| /* |
| * Kernel-based Virtual Machine driver for Linux |
| * |
| * derived from drivers/kvm/kvm_main.c |
| * |
| * Copyright (C) 2006 Qumranet, Inc. |
| * |
| * Authors: |
| * Avi Kivity <avi@qumranet.com> |
| * Yaniv Kamay <yaniv@qumranet.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2. See |
| * the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include "kvm.h" |
| #include "x86.h" |
| #include "x86_emulate.h" |
| #include "segment_descriptor.h" |
| #include "irq.h" |
| |
| #include <linux/kvm.h> |
| #include <linux/fs.h> |
| #include <linux/vmalloc.h> |
| #include <linux/module.h> |
| |
| #include <asm/uaccess.h> |
| #include <asm/msr.h> |
| |
| #define MAX_IO_MSRS 256 |
| #define CR0_RESERVED_BITS \ |
| (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ |
| | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ |
| | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) |
| #define CR4_RESERVED_BITS \ |
| (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ |
| | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ |
| | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \ |
| | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE)) |
| |
| #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) |
| #define EFER_RESERVED_BITS 0xfffffffffffff2fe |
| |
| #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM |
| #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU |
| |
| struct kvm_x86_ops *kvm_x86_ops; |
| |
| struct kvm_stats_debugfs_item debugfs_entries[] = { |
| { "pf_fixed", VCPU_STAT(pf_fixed) }, |
| { "pf_guest", VCPU_STAT(pf_guest) }, |
| { "tlb_flush", VCPU_STAT(tlb_flush) }, |
| { "invlpg", VCPU_STAT(invlpg) }, |
| { "exits", VCPU_STAT(exits) }, |
| { "io_exits", VCPU_STAT(io_exits) }, |
| { "mmio_exits", VCPU_STAT(mmio_exits) }, |
| { "signal_exits", VCPU_STAT(signal_exits) }, |
| { "irq_window", VCPU_STAT(irq_window_exits) }, |
| { "halt_exits", VCPU_STAT(halt_exits) }, |
| { "halt_wakeup", VCPU_STAT(halt_wakeup) }, |
| { "request_irq", VCPU_STAT(request_irq_exits) }, |
| { "irq_exits", VCPU_STAT(irq_exits) }, |
| { "host_state_reload", VCPU_STAT(host_state_reload) }, |
| { "efer_reload", VCPU_STAT(efer_reload) }, |
| { "fpu_reload", VCPU_STAT(fpu_reload) }, |
| { "insn_emulation", VCPU_STAT(insn_emulation) }, |
| { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, |
| { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, |
| { "mmu_pte_write", VM_STAT(mmu_pte_write) }, |
| { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, |
| { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, |
| { "mmu_flooded", VM_STAT(mmu_flooded) }, |
| { "mmu_recycled", VM_STAT(mmu_recycled) }, |
| { NULL } |
| }; |
| |
| |
| unsigned long segment_base(u16 selector) |
| { |
| struct descriptor_table gdt; |
| struct segment_descriptor *d; |
| unsigned long table_base; |
| unsigned long v; |
| |
| if (selector == 0) |
| return 0; |
| |
| asm("sgdt %0" : "=m"(gdt)); |
| table_base = gdt.base; |
| |
| if (selector & 4) { /* from ldt */ |
| u16 ldt_selector; |
| |
| asm("sldt %0" : "=g"(ldt_selector)); |
| table_base = segment_base(ldt_selector); |
| } |
| d = (struct segment_descriptor *)(table_base + (selector & ~7)); |
| v = d->base_low | ((unsigned long)d->base_mid << 16) | |
| ((unsigned long)d->base_high << 24); |
| #ifdef CONFIG_X86_64 |
| if (d->system == 0 && (d->type == 2 || d->type == 9 || d->type == 11)) |
| v |= ((unsigned long) \ |
| ((struct segment_descriptor_64 *)d)->base_higher) << 32; |
| #endif |
| return v; |
| } |
| EXPORT_SYMBOL_GPL(segment_base); |
| |
| u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) |
| { |
| if (irqchip_in_kernel(vcpu->kvm)) |
| return vcpu->apic_base; |
| else |
| return vcpu->apic_base; |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_apic_base); |
| |
| void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data) |
| { |
| /* TODO: reserve bits check */ |
| if (irqchip_in_kernel(vcpu->kvm)) |
| kvm_lapic_set_base(vcpu, data); |
| else |
| vcpu->apic_base = data; |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_apic_base); |
| |
| static void inject_gp(struct kvm_vcpu *vcpu) |
| { |
| kvm_x86_ops->inject_gp(vcpu, 0); |
| } |
| |
| /* |
| * Load the pae pdptrs. Return true is they are all valid. |
| */ |
| int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) |
| { |
| gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; |
| unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; |
| int i; |
| int ret; |
| u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)]; |
| |
| mutex_lock(&vcpu->kvm->lock); |
| ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte, |
| offset * sizeof(u64), sizeof(pdpte)); |
| if (ret < 0) { |
| ret = 0; |
| goto out; |
| } |
| for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { |
| if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) { |
| ret = 0; |
| goto out; |
| } |
| } |
| ret = 1; |
| |
| memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs)); |
| out: |
| mutex_unlock(&vcpu->kvm->lock); |
| |
| return ret; |
| } |
| |
| void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) |
| { |
| if (cr0 & CR0_RESERVED_BITS) { |
| printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n", |
| cr0, vcpu->cr0); |
| inject_gp(vcpu); |
| return; |
| } |
| |
| if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) { |
| printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n"); |
| inject_gp(vcpu); |
| return; |
| } |
| |
| if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) { |
| printk(KERN_DEBUG "set_cr0: #GP, set PG flag " |
| "and a clear PE flag\n"); |
| inject_gp(vcpu); |
| return; |
| } |
| |
| if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { |
| #ifdef CONFIG_X86_64 |
| if ((vcpu->shadow_efer & EFER_LME)) { |
| int cs_db, cs_l; |
| |
| if (!is_pae(vcpu)) { |
| printk(KERN_DEBUG "set_cr0: #GP, start paging " |
| "in long mode while PAE is disabled\n"); |
| inject_gp(vcpu); |
| return; |
| } |
| kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); |
| if (cs_l) { |
| printk(KERN_DEBUG "set_cr0: #GP, start paging " |
| "in long mode while CS.L == 1\n"); |
| inject_gp(vcpu); |
| return; |
| |
| } |
| } else |
| #endif |
| if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) { |
| printk(KERN_DEBUG "set_cr0: #GP, pdptrs " |
| "reserved bits\n"); |
| inject_gp(vcpu); |
| return; |
| } |
| |
| } |
| |
| kvm_x86_ops->set_cr0(vcpu, cr0); |
| vcpu->cr0 = cr0; |
| |
| mutex_lock(&vcpu->kvm->lock); |
| kvm_mmu_reset_context(vcpu); |
| mutex_unlock(&vcpu->kvm->lock); |
| return; |
| } |
| EXPORT_SYMBOL_GPL(set_cr0); |
| |
| void lmsw(struct kvm_vcpu *vcpu, unsigned long msw) |
| { |
| set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f)); |
| } |
| EXPORT_SYMBOL_GPL(lmsw); |
| |
| void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) |
| { |
| if (cr4 & CR4_RESERVED_BITS) { |
| printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n"); |
| inject_gp(vcpu); |
| return; |
| } |
| |
| if (is_long_mode(vcpu)) { |
| if (!(cr4 & X86_CR4_PAE)) { |
| printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while " |
| "in long mode\n"); |
| inject_gp(vcpu); |
| return; |
| } |
| } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE) |
| && !load_pdptrs(vcpu, vcpu->cr3)) { |
| printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n"); |
| inject_gp(vcpu); |
| return; |
| } |
| |
| if (cr4 & X86_CR4_VMXE) { |
| printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n"); |
| inject_gp(vcpu); |
| return; |
| } |
| kvm_x86_ops->set_cr4(vcpu, cr4); |
| vcpu->cr4 = cr4; |
| mutex_lock(&vcpu->kvm->lock); |
| kvm_mmu_reset_context(vcpu); |
| mutex_unlock(&vcpu->kvm->lock); |
| } |
| EXPORT_SYMBOL_GPL(set_cr4); |
| |
| void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) |
| { |
| if (is_long_mode(vcpu)) { |
| if (cr3 & CR3_L_MODE_RESERVED_BITS) { |
| printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n"); |
| inject_gp(vcpu); |
| return; |
| } |
| } else { |
| if (is_pae(vcpu)) { |
| if (cr3 & CR3_PAE_RESERVED_BITS) { |
| printk(KERN_DEBUG |
| "set_cr3: #GP, reserved bits\n"); |
| inject_gp(vcpu); |
| return; |
| } |
| if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) { |
| printk(KERN_DEBUG "set_cr3: #GP, pdptrs " |
| "reserved bits\n"); |
