| |
| #else /* CONFIG_PGSTE */ |
| |
| static inline void gmap_unlink(struct mm_struct *mm, unsigned long *table, |
| unsigned long vmaddr) |
| { |
| } |
| |
| #endif /* CONFIG_PGSTE */ |
| |
| static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits) |
| { |
| unsigned int old, new; |
| |
| do { |
| old = atomic_read(v); |
| new = old ^ bits; |
| } while (atomic_cmpxchg(v, old, new) != old); |
| return new; |
| } |
| |
| /* |
| * page table entry allocation/free routines. |
| */ |
| unsigned long *page_table_alloc(struct mm_struct *mm) |
| { |
| unsigned long *table; |
| struct page *page; |
| unsigned int mask, bit; |
| |
| /* Try to get a fragment of a 4K page as a 2K page table */ |
| if (!mm_alloc_pgste(mm)) { |
| table = NULL; |
| spin_lock_bh(&mm->context.list_lock); |
| if (!list_empty(&mm->context.pgtable_list)) { |
| page = list_first_entry(&mm->context.pgtable_list, |
| struct page, lru); |
| mask = atomic_read(&page->_mapcount); |
| mask = (mask | (mask >> 4)) & 3; |
| if (mask != 3) { |
| table = (unsigned long *) page_to_phys(page); |
| bit = mask & 1; /* =1 -> second 2K */ |
| if (bit) |
| table += PTRS_PER_PTE; |
| atomic_xor_bits(&page->_mapcount, 1U << bit); |
| list_del(&page->lru); |
| } |
| } |
| spin_unlock_bh(&mm->context.list_lock); |
| if (table) |
| return table; |
| } |
| /* Allocate a fresh page */ |
| page = alloc_page(GFP_KERNEL|__GFP_REPEAT); |
| if (!page) |
| return NULL; |
| if (!pgtable_page_ctor(page)) { |
| __free_page(page); |
| return NULL; |
| } |
| /* Initialize page table */ |
| table = (unsigned long *) page_to_phys(page); |
| if (mm_alloc_pgste(mm)) { |
| /* Return 4K page table with PGSTEs */ |
| atomic_set(&page->_mapcount, 3); |
| clear_table(table, _PAGE_INVALID, PAGE_SIZE/2); |
| clear_table(table + PTRS_PER_PTE, 0, PAGE_SIZE/2); |
| } else { |
| /* Return the first 2K fragment of the page */ |
| atomic_set(&page->_mapcount, 1); |
| clear_table(table, _PAGE_INVALID, PAGE_SIZE); |
| spin_lock_bh(&mm->context.list_lock); |
| list_add(&page->lru, &mm->context.pgtable_list); |
| spin_unlock_bh(&mm->context.list_lock); |
| } |
| return table; |
| } |
| |
| void page_table_free(struct mm_struct *mm, unsigned long *table) |
| { |
| struct page *page; |
| unsigned int bit, mask; |
| |
| page = pfn_to_page(__pa(table) >> PAGE_SHIFT); |
| if (!mm_alloc_pgste(mm)) { |
| /* Free 2K page table fragment of a 4K page */ |
| bit = (__pa(table) & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t)); |
| spin_lock_bh(&mm->context.list_lock); |
| mask = atomic_xor_bits(&page->_mapcount, 1U << bit); |
| if (mask & 3) |
| list_add(&page->lru, &mm->context.pgtable_list); |
| else |
| list_del(&page->lru); |
| spin_unlock_bh(&mm->context.list_lock); |
| if (mask != 0) |
| return; |
| } |
| |
| pgtable_page_dtor(page); |
| atomic_set(&page->_mapcount, -1); |
| __free_page(page); |
| } |
| |
| void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table, |
| unsigned long vmaddr) |
| { |
| struct mm_struct *mm; |
| struct page *page; |
| unsigned int bit, mask; |
| |
| mm = tlb->mm; |
| page = pfn_to_page(__pa(table) >> PAGE_SHIFT); |
| if (mm_alloc_pgste(mm)) { |
| gmap_unlink(mm, table, vmaddr); |
