| /* |
| Common Flash Interface probe code. |
| (C) 2000 Red Hat. GPL'd. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <asm/io.h> |
| #include <asm/byteorder.h> |
| #include <linux/errno.h> |
| #include <linux/slab.h> |
| #include <linux/interrupt.h> |
| |
| #include <linux/mtd/xip.h> |
| #include <linux/mtd/map.h> |
| #include <linux/mtd/cfi.h> |
| #include <linux/mtd/gen_probe.h> |
| |
| //#define DEBUG_CFI |
| |
| #ifdef DEBUG_CFI |
| static void print_cfi_ident(struct cfi_ident *); |
| #endif |
| |
| static int cfi_probe_chip(struct map_info *map, __u32 base, |
| unsigned long *chip_map, struct cfi_private *cfi); |
| static int cfi_chip_setup(struct map_info *map, struct cfi_private *cfi); |
| |
| struct mtd_info *cfi_probe(struct map_info *map); |
| |
| #ifdef CONFIG_MTD_XIP |
| |
| /* only needed for short periods, so this is rather simple */ |
| #define xip_disable() local_irq_disable() |
| |
| #define xip_allowed(base, map) \ |
| do { \ |
| (void) map_read(map, base); \ |
| xip_iprefetch(); \ |
| local_irq_enable(); \ |
| } while (0) |
| |
| #define xip_enable(base, map, cfi) \ |
| do { \ |
| cfi_qry_mode_off(base, map, cfi); \ |
| xip_allowed(base, map); \ |
| } while (0) |
| |
| #define xip_disable_qry(base, map, cfi) \ |
| do { \ |
| xip_disable(); \ |
| cfi_qry_mode_on(base, map, cfi); \ |
| } while (0) |
| |
| #else |
| |
| #define xip_disable() do { } while (0) |
| #define xip_allowed(base, map) do { } while (0) |
| #define xip_enable(base, map, cfi) do { } while (0) |
| #define xip_disable_qry(base, map, cfi) do { } while (0) |
| |
| #endif |
| |
| /* check for QRY. |
| in: interleave,type,mode |
| ret: table index, <0 for error |
| */ |
| |
| static int __xipram cfi_probe_chip(struct map_info *map, __u32 base, |
| unsigned long *chip_map, struct cfi_private *cfi) |
| { |
| int i; |
| |
| if ((base + 0) >= map->size) { |
| printk(KERN_NOTICE |
| "Probe at base[0x00](0x%08lx) past the end of the map(0x%08lx)\n", |
| (unsigned long)base, map->size -1); |
| return 0; |
| } |
| if ((base + 0xff) >= map->size) { |
| printk(KERN_NOTICE |
| "Probe at base[0x55](0x%08lx) past the end of the map(0x%08lx)\n", |
| (unsigned long)base + 0x55, map->size -1); |
| return 0; |
| } |
| |
| xip_disable(); |
| if (!cfi_qry_mode_on(base, map, cfi)) { |
| xip_enable(base, map, cfi); |
| return 0; |
| } |
| |
| if (!cfi->numchips) { |
| /* This is the first time we're called. Set up the CFI |
| stuff accordingly and return */ |
| return cfi_chip_setup(map, cfi); |
| } |
| |
| /* Check each previous chip to see if it's an alias */ |
| for (i=0; i < (base >> cfi->chipshift); i++) { |
| unsigned long start; |
| if(!test_bit(i, chip_map)) { |
| /* Skip location; no valid chip at this address */ |
| continue; |
| } |
| start = i << cfi->chipshift; |
| /* This chip should be in read mode if it's one |
| we've already touched. */ |
| if (cfi_qry_present(map, start, cfi)) { |
| /* Eep. This chip also had the QRY marker. |
| * Is it an alias for the new one? */ |
| cfi_qry_mode_off(start, map, cfi); |
| |
| /* If the QRY marker goes away, it's an alias */ |
| if (!cfi_qry_present(map, start, cfi)) { |
| xip_allowed(base, map); |
| printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n", |