| inject_gp(vcpu); |
| return; |
| } |
| } |
| /* |
| * We don't check reserved bits in nonpae mode, because |
| * this isn't enforced, and VMware depends on this. |
| */ |
| } |
| |
| mutex_lock(&vcpu->kvm->lock); |
| /* |
| * Does the new cr3 value map to physical memory? (Note, we |
| * catch an invalid cr3 even in real-mode, because it would |
| * cause trouble later on when we turn on paging anyway.) |
| * |
| * A real CPU would silently accept an invalid cr3 and would |
| * attempt to use it - with largely undefined (and often hard |
| * to debug) behavior on the guest side. |
| */ |
| if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT))) |
| inject_gp(vcpu); |
| else { |
| vcpu->cr3 = cr3; |
| vcpu->mmu.new_cr3(vcpu); |
| } |
| mutex_unlock(&vcpu->kvm->lock); |
| } |
| EXPORT_SYMBOL_GPL(set_cr3); |
| |
| void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) |
| { |
| if (cr8 & CR8_RESERVED_BITS) { |
| printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8); |
| inject_gp(vcpu); |
| return; |
| } |
| if (irqchip_in_kernel(vcpu->kvm)) |
| kvm_lapic_set_tpr(vcpu, cr8); |
| else |
| vcpu->cr8 = cr8; |
| } |
| EXPORT_SYMBOL_GPL(set_cr8); |
| |
| unsigned long get_cr8(struct kvm_vcpu *vcpu) |
| { |
| if (irqchip_in_kernel(vcpu->kvm)) |
| return kvm_lapic_get_cr8(vcpu); |
| else |
| return vcpu->cr8; |
| } |
| EXPORT_SYMBOL_GPL(get_cr8); |
| |
| /* |
| * List of msr numbers which we expose to userspace through KVM_GET_MSRS |
| * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. |
| * |
| * This list is modified at module load time to reflect the |
| * capabilities of the host cpu. |
| */ |
| static u32 msrs_to_save[] = { |
| MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, |
| MSR_K6_STAR, |
| #ifdef CONFIG_X86_64 |
| MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, |
| #endif |
| MSR_IA32_TIME_STAMP_COUNTER, |
| }; |
| |
| static unsigned num_msrs_to_save; |
| |
| static u32 emulated_msrs[] = { |
| MSR_IA32_MISC_ENABLE, |
| }; |
| |
| #ifdef CONFIG_X86_64 |
| |
| static void set_efer(struct kvm_vcpu *vcpu, u64 efer) |
| { |
| if (efer & EFER_RESERVED_BITS) { |
| printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n", |
| efer); |
| inject_gp(vcpu); |
| return; |
| } |
| |
| if (is_paging(vcpu) |
| && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) { |
| printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n"); |
| inject_gp(vcpu); |
| return; |
| } |
| |
| kvm_x86_ops->set_efer(vcpu, efer); |
| |
| efer &= ~EFER_LMA; |
| efer |= vcpu->shadow_efer & EFER_LMA; |
| |
| vcpu->shadow_efer = efer; |
| } |
| |
| #endif |
| |
| /* |
| * Writes msr value into into the appropriate "register". |
| * Returns 0 on success, non-0 otherwise. |
| * Assumes vcpu_load() was already called. |
| */ |
| int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) |
| { |
| return kvm_x86_ops->set_msr(vcpu, msr_index, data); |
| } |
| |
| /* |
| * Adapt set_msr() to msr_io()'s calling convention |
| */ |
| static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) |
| { |
| return kvm_set_msr(vcpu, index, *data); |
| } |
| |
| |
| int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data) |
| { |
| switch (msr) { |
| #ifdef CONFIG_X86_64 |
| case MSR_EFER: |
| set_efer(vcpu, data); |
| break; |
| #endif |
| case MSR_IA32_MC0_STATUS: |
| pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n", |
| __FUNCTION__, data); |
| break; |
| case MSR_IA32_MCG_STATUS: |
| pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n", |
| __FUNCTION__, data); |
| break; |
| case MSR_IA32_UCODE_REV: |
| case MSR_IA32_UCODE_WRITE: |
| case 0x200 ... 0x2ff: /* MTRRs */ |
| break; |
| case MSR_IA32_APICBASE: |
| kvm_set_apic_base(vcpu, data); |
| break; |
| case MSR_IA32_MISC_ENABLE: |
| vcpu->ia32_misc_enable_msr = data; |
| break; |
| default: |
| pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr); |
| return 1; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_msr_common); |
| |
| |
| /* |
| * Reads an msr value (of 'msr_index') into 'pdata'. |
| * Returns 0 on success, non-0 otherwise. |
| * Assumes vcpu_load() was already called. |
| */ |
| int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) |
| { |
| return kvm_x86_ops->get_msr(vcpu, msr_index, pdata); |
| } |
| |
| int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) |
| { |
| u64 data; |
| |
| switch (msr) { |
| case 0xc0010010: /* SYSCFG */ |
| case 0xc0010015: /* HWCR */ |
| case MSR_IA32_PLATFORM_ID: |
| case MSR_IA32_P5_MC_ADDR: |
| case MSR_IA32_P5_MC_TYPE: |
| case MSR_IA32_MC0_CTL: |
| case MSR_IA32_MCG_STATUS: |
| case MSR_IA32_MCG_CAP: |
| case MSR_IA32_MC0_MISC: |
| case MSR_IA32_MC0_MISC+4: |
| case MSR_IA32_MC0_MISC+8: |
| case MSR_IA32_MC0_MISC+12: |
| case MSR_IA32_MC0_MISC+16: |
| case MSR_IA32_UCODE_REV: |
| case MSR_IA32_PERF_STATUS: |
| case MSR_IA32_EBL_CR_POWERON: |
| /* MTRR registers */ |
| case 0xfe: |
| case 0x200 ... 0x2ff: |
| data = 0; |
| break; |
| case 0xcd: /* fsb frequency */ |
| data = 3; |
| break; |
| case MSR_IA32_APICBASE: |
| data = kvm_get_apic_base(vcpu); |
| break; |
| case MSR_IA32_MISC_ENABLE: |
| data = vcpu->ia32_misc_enable_msr; |
| break; |
| #ifdef CONFIG_X86_64 |
| case MSR_EFER: |
| data = vcpu->shadow_efer; |
| break; |
| #endif |
| default: |
| pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr); |
| return 1; |
| } |
| *pdata = data; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_msr_common); |
| |
| /* |
| * Read or write a bunch of msrs. All parameters are kernel addresses. |
| * |
| * @return number of msrs set successfully. |
| */ |
| static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, |
| struct kvm_msr_entry *entries, |
| int (*do_msr)(struct kvm_vcpu *vcpu, |
| unsigned index, u64 *data)) |
| { |
| int i; |
| |
| vcpu_load(vcpu); |
| |
| for (i = 0; i < msrs->nmsrs; ++i) |
| if (do_msr(vcpu, entries[i].index, &entries[i].data)) |
| break; |
| |
| vcpu_put(vcpu); |
| |
| return i; |
| } |
| |
| /* |
| * Read or write a bunch of msrs. Parameters are user addresses. |
| * |
| * @return number of msrs set successfully. |
| */ |
| static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, |
| int (*do_msr)(struct kvm_vcpu *vcpu, |
| unsigned index, u64 *data), |
| int writeback) |
| { |
| struct kvm_msrs msrs; |
| struct kvm_msr_entry *entries; |
| int r, n; |
| unsigned size; |
| |
| r = -EFAULT; |
| if (copy_from_user(&msrs, user_msrs, sizeof msrs)) |
| goto out; |
| |
| r = -E2BIG; |
| if (msrs.nmsrs >= MAX_IO_MSRS) |
| goto out; |
| |
| r = -ENOMEM; |
| size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; |
| entries = vmalloc(size); |
| if (!entries) |
| goto out; |
| |
| r = -EFAULT; |
| if (copy_from_user(entries, user_msrs->entries, size)) |
| goto out_free; |
| |
| r = n = __msr_io(vcpu, &msrs, entries, do_msr); |
| if (r < 0) |
| goto out_free; |
| |
| r = -EFAULT; |
| if (writeback && copy_to_user(user_msrs->entries, entries, size)) |
| goto out_free; |
| |
| r = n; |
| |
| out_free: |
| vfree(entries); |
| out: |
| return r; |
| } |
| |
| /* |
| * Make sure that a cpu that is being hot-unplugged does not have any vcpus |
| * cached on it. |
| */ |
| void decache_vcpus_on_cpu(int cpu) |
| { |
| struct kvm *vm; |
| struct kvm_vcpu *vcpu; |
| int i; |
| |
| spin_lock(&kvm_lock); |
| list_for_each_entry(vm, &vm_list, vm_list) |
| for (i = 0; i < KVM_MAX_VCPUS; ++i) { |
| vcpu = vm->vcpus[i]; |
| if (!vcpu) |
| continue; |
| /* |
| * If the vcpu is locked, then it is running on some |
| * other cpu and therefore it is not cached on the |
| * cpu in question. |
| * |
| * If it's not locked, check the last cpu it executed |
| * on. |
| */ |
| if (mutex_trylock(&vcpu->mutex)) { |
| if (vcpu->cpu == cpu) { |
| kvm_x86_ops->vcpu_decache(vcpu); |
| vcpu->cpu = -1; |
| } |
| mutex_unlock(&vcpu->mutex); |
| } |
| } |
| spin_unlock(&kvm_lock); |
| } |
| |
| int kvm_dev_ioctl_check_extension(long ext) |
| { |
| int r; |
| |
| switch (ext) { |
| case KVM_CAP_IRQCHIP: |
| case KVM_CAP_HLT: |
| case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: |
| case KVM_CAP_USER_MEMORY: |
| case KVM_CAP_SET_TSS_ADDR: |
| r = 1; |
| break; |
| default: |
| r = 0; |
| break; |
| } |
| return r; |
| |
| } |
| |
| long kvm_arch_dev_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| void __user *argp = (void __user *)arg; |