| table = (unsigned long *) (__pa(table) | 3); |
| tlb_remove_table(tlb, table); |
| return; |
| } |
| bit = (__pa(table) & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t)); |
| spin_lock_bh(&mm->context.list_lock); |
| mask = atomic_xor_bits(&page->_mapcount, 0x11U << bit); |
| if (mask & 3) |
| list_add_tail(&page->lru, &mm->context.pgtable_list); |
| else |
| list_del(&page->lru); |
| spin_unlock_bh(&mm->context.list_lock); |
| table = (unsigned long *) (__pa(table) | (1U << bit)); |
| tlb_remove_table(tlb, table); |
| } |
| |
| static void __tlb_remove_table(void *_table) |
| { |
| unsigned int mask = (unsigned long) _table & 3; |
| void *table = (void *)((unsigned long) _table ^ mask); |
| struct page *page = pfn_to_page(__pa(table) >> PAGE_SHIFT); |
| |
| switch (mask) { |
| case 0: /* pmd or pud */ |
| free_pages((unsigned long) table, 2); |
| break; |
| case 1: /* lower 2K of a 4K page table */ |
| case 2: /* higher 2K of a 4K page table */ |
| if (atomic_xor_bits(&page->_mapcount, mask << 4) != 0) |
| break; |
| /* fallthrough */ |
| case 3: /* 4K page table with pgstes */ |
| pgtable_page_dtor(page); |
| atomic_set(&page->_mapcount, -1); |
| __free_page(page); |
| break; |
| } |
| } |
| |
| static void tlb_remove_table_smp_sync(void *arg) |
| { |
| /* Simply deliver the interrupt */ |
| } |
| |
| static void tlb_remove_table_one(void *table) |
| { |
| /* |
| * This isn't an RCU grace period and hence the page-tables cannot be |
| * assumed to be actually RCU-freed. |
| * |
| * It is however sufficient for software page-table walkers that rely |
| * on IRQ disabling. See the comment near struct mmu_table_batch. |
| */ |
| smp_call_function(tlb_remove_table_smp_sync, NULL, 1); |
| __tlb_remove_table(table); |
| } |
| |
| static void tlb_remove_table_rcu(struct rcu_head *head) |
| { |
| struct mmu_table_batch *batch; |
| int i; |
| |
| batch = container_of(head, struct mmu_table_batch, rcu); |
| |
| for (i = 0; i < batch->nr; i++) |
| __tlb_remove_table(batch->tables[i]); |
| |
| free_page((unsigned long)batch); |
| } |
| |
| void tlb_table_flush(struct mmu_gather *tlb) |
| { |
| struct mmu_table_batch **batch = &tlb->batch; |
| |
| if (*batch) { |
| call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); |
| *batch = NULL; |
| } |
| } |
| |
| void tlb_remove_table(struct mmu_gather *tlb, void *table) |
| { |
| struct mmu_table_batch **batch = &tlb->batch; |
| |
| tlb->mm->context.flush_mm = 1; |
| if (*batch == NULL) { |
| *batch = (struct mmu_table_batch *) |
| __get_free_page(GFP_NOWAIT | __GFP_NOWARN); |
| if (*batch == NULL) { |
| __tlb_flush_mm_lazy(tlb->mm); |
| tlb_remove_table_one(table); |
| return; |
| } |
| (*batch)->nr = 0; |
| } |
| (*batch)->tables[(*batch)->nr++] = table; |
| if ((*batch)->nr == MAX_TABLE_BATCH) |
| tlb_flush_mmu(tlb); |
| } |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| static inline void thp_split_vma(struct vm_area_struct *vma) |
| { |
| unsigned long addr; |
| |
| for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE) |
| follow_page(vma, addr, FOLL_SPLIT); |
| } |
| |
| static inline void thp_split_mm(struct mm_struct *mm) |
| { |
| struct vm_area_struct *vma; |
| |
