| /* |
| * Common time routines among all ppc machines. |
| * |
| * Written by Cort Dougan (cort@cs.nmt.edu) to merge |
| * Paul Mackerras' version and mine for PReP and Pmac. |
| * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). |
| * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) |
| * |
| * First round of bugfixes by Gabriel Paubert (paubert@iram.es) |
| * to make clock more stable (2.4.0-test5). The only thing |
| * that this code assumes is that the timebases have been synchronized |
| * by firmware on SMP and are never stopped (never do sleep |
| * on SMP then, nap and doze are OK). |
| * |
| * Speeded up do_gettimeofday by getting rid of references to |
| * xtime (which required locks for consistency). (mikejc@us.ibm.com) |
| * |
| * TODO (not necessarily in this file): |
| * - improve precision and reproducibility of timebase frequency |
| * measurement at boot time. |
| * - for astronomical applications: add a new function to get |
| * non ambiguous timestamps even around leap seconds. This needs |
| * a new timestamp format and a good name. |
| * |
| * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 |
| * "A Kernel Model for Precision Timekeeping" by Dave Mills |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #include <linux/errno.h> |
| #include <linux/export.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/param.h> |
| #include <linux/string.h> |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/timex.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/time.h> |
| #include <linux/clockchips.h> |
| #include <linux/init.h> |
| #include <linux/profile.h> |
| #include <linux/cpu.h> |
| #include <linux/security.h> |
| #include <linux/percpu.h> |
| #include <linux/rtc.h> |
| #include <linux/jiffies.h> |
| #include <linux/posix-timers.h> |
| #include <linux/irq.h> |
| #include <linux/delay.h> |
| #include <linux/irq_work.h> |
| #include <linux/clk-provider.h> |
| #include <asm/trace.h> |
| |
| #include <asm/io.h> |
| #include <asm/processor.h> |
| #include <asm/nvram.h> |
| #include <asm/cache.h> |
| #include <asm/machdep.h> |
| #include <asm/uaccess.h> |
| #include <asm/time.h> |
| #include <asm/prom.h> |
| #include <asm/irq.h> |
| #include <asm/div64.h> |
| #include <asm/smp.h> |
| #include <asm/vdso_datapage.h> |
| #include <asm/firmware.h> |
| #include <asm/cputime.h> |
| |
| /* powerpc clocksource/clockevent code */ |
| |
| #include <linux/clockchips.h> |
| #include <linux/timekeeper_internal.h> |
| |
| static cycle_t rtc_read(struct clocksource *); |
| static struct clocksource clocksource_rtc = { |
| .name = "rtc", |
| .rating = 400, |
| .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| .mask = CLOCKSOURCE_MASK(64), |
| .read = rtc_read, |
| }; |
| |
| static cycle_t timebase_read(struct clocksource *); |
| static struct clocksource clocksource_timebase = { |
| .name = "timebase", |
| .rating = 400, |
| .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| .mask = CLOCKSOURCE_MASK(64), |
| .read = timebase_read, |
| }; |
| |
| #define DECREMENTER_MAX 0x7fffffff |
| |
| static int decrementer_set_next_event(unsigned long evt, |
| struct clock_event_device *dev); |
| static int decrementer_shutdown(struct clock_event_device *evt); |
| |
| struct clock_event_device decrementer_clockevent = { |
| .name = "decrementer", |
| .rating = 200, |
| .irq = 0, |
| .set_next_event = decrementer_set_next_event, |
| .set_state_shutdown = decrementer_shutdown, |
| .tick_resume = decrementer_shutdown, |
| .features = CLOCK_EVT_FEAT_ONESHOT | |
| CLOCK_EVT_FEAT_C3STOP, |
| }; |
| EXPORT_SYMBOL(decrementer_clockevent); |
| |
| DEFINE_PER_CPU(u64, decrementers_next_tb); |
| static DEFINE_PER_CPU(struct clock_event_device, decrementers); |
| |
| #define XSEC_PER_SEC (1024*1024) |
| |
| #ifdef CONFIG_PPC64 |
| #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC) |
| #else |
| /* compute ((xsec << 12) * max) >> 32 */ |
| #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max) |
| #endif |
| |