| long r; |
| |
| switch (ioctl) { |
| case KVM_GET_MSR_INDEX_LIST: { |
| struct kvm_msr_list __user *user_msr_list = argp; |
| struct kvm_msr_list msr_list; |
| unsigned n; |
| |
| r = -EFAULT; |
| if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) |
| goto out; |
| n = msr_list.nmsrs; |
| msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs); |
| if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) |
| goto out; |
| r = -E2BIG; |
| if (n < num_msrs_to_save) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(user_msr_list->indices, &msrs_to_save, |
| num_msrs_to_save * sizeof(u32))) |
| goto out; |
| if (copy_to_user(user_msr_list->indices |
| + num_msrs_to_save * sizeof(u32), |
| &emulated_msrs, |
| ARRAY_SIZE(emulated_msrs) * sizeof(u32))) |
| goto out; |
| r = 0; |
| break; |
| } |
| default: |
| r = -EINVAL; |
| } |
| out: |
| return r; |
| } |
| |
| void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
| { |
| kvm_x86_ops->vcpu_load(vcpu, cpu); |
| } |
| |
| void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) |
| { |
| kvm_x86_ops->vcpu_put(vcpu); |
| kvm_put_guest_fpu(vcpu); |
| } |
| |
| static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu) |
| { |
| u64 efer; |
| int i; |
| struct kvm_cpuid_entry *e, *entry; |
| |
| rdmsrl(MSR_EFER, efer); |
| entry = NULL; |
| for (i = 0; i < vcpu->cpuid_nent; ++i) { |
| e = &vcpu->cpuid_entries[i]; |
| if (e->function == 0x80000001) { |
| entry = e; |
| break; |
| } |
| } |
| if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) { |
| entry->edx &= ~(1 << 20); |
| printk(KERN_INFO "kvm: guest NX capability removed\n"); |
| } |
| } |
| |
| static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu, |
| struct kvm_cpuid *cpuid, |
| struct kvm_cpuid_entry __user *entries) |
| { |
| int r; |
| |
| r = -E2BIG; |
| if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) |
| goto out; |
| r = -EFAULT; |
| if (copy_from_user(&vcpu->cpuid_entries, entries, |
| cpuid->nent * sizeof(struct kvm_cpuid_entry))) |
| goto out; |
| vcpu->cpuid_nent = cpuid->nent; |
| cpuid_fix_nx_cap(vcpu); |
| return 0; |
| |
| out: |
| return r; |
| } |
| |
| static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, |
| struct kvm_lapic_state *s) |
| { |
| vcpu_load(vcpu); |
| memcpy(s->regs, vcpu->apic->regs, sizeof *s); |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, |
| struct kvm_lapic_state *s) |
| { |
| vcpu_load(vcpu); |
| memcpy(vcpu->apic->regs, s->regs, sizeof *s); |
| kvm_apic_post_state_restore(vcpu); |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| long kvm_arch_vcpu_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| struct kvm_vcpu *vcpu = filp->private_data; |
| void __user *argp = (void __user *)arg; |
| int r; |
| |
| switch (ioctl) { |
| case KVM_GET_LAPIC: { |
| struct kvm_lapic_state lapic; |
| |
| memset(&lapic, 0, sizeof lapic); |
| r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic); |
| if (r) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(argp, &lapic, sizeof lapic)) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_SET_LAPIC: { |
| struct kvm_lapic_state lapic; |
| |
| r = -EFAULT; |
| if (copy_from_user(&lapic, argp, sizeof lapic)) |
| goto out; |
| r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);; |
| if (r) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_SET_CPUID: { |
| struct kvm_cpuid __user *cpuid_arg = argp; |
| struct kvm_cpuid cpuid; |
| |
| r = -EFAULT; |
| if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) |
| goto out; |
| r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); |
| if (r) |
| goto out; |
| break; |
| } |
| case KVM_GET_MSRS: |
| r = msr_io(vcpu, argp, kvm_get_msr, 1); |
| break; |
| case KVM_SET_MSRS: |
| r = msr_io(vcpu, argp, do_set_msr, 0); |
| break; |
| default: |
| r = -EINVAL; |
| } |
| out: |
| return r; |
| } |
| |
| static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) |
| { |
| int ret; |
| |
| if (addr > (unsigned int)(-3 * PAGE_SIZE)) |
| return -1; |
| ret = kvm_x86_ops->set_tss_addr(kvm, addr); |
| return ret; |
| } |
| |
| static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, |
| u32 kvm_nr_mmu_pages) |
| { |
| if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) |
| return -EINVAL; |
| |
| mutex_lock(&kvm->lock); |
| |
| kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); |
| kvm->n_requested_mmu_pages = kvm_nr_mmu_pages; |
| |
| mutex_unlock(&kvm->lock); |
| return 0; |
| } |
| |
| static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) |
| { |
| return kvm->n_alloc_mmu_pages; |
| } |
| |
| /* |
| * Set a new alias region. Aliases map a portion of physical memory into |
| * another portion. This is useful for memory windows, for example the PC |
| * VGA region. |
| */ |
| static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm, |
| struct kvm_memory_alias *alias) |
| { |
| int r, n; |
| struct kvm_mem_alias *p; |
| |
| r = -EINVAL; |
| /* General sanity checks */ |
| if (alias->memory_size & (PAGE_SIZE - 1)) |
| goto out; |
| if (alias->guest_phys_addr & (PAGE_SIZE - 1)) |
| goto out; |
| if (alias->slot >= KVM_ALIAS_SLOTS) |
| goto out; |
| if (alias->guest_phys_addr + alias->memory_size |
| < alias->guest_phys_addr) |
| goto out; |
| if (alias->target_phys_addr + alias->memory_size |
| < alias->target_phys_addr) |
| goto out; |
| |
| mutex_lock(&kvm->lock); |
| |
| p = &kvm->aliases[alias->slot]; |
| p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT; |
| p->npages = alias->memory_size >> PAGE_SHIFT; |
| p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT; |
| |
| for (n = KVM_ALIAS_SLOTS; n > 0; --n) |
| if (kvm->aliases[n - 1].npages) |
| break; |
| kvm->naliases = n; |
| |
| kvm_mmu_zap_all(kvm); |
| |
| mutex_unlock(&kvm->lock); |
| |
| return 0; |
| |
| out: |
| return r; |
| } |
| |
| static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) |
| { |
| int r; |
| |
| r = 0; |
| switch (chip->chip_id) { |
| case KVM_IRQCHIP_PIC_MASTER: |
| memcpy(&chip->chip.pic, |
| &pic_irqchip(kvm)->pics[0], |
| sizeof(struct kvm_pic_state)); |
| break; |
| case KVM_IRQCHIP_PIC_SLAVE: |
| memcpy(&chip->chip.pic, |
| &pic_irqchip(kvm)->pics[1], |
| sizeof(struct kvm_pic_state)); |
| break; |
| case KVM_IRQCHIP_IOAPIC: |
| memcpy(&chip->chip.ioapic, |
| ioapic_irqchip(kvm), |
| sizeof(struct kvm_ioapic_state)); |
| break; |
| default: |
| r = -EINVAL; |
| break; |
| } |
| return r; |
| } |
| |
| static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) |
| { |
| int r; |
| |
| r = 0; |
| switch (chip->chip_id) { |
| case KVM_IRQCHIP_PIC_MASTER: |
| memcpy(&pic_irqchip(kvm)->pics[0], |
| &chip->chip.pic, |
| sizeof(struct kvm_pic_state)); |
| break; |
| case KVM_IRQCHIP_PIC_SLAVE: |
| memcpy(&pic_irqchip(kvm)->pics[1], |
| &chip->chip.pic, |
| sizeof(struct kvm_pic_state)); |
| break; |
| case KVM_IRQCHIP_IOAPIC: |
| memcpy(ioapic_irqchip(kvm), |
| &chip->chip.ioapic, |
| sizeof(struct kvm_ioapic_state)); |
| break; |
| default: |
| r = -EINVAL; |
| break; |
| } |
| kvm_pic_update_irq(pic_irqchip(kvm)); |
| return r; |
| } |
| |
| /* |
| * Get (and clear) the dirty memory log for a memory slot. |
| */ |
| int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, |
| struct kvm_dirty_log *log) |
| { |
| int r; |
| int n; |
| struct kvm_memory_slot *memslot; |
| int is_dirty = 0; |
| |
| mutex_lock(&kvm->lock); |
| |
| r = kvm_get_dirty_log(kvm, log, &is_dirty); |
| if (r) |
| goto out; |
| |
| /* If nothing is dirty, don't bother messing with page tables. */ |
| if (is_dirty) { |
| kvm_mmu_slot_remove_write_access(kvm, log->slot); |
| kvm_flush_remote_tlbs(kvm); |
| memslot = &kvm->memslots[log->slot]; |
| n = ALIGN(memslot->npages, BITS_PER_LONG) / 8; |
| memset(memslot->dirty_bitmap, 0, n); |
| } |
| r = 0; |
| out: |
| mutex_unlock(&kvm->lock); |
| return r; |
| } |
| |
| long kvm_arch_vm_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| struct kvm *kvm = filp->private_data; |
| void __user *argp = (void __user *)arg; |
| int r = -EINVAL; |
| |
| switch (ioctl) { |
| case KVM_SET_TSS_ADDR: |
| r = kvm_vm_ioctl_set_tss_addr(kvm, arg); |
| if (r < 0) |
| goto out; |
| break; |
| case KVM_SET_MEMORY_REGION: { |
| struct kvm_memory_region kvm_mem; |
| struct kvm_userspace_memory_region kvm_userspace_mem; |