| map->name, base, start); |
| return 0; |
| } |
| /* Yes, it's actually got QRY for data. Most |
| * unfortunate. Stick the new chip in read mode |
| * too and if it's the same, assume it's an alias. */ |
| /* FIXME: Use other modes to do a proper check */ |
| cfi_qry_mode_off(base, map, cfi); |
| |
| if (cfi_qry_present(map, base, cfi)) { |
| xip_allowed(base, map); |
| printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n", |
| map->name, base, start); |
| return 0; |
| } |
| } |
| } |
| |
| /* OK, if we got to here, then none of the previous chips appear to |
| be aliases for the current one. */ |
| set_bit((base >> cfi->chipshift), chip_map); /* Update chip map */ |
| cfi->numchips++; |
| |
| /* Put it back into Read Mode */ |
| cfi_qry_mode_off(base, map, cfi); |
| xip_allowed(base, map); |
| |
| printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit bank\n", |
| map->name, cfi->interleave, cfi->device_type*8, base, |
| map->bankwidth*8); |
| |
| return 1; |
| } |
| |
| static int __xipram cfi_chip_setup(struct map_info *map, |
| struct cfi_private *cfi) |
| { |
| int ofs_factor = cfi->interleave*cfi->device_type; |
| __u32 base = 0; |
| int num_erase_regions = cfi_read_query(map, base + (0x10 + 28)*ofs_factor); |
| int i; |
| int addr_unlock1 = 0x555, addr_unlock2 = 0x2AA; |
| |
| xip_enable(base, map, cfi); |
| #ifdef DEBUG_CFI |
| printk("Number of erase regions: %d\n", num_erase_regions); |
| #endif |
| if (!num_erase_regions) |
| return 0; |
| |
| cfi->cfiq = kmalloc(sizeof(struct cfi_ident) + num_erase_regions * 4, GFP_KERNEL); |
| if (!cfi->cfiq) { |
| printk(KERN_WARNING "%s: kmalloc failed for CFI ident structure\n", map->name); |
| return 0; |
| } |
| |
| memset(cfi->cfiq,0,sizeof(struct cfi_ident)); |
| |
| cfi->cfi_mode = CFI_MODE_CFI; |
| |
| /* Read the CFI info structure */ |
| xip_disable_qry(base, map, cfi); |
| for (i=0; i<(sizeof(struct cfi_ident) + num_erase_regions * 4); i++) |
| ((unsigned char *)cfi->cfiq)[i] = cfi_read_query(map,base + (0x10 + i)*ofs_factor); |
| |
| /* Do any necessary byteswapping */ |
| cfi->cfiq->P_ID = le16_to_cpu(cfi->cfiq->P_ID); |
| |
| cfi->cfiq->P_ADR = le16_to_cpu(cfi->cfiq->P_ADR); |
| cfi->cfiq->A_ID = le16_to_cpu(cfi->cfiq->A_ID); |
| cfi->cfiq->A_ADR = le16_to_cpu(cfi->cfiq->A_ADR); |
| cfi->cfiq->InterfaceDesc = le16_to_cpu(cfi->cfiq->InterfaceDesc); |
| cfi->cfiq->MaxBufWriteSize = le16_to_cpu(cfi->cfiq->MaxBufWriteSize); |
| |
| #ifdef DEBUG_CFI |
| /* Dump the information therein */ |
| print_cfi_ident(cfi->cfiq); |
| #endif |
| |
| for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { |
| cfi->cfiq->EraseRegionInfo[i] = le32_to_cpu(cfi->cfiq->EraseRegionInfo[i]); |
| |
| #ifdef DEBUG_CFI |
| printk(" Erase Region #%d: BlockSize 0x%4.4X bytes, %d blocks\n", |
| i, (cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff, |
| (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1); |
| #endif |
| } |
| |
| if (cfi->cfiq->P_ID == P_ID_SST_OLD) { |
| addr_unlock1 = 0x5555; |
| addr_unlock2 = 0x2AAA; |
| } |
| |
| /* |
| * Note we put the device back into Read Mode BEFORE going into Auto |
| * Select Mode, as some devices support nesting of modes, others |
| * don't. This way should always work. |
| * On cmdset 0001 the writes of 0xaa and 0x55 are not needed, and |
| * so should be treated as nops or illegal (and so put the device |
| * back into Read Mode, which is a nop in this case). |
| */ |
| cfi_send_gen_cmd(0xf0, 0, base, map, cfi, cfi->device_type, NULL); |
| cfi_send_gen_cmd(0xaa, addr_unlock1, base, map, cfi, cfi->device_type, NULL); |
| cfi_send_gen_cmd(0x55, addr_unlock2, base, map, cfi, cfi->device_type, NULL); |
| cfi_send_gen_cmd(0x90, addr_unlock1, base, map, cfi, cfi->device_type, NULL); |
| cfi->mfr = cfi_read_query16(map, base); |
| cfi->id = cfi_read_query16(map, base + ofs_factor); |
| |
| /* Get AMD/Spansion extended JEDEC ID */ |
| if (cfi->mfr == CFI_MFR_AMD && (cfi->id & 0xff) == 0x7e) |
| cfi->id = cfi_read_query(map, base + 0xe * ofs_factor) << 8 | |
| cfi_read_query(map, base + 0xf * ofs_factor); |
| |
| /* Put it back into Read Mode */ |
| cfi_qry_mode_off(base, map, cfi); |
| xip_allowed(base, map); |
| |
| printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit bank\n", |
| map->name, cfi->interleave, cfi->device_type*8, base, |
| map->bankwidth*8); |
| |
| return 1; |
| } |
| |
| #ifdef DEBUG_CFI |
| static char *vendorname(__u16 vendor) |
| { |
| switch (vendor) { |
| case P_ID_NONE: |
| return "None"; |
| |
| case P_ID_INTEL_EXT: |
| return "Intel/Sharp Extended"; |
| |
| case P_ID_AMD_STD: |
| return "AMD/Fujitsu Standard"; |
| |
| case P_ID_INTEL_STD: |
| return "Intel/Sharp Standard"; |
| |
| case P_ID_AMD_EXT: |
| return "AMD/Fujitsu Extended"; |
| |
| case P_ID_WINBOND: |
| return "Winbond Standard"; |
| |
| case P_ID_ST_ADV: |
| return "ST Advanced"; |
| |
| case P_ID_MITSUBISHI_STD: |
| return "Mitsubishi Standard"; |
| |
| case P_ID_MITSUBISHI_EXT: |
| return "Mitsubishi Extended"; |
| |
| case P_ID_SST_PAGE: |
| return "SST Page Write"; |
| |
| case P_ID_SST_OLD: |
| return "SST 39VF160x/39VF320x"; |
| |
| case P_ID_INTEL_PERFORMANCE: |
| return "Intel Performance Code"; |
| |
| case P_ID_INTEL_DATA: |
| return "Intel Data"; |
| |
| case P_ID_RESERVED: |
| return "Not Allowed / Reserved for Future Use"; |
| |
| default: |
| return "Unknown"; |
| } |
| } |
| |
| |
| static void print_cfi_ident(struct cfi_ident *cfip) |
| { |
| #if 0 |
| if (cfip->qry[0] != 'Q' || cfip->qry[1] != 'R' || cfip->qry[2] != 'Y') { |
| printk("Invalid CFI ident structure.\n"); |
| return; |
| } |
| #endif |
| printk("Primary Vendor Command Set: %4.4X (%s)\n", cfip->P_ID, vendorname(cfip->P_ID)); |
| if (cfip->P_ADR) |
| printk("Primary Algorithm Table at %4.4X\n", cfip->P_ADR); |
| else |
| printk("No Primary Algorithm Table\n"); |
| |
| printk("Alternative Vendor Command Set: %4.4X (%s)\n", cfip->A_ID, vendorname(cfip->A_ID)); |
| if (cfip->A_ADR) |
| printk("Alternate Algorithm Table at %4.4X\n", cfip->A_ADR); |
| else |
| printk("No Alternate Algorithm Table\n"); |
| |
| |
| printk("Vcc Minimum: %2d.%d V\n", cfip->VccMin >> 4, cfip->VccMin & 0xf); |
| printk("Vcc Maximum: %2d.%d V\n", cfip->VccMax >> 4, cfip->VccMax & 0xf); |
| if (cfip->VppMin) { |
| printk("Vpp Minimum: %2d.%d V\n", cfip->VppMin >> 4, cfip->VppMin & 0xf); |
| printk("Vpp Maximum: %2d.%d V\n", cfip->VppMax >> 4, cfip->VppMax & 0xf); |
| } |
| else |
| printk("No Vpp line\n"); |
| |
| printk("Typical byte/word write timeout: %d µs\n", 1<<cfip->WordWriteTimeoutTyp); |
| printk("Maximum byte/word write timeout: %d µs\n", (1<<cfip->WordWriteTimeoutMax) * (1<<cfip->WordWriteTimeoutTyp)); |
| |
| if (cfip->BufWriteTimeoutTyp || cfip->BufWriteTimeoutMax) { |
| printk("Typical full buffer write timeout: %d µs\n", 1<<cfip->BufWriteTimeoutTyp); |
| printk("Maximum full buffer write timeout: %d µs\n", (1<<cfip->BufWriteTimeoutMax) * (1<<cfip->BufWriteTimeoutTyp)); |
| } |
| else |
| printk("Full buffer write not supported\n"); |
| |
| printk("Typical block erase timeout: %d ms\n", 1<<cfip->BlockEraseTimeoutTyp); |
| printk("Maximum block erase timeout: %d ms\n", (1<<cfip->BlockEraseTimeoutMax) * (1<<cfip->BlockEraseTimeoutTyp)); |
| if (cfip->ChipEraseTimeoutTyp || cfip->ChipEraseTimeoutMax) { |
| printk("Typical chip erase timeout: %d ms\n", 1<<cfip->ChipEraseTimeoutTyp); |
| printk("Maximum chip erase timeout: %d ms\n", (1<<cfip->ChipEraseTimeoutMax) * (1<<cfip->ChipEraseTimeoutTyp)); |
| } |
| else |
| printk("Chip erase not supported\n"); |
| |
| printk("Device size: 0x%X bytes (%d MiB)\n", 1 << cfip->DevSize, 1<< (cfip->DevSize - 20)); |
| printk("Flash Device Interface description: 0x%4.4X\n", cfip->InterfaceDesc); |
| switch(cfip->InterfaceDesc) { |
| case CFI_INTERFACE_X8_ASYNC: |
| printk(" - x8-only asynchronous interface\n"); |
| break; |
| |
| case CFI_INTERFACE_X16_ASYNC: |
| printk(" - x16-only asynchronous interface\n"); |
| break; |
| |
| case CFI_INTERFACE_X8_BY_X16_ASYNC: |
| printk(" - supports x8 and x16 via BYTE# with asynchronous interface\n"); |
| break; |
| |
| case CFI_INTERFACE_X32_ASYNC: |
| printk(" - x32-only asynchronous interface\n"); |
| break; |
| |
| case CFI_INTERFACE_X16_BY_X32_ASYNC: |
| printk(" - supports x16 and x32 via Word# with asynchronous interface\n"); |
| break; |
| |
| case CFI_INTERFACE_NOT_ALLOWED: |
| printk(" - Not Allowed / Reserved\n"); |
| break; |
| |
| default: |
| printk(" - Unknown\n"); |
| break; |
| } |
| |
| printk("Max. bytes in buffer write: 0x%x\n", 1<< cfip->MaxBufWriteSize); |
| printk("Number of Erase Block Regions: %d\n", cfip->NumEraseRegions); |
| |
| } |
| #endif /* DEBUG_CFI */ |
| |
| static struct chip_probe cfi_chip_probe = { |
| .name = "CFI", |
| .probe_chip = cfi_probe_chip |
| }; |
| |
| struct mtd_info *cfi_probe(struct map_info *map) |
| { |
| /* |
| * Just use the generic probe stuff to call our CFI-specific |
| * chip_probe routine in all the possible permutations, etc. |
| */ |
| return mtd_do_chip_probe(map, &cfi_chip_probe); |
| } |
| |
| static struct mtd_chip_driver cfi_chipdrv = { |
| .probe = cfi_probe, |
| .name = "cfi_probe", |
| .module = THIS_MODULE |
| }; |
| |
| static int __init cfi_probe_init(void) |
| { |
| register_mtd_chip_driver(&cfi_chipdrv); |
| return 0; |
| } |
| |
| static void __exit cfi_probe_exit(void) |
| { |
| unregister_mtd_chip_driver(&cfi_chipdrv); |
| } |
| |
| module_init(cfi_probe_init); |
| module_exit(cfi_probe_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al."); |
| MODULE_DESCRIPTION("Probe code for CFI-compliant flash chips"); |