| for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) { |
| thp_split_vma(vma); |
| vma->vm_flags &= ~VM_HUGEPAGE; |
| vma->vm_flags |= VM_NOHUGEPAGE; |
| } |
| mm->def_flags |= VM_NOHUGEPAGE; |
| } |
| #else |
| static inline void thp_split_mm(struct mm_struct *mm) |
| { |
| } |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| |
| /* |
| * switch on pgstes for its userspace process (for kvm) |
| */ |
| int s390_enable_sie(void) |
| { |
| struct mm_struct *mm = current->mm; |
| |
| /* Do we have pgstes? if yes, we are done */ |
| if (mm_has_pgste(mm)) |
| return 0; |
| /* Fail if the page tables are 2K */ |
| if (!mm_alloc_pgste(mm)) |
| return -EINVAL; |
| down_write(&mm->mmap_sem); |
| mm->context.has_pgste = 1; |
| /* split thp mappings and disable thp for future mappings */ |
| thp_split_mm(mm); |
| up_write(&mm->mmap_sem); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(s390_enable_sie); |
| |
| /* |
| * Enable storage key handling from now on and initialize the storage |
| * keys with the default key. |
| */ |
| static int __s390_enable_skey(pte_t *pte, unsigned long addr, |
| unsigned long next, struct mm_walk *walk) |
| { |
| unsigned long ptev; |
| pgste_t pgste; |
| |
| pgste = pgste_get_lock(pte); |
| /* |
| * Remove all zero page mappings, |
| * after establishing a policy to forbid zero page mappings |
| * following faults for that page will get fresh anonymous pages |
| */ |
| if (is_zero_pfn(pte_pfn(*pte))) { |
| ptep_flush_direct(walk->mm, addr, pte); |
| pte_val(*pte) = _PAGE_INVALID; |
| } |
| /* Clear storage key */ |
| pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT | |
| PGSTE_GR_BIT | PGSTE_GC_BIT); |
| ptev = pte_val(*pte); |
| if (!(ptev & _PAGE_INVALID) && (ptev & _PAGE_WRITE)) |
| page_set_storage_key(ptev & PAGE_MASK, PAGE_DEFAULT_KEY, 1); |
| pgste_set_unlock(pte, pgste); |
| return 0; |
| } |
| |
| int s390_enable_skey(void) |
| { |
| struct mm_walk walk = { .pte_entry = __s390_enable_skey }; |
| struct mm_struct *mm = current->mm; |
| struct vm_area_struct *vma; |
| int rc = 0; |
| |
| down_write(&mm->mmap_sem); |
| if (mm_use_skey(mm)) |
| goto out_up; |
| |
| mm->context.use_skey = 1; |
| for (vma = mm->mmap; vma; vma = vma->vm_next) { |
| if (ksm_madvise(vma, vma->vm_start, vma->vm_end, |
| MADV_UNMERGEABLE, &vma->vm_flags)) { |
| mm->context.use_skey = 0; |
| rc = -ENOMEM; |
| goto out_up; |
| } |
| } |
| mm->def_flags &= ~VM_MERGEABLE; |
| |
| walk.mm = mm; |
| walk_page_range(0, TASK_SIZE, &walk); |
| |
| out_up: |
| up_write(&mm->mmap_sem); |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(s390_enable_skey); |
| |
| /* |
| * Reset CMMA state, make all pages stable again. |
| */ |
| static int __s390_reset_cmma(pte_t *pte, unsigned long addr, |
| unsigned long next, struct mm_walk *walk) |
| { |
| pgste_t pgste; |
| |
| pgste = pgste_get_lock(pte); |
| pgste_val(pgste) &= ~_PGSTE_GPS_USAGE_MASK; |
| pgste_set_unlock(pte, pgste); |
| return 0; |
| } |
| |
| void s390_reset_cmma(struct mm_struct *mm) |
| { |
| struct mm_walk walk = { .pte_entry = __s390_reset_cmma }; |
| |
| down_write(&mm->mmap_sem); |
| walk.mm = mm; |
| walk_page_range(0, TASK_SIZE, &walk); |
| up_write(&mm->mmap_sem); |