| |
| r = -EFAULT; |
| if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem)) |
| goto out; |
| kvm_userspace_mem.slot = kvm_mem.slot; |
| kvm_userspace_mem.flags = kvm_mem.flags; |
| kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr; |
| kvm_userspace_mem.memory_size = kvm_mem.memory_size; |
| r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0); |
| if (r) |
| goto out; |
| break; |
| } |
| case KVM_SET_NR_MMU_PAGES: |
| r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); |
| if (r) |
| goto out; |
| break; |
| case KVM_GET_NR_MMU_PAGES: |
| r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); |
| break; |
| case KVM_SET_MEMORY_ALIAS: { |
| struct kvm_memory_alias alias; |
| |
| r = -EFAULT; |
| if (copy_from_user(&alias, argp, sizeof alias)) |
| goto out; |
| r = kvm_vm_ioctl_set_memory_alias(kvm, &alias); |
| if (r) |
| goto out; |
| break; |
| } |
| case KVM_CREATE_IRQCHIP: |
| r = -ENOMEM; |
| kvm->vpic = kvm_create_pic(kvm); |
| if (kvm->vpic) { |
| r = kvm_ioapic_init(kvm); |
| if (r) { |
| kfree(kvm->vpic); |
| kvm->vpic = NULL; |
| goto out; |
| } |
| } else |
| goto out; |
| break; |
| case KVM_IRQ_LINE: { |
| struct kvm_irq_level irq_event; |
| |
| r = -EFAULT; |
| if (copy_from_user(&irq_event, argp, sizeof irq_event)) |
| goto out; |
| if (irqchip_in_kernel(kvm)) { |
| mutex_lock(&kvm->lock); |
| if (irq_event.irq < 16) |
| kvm_pic_set_irq(pic_irqchip(kvm), |
| irq_event.irq, |
| irq_event.level); |
| kvm_ioapic_set_irq(kvm->vioapic, |
| irq_event.irq, |
| irq_event.level); |
| mutex_unlock(&kvm->lock); |
| r = 0; |
| } |
| break; |
| } |
| case KVM_GET_IRQCHIP: { |
| /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ |
| struct kvm_irqchip chip; |
| |
| r = -EFAULT; |
| if (copy_from_user(&chip, argp, sizeof chip)) |
| goto out; |
| r = -ENXIO; |
| if (!irqchip_in_kernel(kvm)) |
| goto out; |
| r = kvm_vm_ioctl_get_irqchip(kvm, &chip); |
| if (r) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(argp, &chip, sizeof chip)) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_SET_IRQCHIP: { |
| /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ |
| struct kvm_irqchip chip; |
| |
| r = -EFAULT; |
| if (copy_from_user(&chip, argp, sizeof chip)) |
| goto out; |
| r = -ENXIO; |
| if (!irqchip_in_kernel(kvm)) |
| goto out; |
| r = kvm_vm_ioctl_set_irqchip(kvm, &chip); |
| if (r) |
| goto out; |
| r = 0; |
| break; |
| } |
| default: |
| ; |
| } |
| out: |
| return r; |
| } |
| |
| static void kvm_init_msr_list(void) |
| { |
| u32 dummy[2]; |
| unsigned i, j; |
| |
| for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) { |
| if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) |
| continue; |
| if (j < i) |
| msrs_to_save[j] = msrs_to_save[i]; |
| j++; |
| } |
| num_msrs_to_save = j; |
| } |
| |
| /* |
| * Only apic need an MMIO device hook, so shortcut now.. |
| */ |
| static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu, |
| gpa_t addr) |
| { |
| struct kvm_io_device *dev; |
| |
| if (vcpu->apic) { |
| dev = &vcpu->apic->dev; |
| if (dev->in_range(dev, addr)) |
| return dev; |
| } |
| return NULL; |
| } |
| |
| |
| static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu, |
| gpa_t addr) |
| { |
| struct kvm_io_device *dev; |
| |
| dev = vcpu_find_pervcpu_dev(vcpu, addr); |
| if (dev == NULL) |
| dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr); |
| return dev; |
| } |
| |
| int emulator_read_std(unsigned long addr, |
| void *val, |
| unsigned int bytes, |
| struct kvm_vcpu *vcpu) |
| { |
| void *data = val; |
| |
| while (bytes) { |
| gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr); |
| unsigned offset = addr & (PAGE_SIZE-1); |
| unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset); |
| int ret; |
| |
| if (gpa == UNMAPPED_GVA) |
| return X86EMUL_PROPAGATE_FAULT; |
| ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy); |
| if (ret < 0) |
| return X86EMUL_UNHANDLEABLE; |
| |
| bytes -= tocopy; |
| data += tocopy; |
| addr += tocopy; |
| } |
| |
| return X86EMUL_CONTINUE; |
| } |
| EXPORT_SYMBOL_GPL(emulator_read_std); |
| |
| static int emulator_read_emulated(unsigned long addr, |
| void *val, |
| unsigned int bytes, |
| struct kvm_vcpu *vcpu) |
| { |
| struct kvm_io_device *mmio_dev; |
| gpa_t gpa; |
| |
| if (vcpu->mmio_read_completed) { |
| memcpy(val, vcpu->mmio_data, bytes); |
| vcpu->mmio_read_completed = 0; |
| return X86EMUL_CONTINUE; |
| } |
| |
| gpa = vcpu->mmu.gva_to_gpa(vcpu, addr); |
| |
| /* For APIC access vmexit */ |
| if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) |
| goto mmio; |
| |
| if (emulator_read_std(addr, val, bytes, vcpu) |
| == X86EMUL_CONTINUE) |
| return X86EMUL_CONTINUE; |
| if (gpa == UNMAPPED_GVA) |
| return X86EMUL_PROPAGATE_FAULT; |
| |
| mmio: |
| /* |
| * Is this MMIO handled locally? |
| */ |
| mmio_dev = vcpu_find_mmio_dev(vcpu, gpa); |
| if (mmio_dev) { |
| kvm_iodevice_read(mmio_dev, gpa, bytes, val); |
| return X86EMUL_CONTINUE; |
| } |
| |
| vcpu->mmio_needed = 1; |
| vcpu->mmio_phys_addr = gpa; |
| vcpu->mmio_size = bytes; |
| vcpu->mmio_is_write = 0; |
| |
| return X86EMUL_UNHANDLEABLE; |
| } |
| |
| static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, |
| const void *val, int bytes) |
| { |
| int ret; |
| |
| ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes); |
| if (ret < 0) |
| return 0; |
| kvm_mmu_pte_write(vcpu, gpa, val, bytes); |
| return 1; |
| } |
| |
| static int emulator_write_emulated_onepage(unsigned long addr, |
| const void *val, |
| unsigned int bytes, |
| struct kvm_vcpu *vcpu) |
| { |
| struct kvm_io_device *mmio_dev; |
| gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr); |
| |
| if (gpa == UNMAPPED_GVA) { |
| kvm_x86_ops->inject_page_fault(vcpu, addr, 2); |
| return X86EMUL_PROPAGATE_FAULT; |
| } |
| |
| /* For APIC access vmexit */ |
| if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) |
| goto mmio; |
| |
| if (emulator_write_phys(vcpu, gpa, val, bytes)) |
| return X86EMUL_CONTINUE; |
| |
| mmio: |
| /* |
| * Is this MMIO handled locally? |
| */ |
| mmio_dev = vcpu_find_mmio_dev(vcpu, gpa); |
| if (mmio_dev) { |
| kvm_iodevice_write(mmio_dev, gpa, bytes, val); |
| return X86EMUL_CONTINUE; |
| } |
| |
| vcpu->mmio_needed = 1; |
| vcpu->mmio_phys_addr = gpa; |
| vcpu->mmio_size = bytes; |
| vcpu->mmio_is_write = 1; |
| memcpy(vcpu->mmio_data, val, bytes); |
| |
| return X86EMUL_CONTINUE; |
| } |
| |
| int emulator_write_emulated(unsigned long addr, |
| const void *val, |
| unsigned int bytes, |
| struct kvm_vcpu *vcpu) |
| { |
| /* Crossing a page boundary? */ |
| if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { |
| int rc, now; |
| |
| now = -addr & ~PAGE_MASK; |
| rc = emulator_write_emulated_onepage(addr, val, now, vcpu); |
| if (rc != X86EMUL_CONTINUE) |
| return rc; |
| addr += now; |
| val += now; |
| bytes -= now; |
| } |
| return emulator_write_emulated_onepage(addr, val, bytes, vcpu); |
| } |
| EXPORT_SYMBOL_GPL(emulator_write_emulated); |
| |
| static int emulator_cmpxchg_emulated(unsigned long addr, |
| const void *old, |
| const void *new, |
| unsigned int bytes, |
| struct kvm_vcpu *vcpu) |
| { |
| static int reported; |
| |
| if (!reported) { |
| reported = 1; |
| printk(KERN_WARNING "kvm: emulating exchange as write\n"); |
| } |
| return emulator_write_emulated(addr, new, bytes, vcpu); |
| } |
| |
| static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) |
| { |
| return kvm_x86_ops->get_segment_base(vcpu, seg); |
| } |
| |
| int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address) |
| { |
| return X86EMUL_CONTINUE; |
| } |
| |
| int emulate_clts(struct kvm_vcpu *vcpu) |
| { |
| kvm_x86_ops->set_cr0(vcpu, vcpu->cr0 & ~X86_CR0_TS); |
| return X86EMUL_CONTINUE; |
| } |
| |
| int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest) |
| { |
| struct kvm_vcpu *vcpu = ctxt->vcpu; |
| |
| switch (dr) { |
| case 0 ... 3: |
| *dest = kvm_x86_ops->get_dr(vcpu, dr); |
| return X86EMUL_CONTINUE; |
| default: |
| pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr); |
| return X86EMUL_UNHANDLEABLE; |
| } |
| } |
| |
| int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value) |
| { |
| unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U; |
| int exception; |
| |
| kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception); |
| if (exception) { |
| /* FIXME: better handling */ |
| return X86EMUL_UNHANDLEABLE; |
| } |
| return X86EMUL_CONTINUE; |
| } |
| |
| void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context) |
| { |
| static int reported; |
| u8 opcodes[4]; |
| unsigned long rip = vcpu->rip; |
| unsigned long rip_linear; |
| |
| rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS); |
| |
| if (reported) |
| return; |
| |
| emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu); |
| |
| printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n", |
| context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]); |
| reported = 1; |
| } |
| EXPORT_SYMBOL_GPL(kvm_report_emulation_failure); |
| |
| struct x86_emulate_ops emulate_ops = { |
| .read_std = emulator_read_std, |
| .read_emulated = emulator_read_emulated, |
| .write_emulated = emulator_write_emulated, |
| .cmpxchg_emulated = emulator_cmpxchg_emulated, |
| }; |
| |
| int emulate_instruction(struct kvm_vcpu *vcpu, |
| struct kvm_run *run, |
| unsigned long cr2, |
| u16 error_code, |
| int no_decode) |
| { |
| int r; |
| |
| vcpu->mmio_fault_cr2 = cr2; |
| kvm_x86_ops->cache_regs(vcpu); |
| |
| vcpu->mmio_is_write = 0; |
| vcpu->pio.string = 0; |
| |
| if (!no_decode) { |
| int cs_db, cs_l; |
| kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); |
| |
| vcpu->emulate_ctxt.vcpu = vcpu; |
| vcpu->emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu); |
| vcpu->emulate_ctxt.cr2 = cr2; |
| vcpu->emulate_ctxt.mode = |
| (vcpu->emulate_ctxt.eflags & X86_EFLAGS_VM) |
| ? X86EMUL_MODE_REAL : cs_l |
| ? X86EMUL_MODE_PROT64 : cs_db |
| ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16; |
| |
| if (vcpu->emulate_ctxt.mode == X86EMUL_MODE_PROT64) { |
| vcpu->emulate_ctxt.cs_base = 0; |
| vcpu->emulate_ctxt.ds_base = 0; |
| vcpu->emulate_ctxt.es_base = 0; |
| vcpu->emulate_ctxt.ss_base = 0; |
| } else { |
| vcpu->emulate_ctxt.cs_base = |
| get_segment_base(vcpu, VCPU_SREG_CS); |
| vcpu->emulate_ctxt.ds_base = |
| get_segment_base(vcpu, VCPU_SREG_DS); |
| vcpu->emulate_ctxt.es_base = |
| get_segment_base(vcpu, VCPU_SREG_ES); |
| vcpu->emulate_ctxt.ss_base = |
| get_segment_base(vcpu, VCPU_SREG_SS); |
| } |
| |
| vcpu->emulate_ctxt.gs_base = |
| get_segment_base(vcpu, VCPU_SREG_GS); |
| vcpu->emulate_ctxt.fs_base = |
| get_segment_base(vcpu, VCPU_SREG_FS); |
| |
| r = x86_decode_insn(&vcpu->emulate_ctxt, &emulate_ops); |
| ++vcpu->stat.insn_emulation; |
| if (r) { |
| ++vcpu->stat.insn_emulation_fail; |
| if (kvm_mmu_unprotect_page_virt(vcpu, cr2)) |
| return EMULATE_DONE; |
| return EMULATE_FAIL; |
| } |
| } |
| |
| r = x86_emulate_insn(&vcpu->emulate_ctxt, &emulate_ops); |
| |
| if (vcpu->pio.string) |
| return EMULATE_DO_MMIO; |
| |
| if ((r || vcpu->mmio_is_write) && run) { |
| run->exit_reason = KVM_EXIT_MMIO; |
| run->mmio.phys_addr = vcpu->mmio_phys_addr; |
| memcpy(run->mmio.data, vcpu->mmio_data, 8); |
| run->mmio.len = vcpu->mmio_size; |
| run->mmio.is_write = vcpu->mmio_is_write; |
| } |
| |
| if (r) { |
| if (kvm_mmu_unprotect_page_virt(vcpu, cr2)) |
| return EMULATE_DONE; |
| if (!vcpu->mmio_needed) { |
| kvm_report_emulation_failure(vcpu, "mmio"); |
| return EMULATE_FAIL; |
| } |
| return EMULATE_DO_MMIO; |
| } |
| |
| kvm_x86_ops->decache_regs(vcpu); |
| kvm_x86_ops->set_rflags(vcpu, vcpu->emulate_ctxt.eflags); |
| |
| if (vcpu->mmio_is_write) { |
| vcpu->mmio_needed = 0; |
| return EMULATE_DO_MMIO; |
| } |
| |
| return EMULATE_DONE; |
| } |
| EXPORT_SYMBOL_GPL(emulate_instruction); |
| |
| static void free_pio_guest_pages(struct kvm_vcpu *vcpu) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i) |
| if (vcpu->pio.guest_pages[i]) { |
| kvm_release_page_dirty(vcpu->pio.guest_pages[i]); |
| vcpu->pio.guest_pages[i] = NULL; |
| } |
| } |
| |
| static int pio_copy_data(struct kvm_vcpu *vcpu) |
| { |
| void *p = vcpu->pio_data; |
| void *q; |
| unsigned bytes; |
| int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1; |
| |
| q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE, |
| PAGE_KERNEL); |
| if (!q) { |
| free_pio_guest_pages(vcpu); |
| return -ENOMEM; |
| } |
| q += vcpu->pio.guest_page_offset; |
| bytes = vcpu->pio.size * vcpu->pio.cur_count; |
| if (vcpu->pio.in) |
| memcpy(q, p, bytes); |
| else |
| memcpy(p, q, bytes); |
| q -= vcpu->pio.guest_page_offset; |
| vunmap(q); |
| free_pio_guest_pages(vcpu); |
| return 0; |
| } |
| |
| int complete_pio(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_pio_request *io = &vcpu->pio; |
| long delta; |
| int r; |
| |
| kvm_x86_ops->cache_regs(vcpu); |
| |
| if (!io->string) { |
| if (io->in) |
| memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data, |
| io->size); |
| } else { |
| if (io->in) { |
| r = pio_copy_data(vcpu); |
| if (r) { |
| kvm_x86_ops->cache_regs(vcpu); |
| return r; |
| } |
| } |
| |
| delta = 1; |
| if (io->rep) { |
| delta *= io->cur_count; |
| /* |
| * The size of the register should really depend on |
| * current address size. |
| */ |
| vcpu->regs[VCPU_REGS_RCX] -= delta; |
| } |
| if (io->down) |
| delta = -delta; |
| delta *= io->size; |
| if (io->in) |
| vcpu->regs[VCPU_REGS_RDI] += delta; |
| else |
| vcpu->regs[VCPU_REGS_RSI] += delta; |
| } |
| |
| kvm_x86_ops->decache_regs(vcpu); |
| |
| io->count -= io->cur_count; |
| io->cur_count = 0; |
| |
| return 0; |
| } |
| |
| static void kernel_pio(struct kvm_io_device *pio_dev, |
| struct kvm_vcpu *vcpu, |
| void *pd) |
| { |
| /* TODO: String I/O for in kernel device */ |
| |
| mutex_lock(&vcpu->kvm->lock); |
| if (vcpu->pio.in) |
| kvm_iodevice_read(pio_dev, vcpu->pio.port, |
| vcpu->pio.size, |
| pd); |
| else |
| kvm_iodevice_write(pio_dev, vcpu->pio.port, |
| vcpu->pio.size, |
| pd); |
| mutex_unlock(&vcpu->kvm->lock); |
| } |
| |
| static void pio_string_write(struct kvm_io_device *pio_dev, |
| struct kvm_vcpu *vcpu) |
| { |
| struct kvm_pio_request *io = &vcpu->pio; |
| void *pd = vcpu->pio_data; |
| int i; |
| |
| mutex_lock(&vcpu->kvm->lock); |
| for (i = 0; i < io->cur_count; i++) { |
| kvm_iodevice_write(pio_dev, io->port, |
| io->size, |
| pd); |
| pd += io->size; |
| } |
| mutex_unlock(&vcpu->kvm->lock); |
| } |
| |
| static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu, |
| gpa_t addr) |
| { |
| return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr); |
| } |
| |
| int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in, |
| int size, unsigned port) |
| { |
| struct kvm_io_device *pio_dev; |
| |
| vcpu->run->exit_reason = KVM_EXIT_IO; |
| vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; |
| vcpu->run->io.size = vcpu->pio.size = size; |
| vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; |
| vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1; |
| vcpu->run->io.port = vcpu->pio.port = port; |
| vcpu->pio.in = in; |
| vcpu->pio.string = 0; |
| vcpu->pio.down = 0; |
| vcpu->pio.guest_page_offset = 0; |
| vcpu->pio.rep = 0; |
| |
| kvm_x86_ops->cache_regs(vcpu); |
| memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4); |
| kvm_x86_ops->decache_regs(vcpu); |
| |
| kvm_x86_ops->skip_emulated_instruction(vcpu); |
| |
| pio_dev = vcpu_find_pio_dev(vcpu, port); |
| if (pio_dev) { |
| kernel_pio(pio_dev, vcpu, vcpu->pio_data); |
| complete_pio(vcpu); |
| return 1; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_pio); |
| |
| int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in, |
| int size, unsigned long count, int down, |
| gva_t address, int rep, unsigned port) |
| { |
| unsigned now, in_page; |
| int i, ret = 0; |
| int nr_pages = 1; |
| struct page *page; |
| struct kvm_io_device *pio_dev; |
| |
| vcpu->run->exit_reason = KVM_EXIT_IO; |
| vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; |
| vcpu->run->io.size = vcpu->pio.size = size; |
| vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; |
| vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count; |
| vcpu->run->io.port = vcpu->pio.port = port; |
| vcpu->pio.in = in; |
| vcpu->pio.string = 1; |
| vcpu->pio.down = down; |
| vcpu->pio.guest_page_offset = offset_in_page(address); |
| vcpu->pio.rep = rep; |
| |
| if (!count) { |
| kvm_x86_ops->skip_emulated_instruction(vcpu); |
| return 1; |
| } |
| |
| if (!down) |
| in_page = PAGE_SIZE - offset_in_page(address); |
| else |
| in_page = offset_in_page(address) + size; |
| now = min(count, (unsigned long)in_page / size); |
| if (!now) { |
| /* |
| * String I/O straddles page boundary. Pin two guest pages |
| * so that we satisfy atomicity constraints. Do just one |
| * transaction to avoid complexity. |
| */ |
| nr_pages = 2; |
| now = 1; |
| } |
| if (down) { |
| /* |
| * String I/O in reverse. Yuck. Kill the guest, fix later. |
| */ |
| pr_unimpl(vcpu, "guest string pio down\n"); |
| inject_gp(vcpu); |
| return 1; |
| } |
| vcpu->run->io.count = now; |
| vcpu->pio.cur_count = now; |
| |
| if (vcpu->pio.cur_count == vcpu->pio.count) |
| kvm_x86_ops->skip_emulated_instruction(vcpu); |
| |
| for (i = 0; i < nr_pages; ++i) { |
| mutex_lock(&vcpu->kvm->lock); |
| page = gva_to_page(vcpu, address + i * PAGE_SIZE); |
| vcpu->pio.guest_pages[i] = page; |
| mutex_unlock(&vcpu->kvm->lock); |
| if (!page) { |
| inject_gp(vcpu); |
| free_pio_guest_pages(vcpu); |
| return 1; |
| } |
| } |
| |
| pio_dev = vcpu_find_pio_dev(vcpu, port); |
| if (!vcpu->pio.in) { |
| /* string PIO write */ |
| ret = pio_copy_data(vcpu); |
| if (ret >= 0 && pio_dev) { |
| pio_string_write(pio_dev, vcpu); |
| complete_pio(vcpu); |
| if (vcpu->pio.count == 0) |
| ret = 1; |
| } |
| } else if (pio_dev) |
| pr_unimpl(vcpu, "no string pio read support yet, " |
| "port %x size %d count %ld\n", |
| port, size, count); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_pio_string); |
| |
| int kvm_arch_init(void *opaque) |
| { |
| int r; |
| struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque; |
| |
| r = kvm_mmu_module_init(); |
| if (r) |
| goto out_fail; |
| |
| kvm_init_msr_list(); |
| |
| if (kvm_x86_ops) { |
| printk(KERN_ERR "kvm: already loaded the other module\n"); |
| r = -EEXIST; |
| goto out; |
| } |
| |
| if (!ops->cpu_has_kvm_support()) { |
| printk(KERN_ERR "kvm: no hardware support\n"); |
| r = -EOPNOTSUPP; |
| goto out; |
| } |
| if (ops->disabled_by_bios()) { |
| printk(KERN_ERR "kvm: disabled by bios\n"); |
| r = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| kvm_x86_ops = ops; |
| kvm_mmu_set_nonpresent_ptes(0ull, 0ull); |
| return 0; |
| |
| out: |
| kvm_mmu_module_exit(); |
| out_fail: |
| return r; |
| } |
| |
| void kvm_arch_exit(void) |
| { |
| kvm_x86_ops = NULL; |
| kvm_mmu_module_exit(); |
| } |
| |
| int kvm_emulate_halt(struct kvm_vcpu *vcpu) |
| { |
| ++vcpu->stat.halt_exits; |
| if (irqchip_in_kernel(vcpu->kvm)) { |
| vcpu->mp_state = VCPU_MP_STATE_HALTED; |
| kvm_vcpu_block(vcpu); |
| if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE) |
| return -EINTR; |
| return 1; |
| } else { |
| vcpu->run->exit_reason = KVM_EXIT_HLT; |
| return 0; |
| } |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_halt); |
| |
| int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) |
| { |
| unsigned long nr, a0, a1, a2, a3, ret; |
| |
| kvm_x86_ops->cache_regs(vcpu); |
| |
| nr = vcpu->regs[VCPU_REGS_RAX]; |
| a0 = vcpu->regs[VCPU_REGS_RBX]; |
| a1 = vcpu->regs[VCPU_REGS_RCX]; |
| a2 = vcpu->regs[VCPU_REGS_RDX]; |
| a3 = vcpu->regs[VCPU_REGS_RSI]; |
| |
| if (!is_long_mode(vcpu)) { |
| nr &= 0xFFFFFFFF; |
| a0 &= 0xFFFFFFFF; |
| a1 &= 0xFFFFFFFF; |
| a2 &= 0xFFFFFFFF; |
| a3 &= 0xFFFFFFFF; |
| } |
| |
| switch (nr) { |
| default: |
| ret = -KVM_ENOSYS; |
| break; |
| } |
| vcpu->regs[VCPU_REGS_RAX] = ret; |
| kvm_x86_ops->decache_regs(vcpu); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); |
| |
| int kvm_fix_hypercall(struct kvm_vcpu *vcpu) |
| { |
| char instruction[3]; |
| int ret = 0; |
| |
| mutex_lock(&vcpu->kvm->lock); |
| |
| /* |
| * Blow out the MMU to ensure that no other VCPU has an active mapping |
| * to ensure that the updated hypercall appears atomically across all |
| * VCPUs. |
| */ |
| kvm_mmu_zap_all(vcpu->kvm); |
| |
| kvm_x86_ops->cache_regs(vcpu); |
| kvm_x86_ops->patch_hypercall(vcpu, instruction); |
| if (emulator_write_emulated(vcpu->rip, instruction, 3, vcpu) |
| != X86EMUL_CONTINUE) |
| ret = -EFAULT; |
| |
| mutex_unlock(&vcpu->kvm->lock); |
| |
| return ret; |
| } |
| |
| static u64 mk_cr_64(u64 curr_cr, u32 new_val) |
| { |
| return (curr_cr & ~((1ULL << 32) - 1)) | new_val; |
| } |
| |
| void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base) |
| { |
| struct descriptor_table dt = { limit, base }; |
| |
| kvm_x86_ops->set_gdt(vcpu, &dt); |
| } |
| |
| void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base) |
| { |
| struct descriptor_table dt = { limit, base }; |
| |
| kvm_x86_ops->set_idt(vcpu, &dt); |
| } |
| |
| void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw, |
| unsigned long *rflags) |
| { |
| lmsw(vcpu, msw); |
| *rflags = kvm_x86_ops->get_rflags(vcpu); |
| } |
| |
| unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr) |
| { |
| kvm_x86_ops->decache_cr4_guest_bits(vcpu); |
| switch (cr) { |
| case 0: |
| return vcpu->cr0; |
| case 2: |
| return vcpu->cr2; |
| case 3: |
| return vcpu->cr3; |
| case 4: |
| return vcpu->cr4; |
| default: |
| vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr); |
| return 0; |
| } |
| } |
| |
| void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val, |
| unsigned long *rflags) |
| { |
| switch (cr) { |
| case 0: |
| set_cr0(vcpu, mk_cr_64(vcpu->cr0, val)); |
| *rflags = kvm_x86_ops->get_rflags(vcpu); |
| break; |
| case 2: |
| vcpu->cr2 = val; |
| break; |
| case 3: |
| set_cr3(vcpu, val); |
| break; |
| case 4: |
| set_cr4(vcpu, mk_cr_64(vcpu->cr4, val)); |
| break; |
| default: |
| vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr); |
| } |
| } |
| |
| void kvm_emulate_cpuid(struct kvm_vcpu *vcpu) |
| { |
| int i; |
| u32 function; |
| struct kvm_cpuid_entry *e, *best; |
| |
| kvm_x86_ops->cache_regs(vcpu); |
| function = vcpu->regs[VCPU_REGS_RAX]; |
| vcpu->regs[VCPU_REGS_RAX] = 0; |
| vcpu->regs[VCPU_REGS_RBX] = 0; |
| vcpu->regs[VCPU_REGS_RCX] = 0; |
| vcpu->regs[VCPU_REGS_RDX] = 0; |
| best = NULL; |
| for (i = 0; i < vcpu->cpuid_nent; ++i) { |
| e = &vcpu->cpuid_entries[i]; |
| if (e->function == function) { |
| best = e; |
| break; |
| } |
| /* |
| * Both basic or both extended? |
| */ |
| if (((e->function ^ function) & 0x80000000) == 0) |
| if (!best || e->function > best->function) |
| best = e; |
| } |
| if (best) { |
| vcpu->regs[VCPU_REGS_RAX] = best->eax; |
| vcpu->regs[VCPU_REGS_RBX] = best->ebx; |
| vcpu->regs[VCPU_REGS_RCX] = best->ecx; |
| vcpu->regs[VCPU_REGS_RDX] = best->edx; |
| } |
| kvm_x86_ops->decache_regs(vcpu); |
| kvm_x86_ops->skip_emulated_instruction(vcpu); |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_cpuid); |
| |
| /* |
| * Check if userspace requested an interrupt window, and that the |
| * interrupt window is open. |
| * |
| * No need to exit to userspace if we already have an interrupt queued. |
| */ |
| static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu, |
| struct kvm_run *kvm_run) |
| { |
| return (!vcpu->irq_summary && |
| kvm_run->request_interrupt_window && |
| vcpu->interrupt_window_open && |
| (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF)); |
| } |
| |
| static void post_kvm_run_save(struct kvm_vcpu *vcpu, |
| struct kvm_run *kvm_run) |
| { |
| kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0; |
| kvm_run->cr8 = get_cr8(vcpu); |
| kvm_run->apic_base = kvm_get_apic_base(vcpu); |
| if (irqchip_in_kernel(vcpu->kvm)) |
| kvm_run->ready_for_interrupt_injection = 1; |
| else |
| kvm_run->ready_for_interrupt_injection = |
| (vcpu->interrupt_window_open && |
| vcpu->irq_summary == 0); |
| } |
| |
| static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| int r; |
| |
| if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) { |
| pr_debug("vcpu %d received sipi with vector # %x\n", |
| vcpu->vcpu_id, vcpu->sipi_vector); |
| kvm_lapic_reset(vcpu); |
| r = kvm_x86_ops->vcpu_reset(vcpu); |
| if (r) |
| return r; |
| vcpu->mp_state = VCPU_MP_STATE_RUNNABLE; |
| } |
| |
| preempted: |
| if (vcpu->guest_debug.enabled) |
| kvm_x86_ops->guest_debug_pre(vcpu); |
| |
| again: |
| r = kvm_mmu_reload(vcpu); |
| if (unlikely(r)) |
| goto out; |
| |
| kvm_inject_pending_timer_irqs(vcpu); |
| |
| preempt_disable(); |
| |
| kvm_x86_ops->prepare_guest_switch(vcpu); |
| kvm_load_guest_fpu(vcpu); |
| |
| local_irq_disable(); |
| |
| if (signal_pending(current)) { |
| local_irq_enable(); |
| preempt_enable(); |
| r = -EINTR; |
| kvm_run->exit_reason = KVM_EXIT_INTR; |
| ++vcpu->stat.signal_exits; |
| goto out; |
| } |
| |
| if (irqchip_in_kernel(vcpu->kvm)) |
| kvm_x86_ops->inject_pending_irq(vcpu); |
| else if (!vcpu->mmio_read_completed) |
| kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run); |
| |
| vcpu->guest_mode = 1; |
| kvm_guest_enter(); |
| |
| if (vcpu->requests) |
| if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests)) |
| kvm_x86_ops->tlb_flush(vcpu); |
| |
| kvm_x86_ops->run(vcpu, kvm_run); |
| |
| vcpu->guest_mode = 0; |
| local_irq_enable(); |
| |
| ++vcpu->stat.exits; |
| |
| /* |
| * We must have an instruction between local_irq_enable() and |
| * kvm_guest_exit(), so the timer interrupt isn't delayed by |
| * the interrupt shadow. The stat.exits increment will do nicely. |
| * But we need to prevent reordering, hence this barrier(): |
| */ |
| barrier(); |
| |
| kvm_guest_exit(); |
| |
| preempt_enable(); |
| |
| /* |
| * Profile KVM exit RIPs: |
| */ |
| if (unlikely(prof_on == KVM_PROFILING)) { |
| kvm_x86_ops->cache_regs(vcpu); |
| profile_hit(KVM_PROFILING, (void *)vcpu->rip); |
| } |
| |
| r = kvm_x86_ops->handle_exit(kvm_run, vcpu); |
| |
| if (r > 0) { |
| if (dm_request_for_irq_injection(vcpu, kvm_run)) { |
| r = -EINTR; |
| kvm_run->exit_reason = KVM_EXIT_INTR; |
| ++vcpu->stat.request_irq_exits; |
| goto out; |
| } |
| if (!need_resched()) |
| goto again; |
| } |
| |
| out: |
| if (r > 0) { |
| kvm_resched(vcpu); |
| goto preempted; |
| } |
| |
| post_kvm_run_save(vcpu, kvm_run); |
| |
| return r; |
| } |
| |
| int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| int r; |
| sigset_t sigsaved; |
| |
| vcpu_load(vcpu); |
| |
| if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) { |
| kvm_vcpu_block(vcpu); |
| vcpu_put(vcpu); |
| return -EAGAIN; |
| } |
| |
| if (vcpu->sigset_active) |
| sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); |
| |
| /* re-sync apic's tpr */ |
| if (!irqchip_in_kernel(vcpu->kvm)) |
| set_cr8(vcpu, kvm_run->cr8); |
| |
| if (vcpu->pio.cur_count) { |
| r = complete_pio(vcpu); |
| if (r) |
| goto out; |
| } |
| #if CONFIG_HAS_IOMEM |
| if (vcpu->mmio_needed) { |
| memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8); |
| vcpu->mmio_read_completed = 1; |
| vcpu->mmio_needed = 0; |
| r = emulate_instruction(vcpu, kvm_run, |
| vcpu->mmio_fault_cr2, 0, 1); |
| if (r == EMULATE_DO_MMIO) { |
| /* |
| * Read-modify-write. Back to userspace. |
| */ |
| r = 0; |
| goto out; |
| } |
| } |
| #endif |
| if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) { |
| kvm_x86_ops->cache_regs(vcpu); |
| vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret; |
| kvm_x86_ops->decache_regs(vcpu); |
| } |
| |
| r = __vcpu_run(vcpu, kvm_run); |
| |
| out: |
| if (vcpu->sigset_active) |
| sigprocmask(SIG_SETMASK, &sigsaved, NULL); |
| |
| vcpu_put(vcpu); |
| return r; |
| } |
| |
| int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) |
| { |
| vcpu_load(vcpu); |
| |
| kvm_x86_ops->cache_regs(vcpu); |
| |
| regs->rax = vcpu->regs[VCPU_REGS_RAX]; |
| regs->rbx = vcpu->regs[VCPU_REGS_RBX]; |
| regs->rcx = vcpu->regs[VCPU_REGS_RCX]; |
| regs->rdx = vcpu->regs[VCPU_REGS_RDX]; |
| regs->rsi = vcpu->regs[VCPU_REGS_RSI]; |
| regs->rdi = vcpu->regs[VCPU_REGS_RDI]; |
| regs->rsp = vcpu->regs[VCPU_REGS_RSP]; |
| regs->rbp = vcpu->regs[VCPU_REGS_RBP]; |
| #ifdef CONFIG_X86_64 |
| regs->r8 = vcpu->regs[VCPU_REGS_R8]; |
| regs->r9 = vcpu->regs[VCPU_REGS_R9]; |
| regs->r10 = vcpu->regs[VCPU_REGS_R10]; |
| regs->r11 = vcpu->regs[VCPU_REGS_R11]; |
| regs->r12 = vcpu->regs[VCPU_REGS_R12]; |
| regs->r13 = vcpu->regs[VCPU_REGS_R13]; |
| regs->r14 = vcpu->regs[VCPU_REGS_R14]; |
| regs->r15 = vcpu->regs[VCPU_REGS_R15]; |
| #endif |
| |
| regs->rip = vcpu->rip; |
| regs->rflags = kvm_x86_ops->get_rflags(vcpu); |
| |
| /* |
| * Don't leak debug flags in case they were set for guest debugging |
| */ |
| if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep) |
| regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF); |
| |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) |
| { |
| vcpu_load(vcpu); |
| |
| vcpu->regs[VCPU_REGS_RAX] = regs->rax; |
| vcpu->regs[VCPU_REGS_RBX] = regs->rbx; |
| vcpu->regs[VCPU_REGS_RCX] = regs->rcx; |
| vcpu->regs[VCPU_REGS_RDX] = regs->rdx; |
| vcpu->regs[VCPU_REGS_RSI] = regs->rsi; |
| vcpu->regs[VCPU_REGS_RDI] = regs->rdi; |
| vcpu->regs[VCPU_REGS_RSP] = regs->rsp; |
| vcpu->regs[VCPU_REGS_RBP] = regs->rbp; |
| #ifdef CONFIG_X86_64 |
| vcpu->regs[VCPU_REGS_R8] = regs->r8; |
| vcpu->regs[VCPU_REGS_R9] = regs->r9; |
| vcpu->regs[VCPU_REGS_R10] = regs->r10; |
| vcpu->regs[VCPU_REGS_R11] = regs->r11; |
| vcpu->regs[VCPU_REGS_R12] = regs->r12; |
| vcpu->regs[VCPU_REGS_R13] = regs->r13; |
| vcpu->regs[VCPU_REGS_R14] = regs->r14; |
| vcpu->regs[VCPU_REGS_R15] = regs->r15; |
| #endif |
| |
| vcpu->rip = regs->rip; |
| kvm_x86_ops->set_rflags(vcpu, regs->rflags); |
| |
| kvm_x86_ops->decache_regs(vcpu); |
| |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| static void get_segment(struct kvm_vcpu *vcpu, |
| struct kvm_segment *var, int seg) |
| { |
| return kvm_x86_ops->get_segment(vcpu, var, seg); |
| } |
| |
| void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) |
| { |
| struct kvm_segment cs; |
| |
| get_segment(vcpu, &cs, VCPU_SREG_CS); |
| *db = cs.db; |
| *l = cs.l; |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); |
| |
| int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, |
| struct kvm_sregs *sregs) |
| { |
| struct descriptor_table dt; |
| int pending_vec; |
| |
| vcpu_load(vcpu); |
| |
| get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); |
| get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); |
| get_segment(vcpu, &sregs->es, VCPU_SREG_ES); |
| get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); |
| get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); |
| get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); |
| |
| get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); |
| get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); |
| |
| kvm_x86_ops->get_idt(vcpu, &dt); |
| sregs->idt.limit = dt.limit; |
| sregs->idt.base = dt.base; |
| kvm_x86_ops->get_gdt(vcpu, &dt); |
| sregs->gdt.limit = dt.limit; |
| sregs->gdt.base = dt.base; |
| |
| kvm_x86_ops->decache_cr4_guest_bits(vcpu); |
| sregs->cr0 = vcpu->cr0; |
| sregs->cr2 = vcpu->cr2; |
| sregs->cr3 = vcpu->cr3; |
| sregs->cr4 = vcpu->cr4; |
| sregs->cr8 = get_cr8(vcpu); |
| sregs->efer = vcpu->shadow_efer; |
| sregs->apic_base = kvm_get_apic_base(vcpu); |
| |
| if (irqchip_in_kernel(vcpu->kvm)) { |
| memset(sregs->interrupt_bitmap, 0, |
| sizeof sregs->interrupt_bitmap); |
| pending_vec = kvm_x86_ops->get_irq(vcpu); |
| if (pending_vec >= 0) |
| set_bit(pending_vec, |
| (unsigned long *)sregs->interrupt_bitmap); |
| } else |
| memcpy(sregs->interrupt_bitmap, vcpu->irq_pending, |
| sizeof sregs->interrupt_bitmap); |
| |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| static void set_segment(struct kvm_vcpu *vcpu, |
| struct kvm_segment *var, int seg) |
| { |
| return kvm_x86_ops->set_segment(vcpu, var, seg); |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, |
| struct kvm_sregs *sregs) |
| { |
| int mmu_reset_needed = 0; |
| int i, pending_vec, max_bits; |
| struct descriptor_table dt; |
| |
| vcpu_load(vcpu); |
| |
| dt.limit = sregs->idt.limit; |
| dt.base = sregs->idt.base; |
| kvm_x86_ops->set_idt(vcpu, &dt); |
| dt.limit = sregs->gdt.limit; |
| dt.base = sregs->gdt.base; |
| kvm_x86_ops->set_gdt(vcpu, &dt); |
| |
| vcpu->cr2 = sregs->cr2; |
| mmu_reset_needed |= vcpu->cr3 != sregs->cr3; |
| vcpu->cr3 = sregs->cr3; |
| |
| set_cr8(vcpu, sregs->cr8); |
| |
| mmu_reset_needed |= vcpu->shadow_efer != sregs->efer; |
| #ifdef CONFIG_X86_64 |
| kvm_x86_ops->set_efer(vcpu, sregs->efer); |
| #endif |
| kvm_set_apic_base(vcpu, sregs->apic_base); |
| |
| kvm_x86_ops->decache_cr4_guest_bits(vcpu); |
| |
| mmu_reset_needed |= vcpu->cr0 != sregs->cr0; |
| vcpu->cr0 = sregs->cr0; |
| kvm_x86_ops->set_cr0(vcpu, sregs->cr0); |
| |
| mmu_reset_needed |= vcpu->cr4 != sregs->cr4; |
| kvm_x86_ops->set_cr4(vcpu, sregs->cr4); |
| if (!is_long_mode(vcpu) && is_pae(vcpu)) |
| load_pdptrs(vcpu, vcpu->cr3); |
| |
| if (mmu_reset_needed) |
| kvm_mmu_reset_context(vcpu); |
| |
| if (!irqchip_in_kernel(vcpu->kvm)) { |
| memcpy(vcpu->irq_pending, sregs->interrupt_bitmap, |
| sizeof vcpu->irq_pending); |
| vcpu->irq_summary = 0; |
| for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i) |
| if (vcpu->irq_pending[i]) |
| __set_bit(i, &vcpu->irq_summary); |
| } else { |
| max_bits = (sizeof sregs->interrupt_bitmap) << 3; |
| pending_vec = find_first_bit( |
| (const unsigned long *)sregs->interrupt_bitmap, |
| max_bits); |
| /* Only pending external irq is handled here */ |
| if (pending_vec < max_bits) { |
| kvm_x86_ops->set_irq(vcpu, pending_vec); |
| pr_debug("Set back pending irq %d\n", |
| pending_vec); |
| } |
| } |
| |
| set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); |
| set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); |
| set_segment(vcpu, &sregs->es, VCPU_SREG_ES); |
| set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); |
| set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); |
| set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); |
| |
| set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); |
| set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); |
| |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu, |
| struct kvm_debug_guest *dbg) |
| { |
| int r; |
| |
| vcpu_load(vcpu); |
| |
| r = kvm_x86_ops->set_guest_debug(vcpu, dbg); |
| |
| vcpu_put(vcpu); |
| |
| return r; |
| } |
| |
| /* |
| * fxsave fpu state. Taken from x86_64/processor.h. To be killed when |
| * we have asm/x86/processor.h |
| */ |
| struct fxsave { |
| u16 cwd; |
| u16 swd; |
| u16 twd; |
| u16 fop; |
| u64 rip; |
| u64 rdp; |
| u32 mxcsr; |
| u32 mxcsr_mask; |
| u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */ |
| #ifdef CONFIG_X86_64 |
| u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */ |
| #else |
| u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */ |
| #endif |
| }; |
| |
| /* |
| * Translate a guest virtual address to a guest physical address. |
| */ |
| int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, |
| struct kvm_translation *tr) |
| { |
| unsigned long vaddr = tr->linear_address; |
| gpa_t gpa; |
| |
| vcpu_load(vcpu); |
| mutex_lock(&vcpu->kvm->lock); |
| gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr); |
| tr->physical_address = gpa; |
| tr->valid = gpa != UNMAPPED_GVA; |
| tr->writeable = 1; |
| tr->usermode = 0; |
| mutex_unlock(&vcpu->kvm->lock); |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) |
| { |
| struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image; |
| |
| vcpu_load(vcpu); |
| |
| memcpy(fpu->fpr, fxsave->st_space, 128); |
| fpu->fcw = fxsave->cwd; |
| fpu->fsw = fxsave->swd; |
| fpu->ftwx = fxsave->twd; |
| fpu->last_opcode = fxsave->fop; |
| fpu->last_ip = fxsave->rip; |
| fpu->last_dp = fxsave->rdp; |
| memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); |
| |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) |
| { |
| struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image; |
| |
| vcpu_load(vcpu); |
| |
| memcpy(fxsave->st_space, fpu->fpr, 128); |
| fxsave->cwd = fpu->fcw; |
| fxsave->swd = fpu->fsw; |
| fxsave->twd = fpu->ftwx; |
| fxsave->fop = fpu->last_opcode; |
| fxsave->rip = fpu->last_ip; |
| fxsave->rdp = fpu->last_dp; |
| memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); |
| |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| void fx_init(struct kvm_vcpu *vcpu) |
| { |
| unsigned after_mxcsr_mask; |
| |
| /* Initialize guest FPU by resetting ours and saving into guest's */ |
| preempt_disable(); |
| fx_save(&vcpu->host_fx_image); |
| fpu_init(); |
| fx_save(&vcpu->guest_fx_image); |
| fx_restore(&vcpu->host_fx_image); |
| preempt_enable(); |
| |
| vcpu->cr0 |= X86_CR0_ET; |
| after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space); |
| vcpu->guest_fx_image.mxcsr = 0x1f80; |
| memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask, |
| 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask); |
| } |
| EXPORT_SYMBOL_GPL(fx_init); |
| |
| void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) |
| { |
| if (!vcpu->fpu_active || vcpu->guest_fpu_loaded) |
| return; |
| |
| vcpu->guest_fpu_loaded = 1; |
| fx_save(&vcpu->host_fx_image); |
| fx_restore(&vcpu->guest_fx_image); |
| } |
| EXPORT_SYMBOL_GPL(kvm_load_guest_fpu); |
| |
| void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) |
| { |
| if (!vcpu->guest_fpu_loaded) |
| return; |
| |
| vcpu->guest_fpu_loaded = 0; |
| fx_save(&vcpu->guest_fx_image); |
| fx_restore(&vcpu->host_fx_image); |
| ++vcpu->stat.fpu_reload; |
| } |
| EXPORT_SYMBOL_GPL(kvm_put_guest_fpu); |
| |
| void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) |
| { |
| kvm_x86_ops->vcpu_free(vcpu); |
| } |
| |
| struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, |
| unsigned int id) |
| { |
| int r; |
| struct kvm_vcpu *vcpu = kvm_x86_ops->vcpu_create(kvm, id); |
| |
| if (IS_ERR(vcpu)) { |
| r = -ENOMEM; |
| goto fail; |
| } |
| |
| /* We do fxsave: this must be aligned. */ |
| BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF); |
| |
| vcpu_load(vcpu); |
| r = kvm_arch_vcpu_reset(vcpu); |
| if (r == 0) |
| r = kvm_mmu_setup(vcpu); |
| vcpu_put(vcpu); |
| if (r < 0) |
| goto free_vcpu; |
| |
| return vcpu; |
| free_vcpu: |
| kvm_x86_ops->vcpu_free(vcpu); |
| fail: |
| return ERR_PTR(r); |
| } |
| |
| void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) |
| { |
| vcpu_load(vcpu); |
| kvm_mmu_unload(vcpu); |
| vcpu_put(vcpu); |
| |
| kvm_x86_ops->vcpu_free(vcpu); |
| } |
| |
| int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu) |
| { |
| return kvm_x86_ops->vcpu_reset(vcpu); |
| } |
| |
| void kvm_arch_hardware_enable(void *garbage) |
| { |
| kvm_x86_ops->hardware_enable(garbage); |
| } |
| |
| void kvm_arch_hardware_disable(void *garbage) |
| { |
| kvm_x86_ops->hardware_disable(garbage); |
| } |
| |
| int kvm_arch_hardware_setup(void) |
| { |
| return kvm_x86_ops->hardware_setup(); |
| } |
| |
| void kvm_arch_hardware_unsetup(void) |
| { |
| kvm_x86_ops->hardware_unsetup(); |
| } |
| |
| void kvm_arch_check_processor_compat(void *rtn) |
| { |
| kvm_x86_ops->check_processor_compatibility(rtn); |
| } |
| |
| int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) |
| { |
| struct page *page; |
| struct kvm *kvm; |
| int r; |
| |
| BUG_ON(vcpu->kvm == NULL); |
| kvm = vcpu->kvm; |
| |
| vcpu->mmu.root_hpa = INVALID_PAGE; |
| if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0) |
| vcpu->mp_state = VCPU_MP_STATE_RUNNABLE; |
| else |
| vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED; |
| |
| page = alloc_page(GFP_KERNEL | __GFP_ZERO); |
| if (!page) { |
| r = -ENOMEM; |
| goto fail; |
| } |
| vcpu->pio_data = page_address(page); |
| |
| r = kvm_mmu_create(vcpu); |
| if (r < 0) |
| goto fail_free_pio_data; |
| |
| if (irqchip_in_kernel(kvm)) { |
| r = kvm_create_lapic(vcpu); |
| if (r < 0) |
| goto fail_mmu_destroy; |
| } |
| |
| return 0; |
| |
| fail_mmu_destroy: |
| kvm_mmu_destroy(vcpu); |
| fail_free_pio_data: |
| free_page((unsigned long)vcpu->pio_data); |
| fail: |
| return r; |
| } |
| |
| void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) |
| { |
| kvm_free_lapic(vcpu); |
| kvm_mmu_destroy(vcpu); |
| free_page((unsigned long)vcpu->pio_data); |
| } |
| |
| struct kvm *kvm_arch_create_vm(void) |
| { |
| struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL); |
| |
| if (!kvm) |
| return ERR_PTR(-ENOMEM); |
| |
| INIT_LIST_HEAD(&kvm->active_mmu_pages); |
| |
| return kvm; |
| } |
| |
| static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) |
| { |
| vcpu_load(vcpu); |
| kvm_mmu_unload(vcpu); |
| vcpu_put(vcpu); |
| } |
| |
| static void kvm_free_vcpus(struct kvm *kvm) |
| { |
| unsigned int i; |
| |
| /* |
| * Unpin any mmu pages first. |
| */ |
| for (i = 0; i < KVM_MAX_VCPUS; ++i) |
| if (kvm->vcpus[i]) |
| kvm_unload_vcpu_mmu(kvm->vcpus[i]); |
| for (i = 0; i < KVM_MAX_VCPUS; ++i) { |
| if (kvm->vcpus[i]) { |
| kvm_arch_vcpu_free(kvm->vcpus[i]); |
| kvm->vcpus[i] = NULL; |
| } |
| } |
| |
| } |
| |
| void kvm_arch_destroy_vm(struct kvm *kvm) |
| { |
| kfree(kvm->vpic); |
| kfree(kvm->vioapic); |
| kvm_free_vcpus(kvm); |
| kvm_free_physmem(kvm); |
| kfree(kvm); |
| } |