| unsigned long tb_ticks_per_jiffy; |
| unsigned long tb_ticks_per_usec = 100; /* sane default */ |
| EXPORT_SYMBOL(tb_ticks_per_usec); |
| unsigned long tb_ticks_per_sec; |
| EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */ |
| |
| DEFINE_SPINLOCK(rtc_lock); |
| EXPORT_SYMBOL_GPL(rtc_lock); |
| |
| static u64 tb_to_ns_scale __read_mostly; |
| static unsigned tb_to_ns_shift __read_mostly; |
| static u64 boot_tb __read_mostly; |
| |
| extern struct timezone sys_tz; |
| static long timezone_offset; |
| |
| unsigned long ppc_proc_freq; |
| EXPORT_SYMBOL_GPL(ppc_proc_freq); |
| unsigned long ppc_tb_freq; |
| EXPORT_SYMBOL_GPL(ppc_tb_freq); |
| |
| #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE |
| /* |
| * Factors for converting from cputime_t (timebase ticks) to |
| * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds). |
| * These are all stored as 0.64 fixed-point binary fractions. |
| */ |
| u64 __cputime_jiffies_factor; |
| EXPORT_SYMBOL(__cputime_jiffies_factor); |
| u64 __cputime_usec_factor; |
| EXPORT_SYMBOL(__cputime_usec_factor); |
| u64 __cputime_sec_factor; |
| EXPORT_SYMBOL(__cputime_sec_factor); |
| u64 __cputime_clockt_factor; |
| EXPORT_SYMBOL(__cputime_clockt_factor); |
| DEFINE_PER_CPU(unsigned long, cputime_last_delta); |
| DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta); |
| |
| cputime_t cputime_one_jiffy; |
| |
| void (*dtl_consumer)(struct dtl_entry *, u64); |
| |
| static void calc_cputime_factors(void) |
| { |
| struct div_result res; |
| |
| div128_by_32(HZ, 0, tb_ticks_per_sec, &res); |
| __cputime_jiffies_factor = res.result_low; |
| div128_by_32(1000000, 0, tb_ticks_per_sec, &res); |
| __cputime_usec_factor = res.result_low; |
| div128_by_32(1, 0, tb_ticks_per_sec, &res); |
| __cputime_sec_factor = res.result_low; |
| div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res); |
| __cputime_clockt_factor = res.result_low; |
| } |
| |
| /* |
| * Read the SPURR on systems that have it, otherwise the PURR, |
| * or if that doesn't exist return the timebase value passed in. |
| */ |
| static u64 read_spurr(u64 tb) |
| { |
| if (cpu_has_feature(CPU_FTR_SPURR)) |
| return mfspr(SPRN_SPURR); |
| if (cpu_has_feature(CPU_FTR_PURR)) |
| return mfspr(SPRN_PURR); |
| return tb; |
| } |
| |
| #ifdef CONFIG_PPC_SPLPAR |
| |
| /* |
| * Scan the dispatch trace log and count up the stolen time. |
| * Should be called with interrupts disabled. |
| */ |
| static u64 scan_dispatch_log(u64 stop_tb) |
| { |
| u64 i = local_paca->dtl_ridx; |
| struct dtl_entry *dtl = local_paca->dtl_curr; |
| struct dtl_entry *dtl_end = local_paca->dispatch_log_end; |
| struct lppaca *vpa = local_paca->lppaca_ptr; |
| u64 tb_delta; |
| u64 stolen = 0; |
| u64 dtb; |
| |
| if (!dtl) |
| return 0; |
| |
| if (i == be64_to_cpu(vpa->dtl_idx)) |
| return 0; |
| while (i < be64_to_cpu(vpa->dtl_idx)) { |
| dtb = be64_to_cpu(dtl->timebase); |
| tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) + |
| be32_to_cpu(dtl->ready_to_enqueue_time); |
| barrier(); |
| if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) { |
| /* buffer has overflowed */ |
| i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG; |
| dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); |
| continue; |
| } |
| if (dtb > stop_tb) |
| break; |
| if (dtl_consumer) |
| dtl_consumer(dtl, i); |
| stolen += tb_delta; |
| ++i; |
| ++dtl; |
| if (dtl == dtl_end) |
| dtl = local_paca->dispatch_log; |
| } |
| local_paca->dtl_ridx = i; |
| local_paca->dtl_curr = dtl; |
| return stolen; |
| } |
| |
| /* |
| * Accumulate stolen time by scanning the dispatch trace log. |
| * Called on entry from user mode. |
| */ |
| void accumulate_stolen_time(void) |
| { |
| u64 sst, ust; |
| |
| u8 save_soft_enabled = local_paca->soft_enabled; |
| |
| /* We are called early in the exception entry, before |
| * soft/hard_enabled are sync'ed to the expected state |
| * for the exception. We are hard disabled but the PACA |
| * needs to reflect that so various debug stuff doesn't |
| * complain |
| */ |
| local_paca->soft_enabled = 0; |
| |
| sst = scan_dispatch_log(local_paca->starttime_user); |
| ust = scan_dispatch_log(local_paca->starttime); |
| local_paca->system_time -= sst; |
| local_paca->user_time -= ust; |
| local_paca->stolen_time += ust + sst; |
| |
| local_paca->soft_enabled = save_soft_enabled; |
| } |
| |
| static inline u64 calculate_stolen_time(u64 stop_tb) |
| { |
| u64 stolen = 0; |
| |
| if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) { |
| stolen = scan_dispatch_log(stop_tb); |
| get_paca()->system_time -= stolen; |
| } |
| |
| stolen += get_paca()->stolen_time; |
| get_paca()->stolen_time = 0; |
| return stolen; |
| } |
| |
| #else /* CONFIG_PPC_SPLPAR */ |
| static inline u64 calculate_stolen_time(u64 stop_tb) |
| { |
| return 0; |
| } |
| |
| #endif /* CONFIG_PPC_SPLPAR */ |
| |
| /* |
| * Account time for a transition between system, hard irq |
| * or soft irq state. |
| */ |
| static u64 vtime_delta(struct task_struct *tsk, |
| u64 *sys_scaled, u64 *stolen) |
| { |
| u64 now, nowscaled, deltascaled; |
| u64 udelta, delta, user_scaled; |
| |
| WARN_ON_ONCE(!irqs_disabled()); |
| |
| now = mftb(); |
| nowscaled = read_spurr(now); |
| get_paca()->system_time += now - get_paca()->starttime; |
| get_paca()->starttime = now; |
| deltascaled = nowscaled - get_paca()->startspurr; |
| get_paca()->startspurr = nowscaled; |
| |
| *stolen = calculate_stolen_time(now); |
| |
| delta = get_paca()->system_time; |
| get_paca()->system_time = 0; |
| udelta = get_paca()->user_time - get_paca()->utime_sspurr; |
| get_paca()->utime_sspurr = get_paca()->user_time; |
| |
| /* |
| * Because we don't read the SPURR on every kernel entry/exit, |
| * deltascaled includes both user and system SPURR ticks. |
| * Apportion these ticks to system SPURR ticks and user |
| * SPURR ticks in the same ratio as the system time (delta) |
| * and user time (udelta) values obtained from the timebase |
| * over the same interval. The system ticks get accounted here; |
| * the user ticks get saved up in paca->user_time_scaled to be |
| * used by account_process_tick. |
| */ |
| *sys_scaled = delta; |
| user_scaled = udelta; |
| if (deltascaled != delta + udelta) { |
| if (udelta) { |
| *sys_scaled = deltascaled * delta / (delta + udelta); |
| user_scaled = deltascaled - *sys_scaled; |
| } else { |
| *sys_scaled = deltascaled; |
| } |
| } |
| get_paca()->user_time_scaled += user_scaled; |
| |
| return delta; |
| } |
| |
| void vtime_account_system(struct task_struct *tsk) |
| { |
| u64 delta, sys_scaled, stolen; |
| |
| delta = vtime_delta(tsk, &sys_scaled, &stolen); |
| account_system_time(tsk, 0, delta, sys_scaled); |
| if (stolen) |
| account_steal_time(stolen); |
| } |
| EXPORT_SYMBOL_GPL(vtime_account_system); |
| |
| void vtime_account_idle(struct task_struct *tsk) |
| { |
| u64 delta, sys_scaled, stolen; |
| |
| delta = vtime_delta(tsk, &sys_scaled, &stolen); |
| account_idle_time(delta + stolen); |
| } |
| |
| /* |
| * Transfer the user time accumulated in the paca |
| * by the exception entry and exit code to the generic |
| * process user time records. |
| * Must be called with interrupts disabled. |
| * Assumes that vtime_account_system/idle() has been called |
| * recently (i.e. since the last entry from usermode) so that |
| * get_paca()->user_time_scaled is up to date. |
| */ |
| void vtime_account_user(struct task_struct *tsk) |
| { |
| cputime_t utime, utimescaled; |
| |
| utime = get_paca()->user_time; |
| utimescaled = get_paca()->user_time_scaled; |
| get_paca()->user_time = 0; |
| get_paca()->user_time_scaled = 0; |
| get_paca()->utime_sspurr = 0; |
| account_user_time(tsk, utime, utimescaled); |
| } |
| |
| #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ |
| #define calc_cputime_factors() |
| #endif |
| |
| void __delay(unsigned long loops) |
| { |
| unsigned long start; |
| int diff; |
| |
| if (__USE_RTC()) { |
| start = get_rtcl(); |
| do { |
| /* the RTCL register wraps at 1000000000 */ |
| diff = get_rtcl() - start; |
| if (diff < 0) |
| diff += 1000000000; |
| } while (diff < loops); |
| } else { |
| start = get_tbl(); |
| while (get_tbl() - start < loops) |
| HMT_low(); |
| HMT_medium(); |
| } |
| } |
| EXPORT_SYMBOL(__delay); |
| |
| void udelay(unsigned long usecs) |
| { |
| __delay(tb_ticks_per_usec * usecs); |
| } |
| EXPORT_SYMBOL(udelay); |
| |
| #ifdef CONFIG_SMP |
| unsigned long profile_pc(struct pt_regs *regs) |
| { |
| unsigned long pc = instruction_pointer(regs); |
| |
| if (in_lock_functions(pc)) |
| return regs->link; |
| |
| return pc; |
| } |
| EXPORT_SYMBOL(profile_pc); |
| #endif |
| |
| #ifdef CONFIG_IRQ_WORK |
| |
| /* |
| * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable... |
| */ |
| #ifdef CONFIG_PPC64 |
| static inline unsigned long test_irq_work_pending(void) |
| { |
| unsigned long x; |
| |
| asm volatile("lbz %0,%1(13)" |
| : "=r" (x) |
| : "i" (offsetof(struct paca_struct, irq_work_pending))); |
| return x; |
| } |
| |
| static inline void set_irq_work_pending_flag(void) |
| { |
| asm volatile("stb %0,%1(13)" : : |
| "r" (1), |
| "i" (offsetof(struct paca_struct, irq_work_pending))); |
| } |
| |
| static inline void clear_irq_work_pending(void) |
| { |
| asm volatile("stb %0,%1(13)" : : |
| "r" (0), |
| "i" (offsetof(struct paca_struct, irq_work_pending))); |
| } |
| |
| #else /* 32-bit */ |
| |
| DEFINE_PER_CPU(u8, irq_work_pending); |
| |
| #define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1) |
| #define test_irq_work_pending() __this_cpu_read(irq_work_pending) |
| #define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0) |
| |
| #endif /* 32 vs 64 bit */ |
| |
| void arch_irq_work_raise(void) |
| { |
| preempt_disable(); |
| set_irq_work_pending_flag(); |
| set_dec(1); |
| preempt_enable(); |
| } |
| |
| #else /* CONFIG_IRQ_WORK */ |
| |
| #define test_irq_work_pending() 0 |
| #define clear_irq_work_pending() |
| |
| #endif /* CONFIG_IRQ_WORK */ |
| |
| static void __timer_interrupt(void) |
| { |
| struct pt_regs *regs = get_irq_regs(); |
| u64 *next_tb = this_cpu_ptr(&decrementers_next_tb); |
| struct clock_event_device *evt = this_cpu_ptr(&decrementers); |
| u64 now; |
| |
| trace_timer_interrupt_entry(regs); |
| |
| if (test_irq_work_pending()) { |
| clear_irq_work_pending(); |
| irq_work_run(); |
| } |
| |
| now = get_tb_or_rtc(); |
| if (now >= *next_tb) { |
| *next_tb = ~(u64)0; |
| if (evt->event_handler) |
| evt->event_handler(evt); |
| __this_cpu_inc(irq_stat.timer_irqs_event); |
| } else { |
| now = *next_tb - now; |
| if (now <= DECREMENTER_MAX) |
| set_dec((int)now); |
| /* We may have raced with new irq work */ |
| if (test_irq_work_pending()) |
| set_dec(1); |
| __this_cpu_inc(irq_stat.timer_irqs_others); |
| } |
| |
| #ifdef CONFIG_PPC64 |
| /* collect purr register values often, for accurate calculations */ |
| if (firmware_has_feature(FW_FEATURE_SPLPAR)) { |
| struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array); |
| cu->current_tb = mfspr(SPRN_PURR); |
| } |
| #endif |
| |
| trace_timer_interrupt_exit(regs); |
| } |
| |
| /* |
| * timer_interrupt - gets called when the decrementer overflows, |
| * with interrupts disabled. |
| */ |
| void timer_interrupt(struct pt_regs * regs) |
| { |
| struct pt_regs *old_regs; |
| u64 *next_tb = this_cpu_ptr(&decrementers_next_tb); |
| |
| /* Ensure a positive value is written to the decrementer, or else |
| * some CPUs will continue to take decrementer exceptions. |
| */ |
| set_dec(DECREMENTER_MAX); |
| |
| /* Some implementations of hotplug will get timer interrupts while |
| * offline, just ignore these and we also need to set |
| * decrementers_next_tb as MAX to make sure __check_irq_replay |
| * don't replay timer interrupt when return, otherwise we'll trap |
| * here infinitely :( |
| */ |
| if (!cpu_online(smp_processor_id())) { |
| *next_tb = ~(u64)0; |
| return; |
| } |
| |
| /* Conditionally hard-enable interrupts now that the DEC has been |
| * bumped to its maximum value |
| */ |
| may_hard_irq_enable(); |
| |
| |
| #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC) |
| if (atomic_read(&ppc_n_lost_interrupts) != 0) |
| do_IRQ(regs); |
| #endif |
| |
| old_regs = set_irq_regs(regs); |
| irq_enter(); |
| |
| __timer_interrupt(); |
| irq_exit(); |
| set_irq_regs(old_regs); |
| } |
| |
| /* |
| * Hypervisor decrementer interrupts shouldn't occur but are sometimes |
| * left pending on exit from a KVM guest. We don't need to do anything |
| * to clear them, as they are edge-triggered. |
| */ |
| void hdec_interrupt(struct pt_regs *regs) |
| { |
| } |
| |
| #ifdef CONFIG_SUSPEND |
| static void generic_suspend_disable_irqs(void) |
| { |
| /* Disable the decrementer, so that it doesn't interfere |
| * with suspending. |
| */ |
| |
| set_dec(DECREMENTER_MAX); |
| local_irq_disable(); |
| set_dec(DECREMENTER_MAX); |
| } |
| |
| static void generic_suspend_enable_irqs(void) |
| { |
| local_irq_enable(); |
| } |
| |
| /* Overrides the weak version in kernel/power/main.c */ |
| void arch_suspend_disable_irqs(void) |
| { |
| if (ppc_md.suspend_disable_irqs) |
| ppc_md.suspend_disable_irqs(); |
| generic_suspend_disable_irqs(); |
| } |
| |
| /* Overrides the weak version in kernel/power/main.c */ |
| void arch_suspend_enable_irqs(void) |
| { |
| generic_suspend_enable_irqs(); |
| if (ppc_md.suspend_enable_irqs) |
| ppc_md.suspend_enable_irqs(); |
| } |
| #endif |
| |
| unsigned long long tb_to_ns(unsigned long long ticks) |
| { |
| return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift; |
| } |
| EXPORT_SYMBOL_GPL(tb_to_ns); |
| |
| /* |
| * Scheduler clock - returns current time in nanosec units. |
| * |
| * Note: mulhdu(a, b) (multiply high double unsigned) returns |
| * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b |
| * are 64-bit unsigned numbers. |
| */ |
| unsigned long long sched_clock(void) |
| { |
| if (__USE_RTC()) |
| return get_rtc(); |
| return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; |
| } |
| |
| |
| #ifdef CONFIG_PPC_PSERIES |
| |
| /* |
| * Running clock - attempts to give a view of time passing for a virtualised |
| * kernels. |
| * Uses the VTB register if available otherwise a next best guess. |
| */ |
| unsigned long long running_clock(void) |
| { |
| /* |
| * Don't read the VTB as a host since KVM does not switch in host |
| * timebase into the VTB when it takes a guest off the CPU, reading the |
| * VTB would result in reading 'last switched out' guest VTB. |
| * |
| * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it |
| * would be unsafe to rely only on the #ifdef above. |
| */ |
| if (firmware_has_feature(FW_FEATURE_LPAR) && |
| cpu_has_feature(CPU_FTR_ARCH_207S)) |
| return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; |
| |
| /* |
| * This is a next best approximation without a VTB. |
| * On a host which is running bare metal there should never be any stolen |
| * time and on a host which doesn't do any virtualisation TB *should* equal |
| * VTB so it makes no difference anyway. |
| */ |
| return local_clock() - cputime_to_nsecs(kcpustat_this_cpu->cpustat[CPUTIME_STEAL]); |
| } |
| #endif |
| |
| static int __init get_freq(char *name, int cells, unsigned long *val) |
| { |
| struct device_node *cpu; |
| const __be32 *fp; |
| int found = 0; |
| |
| /* The cpu node should have timebase and clock frequency properties */ |
| cpu = of_find_node_by_type(NULL, "cpu"); |
| |
| if (cpu) { |
| fp = of_get_property(cpu, name, NULL); |
| if (fp) { |
| found = 1; |
| *val = of_read_ulong(fp, cells); |
| } |
| |
| of_node_put(cpu); |
| } |
| |
| return found; |
| } |
| |
| static void start_cpu_decrementer(void) |
| { |
| #if defined(CONFIG_BOOKE) || defined(CONFIG_40x) |
| /* Clear any pending timer interrupts */ |
| mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS); |
| |
| /* Enable decrementer interrupt */ |
| mtspr(SPRN_TCR, TCR_DIE); |
| #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */ |
| } |
| |
| void __init generic_calibrate_decr(void) |
| { |
| ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */ |
| |
| if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) && |
| !get_freq("timebase-frequency", 1, &ppc_tb_freq)) { |
| |
| printk(KERN_ERR "WARNING: Estimating decrementer frequency " |
| "(not found)\n"); |
| } |
| |
| ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */ |
| |
| if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) && |
| !get_freq("clock-frequency", 1, &ppc_proc_freq)) { |
| |
| printk(KERN_ERR "WARNING: Estimating processor frequency " |
| "(not found)\n"); |
| } |
| } |
| |
| int update_persistent_clock(struct timespec now) |
| { |
| struct rtc_time tm; |
| |
| if (!ppc_md.set_rtc_time) |
| return -ENODEV; |
| |
| to_tm(now.tv_sec + 1 + timezone_offset, &tm); |
| tm.tm_year -= 1900; |
| tm.tm_mon -= 1; |
| |
| return ppc_md.set_rtc_time(&tm); |
| } |
| |
| static void __read_persistent_clock(struct timespec *ts) |
| { |
| struct rtc_time tm; |
| static int first = 1; |
| |
| ts->tv_nsec = 0; |
| /* XXX this is a litle fragile but will work okay in the short term */ |
| if (first) { |
| first = 0; |
| if (ppc_md.time_init) |
| timezone_offset = ppc_md.time_init(); |
| |
| /* get_boot_time() isn't guaranteed to be safe to call late */ |
| if (ppc_md.get_boot_time) { |
| ts->tv_sec = ppc_md.get_boot_time() - timezone_offset; |
| return; |
| } |
| } |
| if (!ppc_md.get_rtc_time) { |
| ts->tv_sec = 0; |
| return; |
| } |
| ppc_md.get_rtc_time(&tm); |
| |
| ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday, |
| tm.tm_hour, tm.tm_min, tm.tm_sec); |
| } |
| |
| void read_persistent_clock(struct timespec *ts) |
| { |
| __read_persistent_clock(ts); |
| |
| /* Sanitize it in case real time clock is set below EPOCH */ |
| if (ts->tv_sec < 0) { |
| ts->tv_sec = 0; |
| ts->tv_nsec = 0; |
| } |
| |
| } |
| |
| /* clocksource code */ |
| static cycle_t rtc_read(struct clocksource *cs) |
| { |
| return (cycle_t)get_rtc(); |
| } |
| |
| static cycle_t timebase_read(struct clocksource *cs) |
| { |
| return (cycle_t)get_tb(); |
| } |
| |
| void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm, |
| struct clocksource *clock, u32 mult, cycle_t cycle_last) |
| { |
| u64 new_tb_to_xs, new_stamp_xsec; |
| u32 frac_sec; |
| |
| if (clock != &clocksource_timebase) |
| return; |
| |
| /* Make userspace gettimeofday spin until we're done. */ |
| ++vdso_data->tb_update_count; |
| smp_mb(); |
| |
| /* 19342813113834067 ~= 2^(20+64) / 1e9 */ |
| new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift); |
| new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC; |
| do_div(new_stamp_xsec, 1000000000); |
| new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC; |
| |
| BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC); |
| /* this is tv_nsec / 1e9 as a 0.32 fraction */ |
| frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32; |
| |
| /* |
| * tb_update_count is used to allow the userspace gettimeofday code |
| * to assure itself that it sees a consistent view of the tb_to_xs and |
| * stamp_xsec variables. It reads the tb_update_count, then reads |
| * tb_to_xs and stamp_xsec and then reads tb_update_count again. If |
| * the two values of tb_update_count match and are even then the |
| * tb_to_xs and stamp_xsec values are consistent. If not, then it |
| * loops back and reads them again until this criteria is met. |
| * We expect the caller to have done the first increment of |
| * vdso_data->tb_update_count already. |
| */ |
| vdso_data->tb_orig_stamp = cycle_last; |
| vdso_data->stamp_xsec = new_stamp_xsec; |
| vdso_data->tb_to_xs = new_tb_to_xs; |
| vdso_data->wtom_clock_sec = wtm->tv_sec; |
| vdso_data->wtom_clock_nsec = wtm->tv_nsec; |
| vdso_data->stamp_xtime = *wall_time; |
| vdso_data->stamp_sec_fraction = frac_sec; |
| smp_wmb(); |
| ++(vdso_data->tb_update_count); |
| } |
| |
| void update_vsyscall_tz(void) |
| { |
| vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; |
| vdso_data->tz_dsttime = sys_tz.tz_dsttime; |
| } |
| |
| static void __init clocksource_init(void) |
| { |
| struct clocksource *clock; |
| |
| if (__USE_RTC()) |
| clock = &clocksource_rtc; |
| else |
| clock = &clocksource_timebase; |
| |
| if (clocksource_register_hz(clock, tb_ticks_per_sec)) { |
| printk(KERN_ERR "clocksource: %s is already registered\n", |
| clock->name); |
| return; |
| } |
| |
| printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n", |
| clock->name, clock->mult, clock->shift); |
| } |
| |
| static int decrementer_set_next_event(unsigned long evt, |
| struct clock_event_device *dev) |
| { |
| __this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt); |
| set_dec(evt); |
| |
| /* We may have raced with new irq work */ |
| if (test_irq_work_pending()) |
| set_dec(1); |
| |
| return 0; |
| } |
| |
| static int decrementer_shutdown(struct clock_event_device *dev) |
| { |
| decrementer_set_next_event(DECREMENTER_MAX, dev); |
| return 0; |
| } |
| |
| /* Interrupt handler for the timer broadcast IPI */ |
| void tick_broadcast_ipi_handler(void) |
| { |
| u64 *next_tb = this_cpu_ptr(&decrementers_next_tb); |
| |
| *next_tb = get_tb_or_rtc(); |
| __timer_interrupt(); |
| } |
| |
| static void register_decrementer_clockevent(int cpu) |
| { |
| struct clock_event_device *dec = &per_cpu(decrementers, cpu); |
| |
| *dec = decrementer_clockevent; |
| dec->cpumask = cpumask_of(cpu); |
| |
| printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n", |
| dec->name, dec->mult, dec->shift, cpu); |
| |
| clockevents_register_device(dec); |
| } |
| |
| static void __init init_decrementer_clockevent(void) |
| { |
| int cpu = smp_processor_id(); |
| |
| clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4); |
| |
| decrementer_clockevent.max_delta_ns = |
| clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent); |
| decrementer_clockevent.min_delta_ns = |
| clockevent_delta2ns(2, &decrementer_clockevent); |
| |
| register_decrementer_clockevent(cpu); |
| } |
| |
| void secondary_cpu_time_init(void) |
| { |
| /* Start the decrementer on CPUs that have manual control |
| * such as BookE |
| */ |
| start_cpu_decrementer(); |
| |
| /* FIME: Should make unrelatred change to move snapshot_timebase |
| * call here ! */ |
| register_decrementer_clockevent(smp_processor_id()); |
| } |
| |
| /* This function is only called on the boot processor */ |
| void __init time_init(void) |
| { |
| struct div_result res; |
| u64 scale; |
| unsigned shift; |
| |
| if (__USE_RTC()) { |
| /* 601 processor: dec counts down by 128 every 128ns */ |
| ppc_tb_freq = 1000000000; |
| } else { |
| /* Normal PowerPC with timebase register */ |
| ppc_md.calibrate_decr(); |
| printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n", |
| ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); |
| printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n", |
| ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); |
| } |
| |
| tb_ticks_per_jiffy = ppc_tb_freq / HZ; |
| tb_ticks_per_sec = ppc_tb_freq; |
| tb_ticks_per_usec = ppc_tb_freq / 1000000; |
| calc_cputime_factors(); |
| setup_cputime_one_jiffy(); |
| |
| /* |
| * Compute scale factor for sched_clock. |
| * The calibrate_decr() function has set tb_ticks_per_sec, |
| * which is the timebase frequency. |
| * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret |
| * the 128-bit result as a 64.64 fixed-point number. |
| * We then shift that number right until it is less than 1.0, |
| * giving us the scale factor and shift count to use in |
| * sched_clock(). |
| */ |
| div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); |
| scale = res.result_low; |
| for (shift = 0; res.result_high != 0; ++shift) { |
| scale = (scale >> 1) | (res.result_high << 63); |
| res.result_high >>= 1; |
| } |
| tb_to_ns_scale = scale; |
| tb_to_ns_shift = shift; |
| /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */ |
| boot_tb = get_tb_or_rtc(); |
| |
| /* If platform provided a timezone (pmac), we correct the time */ |
| if (timezone_offset) { |
| sys_tz.tz_minuteswest = -timezone_offset / 60; |
| sys_tz.tz_dsttime = 0; |
| } |
| |
| vdso_data->tb_update_count = 0; |
| vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; |
| |
| /* Start the decrementer on CPUs that have manual control |
| * such as BookE |
| */ |
| start_cpu_decrementer(); |
| |
| /* Register the clocksource */ |
| clocksource_init(); |
| |
| init_decrementer_clockevent(); |
| tick_setup_hrtimer_broadcast(); |
| |
| #ifdef CONFIG_COMMON_CLK |
| of_clk_init(NULL); |
| #endif |
| } |
| |
| |
| #define FEBRUARY 2 |
| #define STARTOFTIME 1970 |
| #define SECDAY 86400L |
| #define SECYR (SECDAY * 365) |
| #define leapyear(year) ((year) % 4 == 0 && \ |
| ((year) % 100 != 0 || (year) % 400 == 0)) |
| #define days_in_year(a) (leapyear(a) ? 366 : 365) |
| #define days_in_month(a) (month_days[(a) - 1]) |
| |
| static int month_days[12] = { |
| 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 |
| }; |
| |
| /* |
| * This only works for the Gregorian calendar - i.e. after 1752 (in the UK) |
| */ |
| void GregorianDay(struct rtc_time * tm) |
| { |
| int leapsToDate; |
| int lastYear; |
| int day; |
| int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; |
| |
| lastYear = tm->tm_year - 1; |
| |
| /* |
| * Number of leap corrections to apply up to end of last year |
| */ |
| leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400; |
| |
| /* |
| * This year is a leap year if it is divisible by 4 except when it is |
| * divisible by 100 unless it is divisible by 400 |
| * |
| * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was |
| */ |
| day = tm->tm_mon > 2 && leapyear(tm->tm_year); |
| |
| day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] + |
| tm->tm_mday; |
| |
| tm->tm_wday = day % 7; |
| } |
| EXPORT_SYMBOL_GPL(GregorianDay); |
| |
| void to_tm(int tim, struct rtc_time * tm) |
| { |
| register int i; |
| register long hms, day; |
| |
| day = tim / SECDAY; |
| hms = tim % SECDAY; |
| |
| /* Hours, minutes, seconds are easy */ |
| tm->tm_hour = hms / 3600; |
| tm->tm_min = (hms % 3600) / 60; |
| tm->tm_sec = (hms % 3600) % 60; |
| |
| /* Number of years in days */ |
| for (i = STARTOFTIME; day >= days_in_year(i); i++) |
| day -= days_in_year(i); |
| tm->tm_year = i; |
| |
| /* Number of months in days left */ |
| if (leapyear(tm->tm_year)) |
| days_in_month(FEBRUARY) = 29; |
| for (i = 1; day >= days_in_month(i); i++) |
| day -= days_in_month(i); |
| days_in_month(FEBRUARY) = 28; |
| tm->tm_mon = i; |
| |
| /* Days are what is left over (+1) from all that. */ |
| tm->tm_mday = day + 1; |
| |
| /* |
| * Determine the day of week |
| */ |
| GregorianDay(tm); |
| } |
| EXPORT_SYMBOL(to_tm); |
| |
| /* |
| * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit |
| * result. |
| */ |
| void div128_by_32(u64 dividend_high, u64 dividend_low, |
| unsigned divisor, struct div_result *dr) |
| { |
| unsigned long a, b, c, d; |
| unsigned long w, x, y, z; |
| u64 ra, rb, rc; |
| |
| a = dividend_high >> 32; |
| b = dividend_high & 0xffffffff; |
| c = dividend_low >> 32; |
| d = dividend_low & 0xffffffff; |
| |
| w = a / divisor; |
| ra = ((u64)(a - (w * divisor)) << 32) + b; |
| |
| rb = ((u64) do_div(ra, divisor) << 32) + c; |
| x = ra; |
| |
| rc = ((u64) do_div(rb, divisor) << 32) + d; |
| y = rb; |
| |
| do_div(rc, divisor); |
| z = rc; |
| |
| dr->result_high = ((u64)w << 32) + x; |
| dr->result_low = ((u64)y << 32) + z; |
| |
| } |
| |
| /* We don't need to calibrate delay, we use the CPU timebase for that */ |
| void calibrate_delay(void) |
| { |
| /* Some generic code (such as spinlock debug) use loops_per_jiffy |
| * as the number of __delay(1) in a jiffy, so make it so |
| */ |
| loops_per_jiffy = tb_ticks_per_jiffy; |
| } |
| |
| static int __init rtc_init(void) |
| { |
| struct platform_device *pdev; |
| |
| if (!ppc_md.get_rtc_time) |
| return -ENODEV; |
| |
| pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0); |
| |
| return PTR_ERR_OR_ZERO(pdev); |
| } |
| |
| device_initcall(rtc_init); |