| } |
| EXPORT_SYMBOL_GPL(s390_reset_cmma); |
| |
| /* |
| * Test and reset if a guest page is dirty |
| */ |
| bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *gmap) |
| { |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| spinlock_t *ptl; |
| bool dirty = false; |
| |
| pgd = pgd_offset(gmap->mm, address); |
| pud = pud_alloc(gmap->mm, pgd, address); |
| if (!pud) |
| return false; |
| pmd = pmd_alloc(gmap->mm, pud, address); |
| if (!pmd) |
| return false; |
| /* We can't run guests backed by huge pages, but userspace can |
| * still set them up and then try to migrate them without any |
| * migration support. |
| */ |
| if (pmd_large(*pmd)) |
| return true; |
| |
| pte = pte_alloc_map_lock(gmap->mm, pmd, address, &ptl); |
| if (unlikely(!pte)) |
| return false; |
| |
| if (ptep_test_and_clear_user_dirty(gmap->mm, address, pte)) |
| dirty = true; |
| |
| spin_unlock(ptl); |
| return dirty; |
| } |
| EXPORT_SYMBOL_GPL(gmap_test_and_clear_dirty); |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address, |
| pmd_t *pmdp) |
| { |
| VM_BUG_ON(address & ~HPAGE_PMD_MASK); |
| /* No need to flush TLB |
| * On s390 reference bits are in storage key and never in TLB */ |
| return pmdp_test_and_clear_young(vma, address, pmdp); |
| } |
| |
| int pmdp_set_access_flags(struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmdp, |
| pmd_t entry, int dirty) |
| { |
| VM_BUG_ON(address & ~HPAGE_PMD_MASK); |
| |
| entry = pmd_mkyoung(entry); |
| if (dirty) |
| entry = pmd_mkdirty(entry); |
| if (pmd_same(*pmdp, entry)) |
| return 0; |
| pmdp_invalidate(vma, address, pmdp); |
| set_pmd_at(vma->vm_mm, address, pmdp, entry); |
| return 1; |
| } |
| |
| static void pmdp_splitting_flush_sync(void *arg) |
| { |
| /* Simply deliver the interrupt */ |
| } |
| |
| void pmdp_splitting_flush(struct vm_area_struct *vma, unsigned long address, |
| pmd_t *pmdp) |
| { |
| VM_BUG_ON(address & ~HPAGE_PMD_MASK); |
| if (!test_and_set_bit(_SEGMENT_ENTRY_SPLIT_BIT, |
| (unsigned long *) pmdp)) { |
| /* need to serialize against gup-fast (IRQ disabled) */ |
| smp_call_function(pmdp_splitting_flush_sync, NULL, 1); |
| } |
| } |
| |
| void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, |
| pgtable_t pgtable) |
| { |
| struct list_head *lh = (struct list_head *) pgtable; |
| |
| assert_spin_locked(pmd_lockptr(mm, pmdp)); |
| |
| /* FIFO */ |
| if (!pmd_huge_pte(mm, pmdp)) |
| INIT_LIST_HEAD(lh); |
| else |
| list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp)); |
| pmd_huge_pte(mm, pmdp) = pgtable; |
| } |
| |
| pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp) |
| { |
| struct list_head *lh; |
| pgtable_t pgtable; |
| pte_t *ptep; |
| |
| assert_spin_locked(pmd_lockptr(mm, pmdp)); |
| |
| /* FIFO */ |
| pgtable = pmd_huge_pte(mm, pmdp); |
| lh = (struct list_head *) pgtable; |
| if (list_empty(lh)) |
| pmd_huge_pte(mm, pmdp) = NULL; |
| else { |
| pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next; |
| list_del(lh); |
| } |
| ptep = (pte_t *) pgtable; |
| pte_val(*ptep) = _PAGE_INVALID; |
| ptep++; |
| pte_val(*ptep) = _PAGE_INVALID; |
| return pgtable; |
| } |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |