| // SPDX-License-Identifier: GPL-2.0 OR MIT |
| /* |
| * Copyright (C) 2015-2016 The fiat-crypto Authors. |
| * Copyright (C) 2018-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. |
| * |
| * This is a machine-generated formally verified implementation of Curve25519 |
| * ECDH from: <https://github.com/mit-plv/fiat-crypto>. Though originally |
| * machine generated, it has been tweaked to be suitable for use in the kernel. |
| * It is optimized for 32-bit machines and machines that cannot work efficiently |
| * with 128-bit integer types. |
| */ |
| |
| /* fe means field element. Here the field is \Z/(2^255-19). An element t, |
| * entries t[0]...t[9], represents the integer t[0]+2^26 t[1]+2^51 t[2]+2^77 |
| * t[3]+2^102 t[4]+...+2^230 t[9]. |
| * fe limbs are bounded by 1.125*2^26,1.125*2^25,1.125*2^26,1.125*2^25,etc. |
| * Multiplication and carrying produce fe from fe_loose. |
| */ |
| typedef struct fe { u32 v[10]; } fe; |
| |
| /* fe_loose limbs are bounded by 3.375*2^26,3.375*2^25,3.375*2^26,3.375*2^25,etc |
| * Addition and subtraction produce fe_loose from (fe, fe). |
| */ |
| typedef struct fe_loose { u32 v[10]; } fe_loose; |
| |
| static __always_inline void fe_frombytes_impl(u32 h[10], const u8 *s) |
| { |
| /* Ignores top bit of s. */ |
| u32 a0 = get_unaligned_le32(s); |
| u32 a1 = get_unaligned_le32(s+4); |
| u32 a2 = get_unaligned_le32(s+8); |
| u32 a3 = get_unaligned_le32(s+12); |
| u32 a4 = get_unaligned_le32(s+16); |
| u32 a5 = get_unaligned_le32(s+20); |
| u32 a6 = get_unaligned_le32(s+24); |
| u32 a7 = get_unaligned_le32(s+28); |
| h[0] = a0&((1<<26)-1); /* 26 used, 32-26 left. 26 */ |
| h[1] = (a0>>26) | ((a1&((1<<19)-1))<< 6); /* (32-26) + 19 = 6+19 = 25 */ |
| h[2] = (a1>>19) | ((a2&((1<<13)-1))<<13); /* (32-19) + 13 = 13+13 = 26 */ |
| h[3] = (a2>>13) | ((a3&((1<< 6)-1))<<19); /* (32-13) + 6 = 19+ 6 = 25 */ |
| h[4] = (a3>> 6); /* (32- 6) = 26 */ |
| h[5] = a4&((1<<25)-1); /* 25 */ |
| h[6] = (a4>>25) | ((a5&((1<<19)-1))<< 7); /* (32-25) + 19 = 7+19 = 26 */ |
| h[7] = (a5>>19) | ((a6&((1<<12)-1))<<13); /* (32-19) + 12 = 13+12 = 25 */ |
| h[8] = (a6>>12) | ((a7&((1<< 6)-1))<<20); /* (32-12) + 6 = 20+ 6 = 26 */ |
| h[9] = (a7>> 6)&((1<<25)-1); /* 25 */ |
| } |
| |
| static __always_inline void fe_frombytes(fe *h, const u8 *s) |
| { |
| fe_frombytes_impl(h->v, s); |
| } |
| |
| static __always_inline u8 /*bool*/ |
| addcarryx_u25(u8 /*bool*/ c, u32 a, u32 b, u32 *low) |
| { |
| /* This function extracts 25 bits of result and 1 bit of carry |
| * (26 total), so a 32-bit intermediate is sufficient. |
| */ |
| u32 x = a + b + c; |
| *low = x & ((1 << 25) - 1); |
| return (x >> 25) & 1; |
| } |
| |
| static __always_inline u8 /*bool*/ |
| addcarryx_u26(u8 /*bool*/ c, u32 a, u32 b, u32 *low) |
| { |
| /* This function extracts 26 bits of result and 1 bit of carry |
| * (27 total), so a 32-bit intermediate is sufficient. |
| */ |
| u32 x = a + b + c; |
| *low = x & ((1 << 26) - 1); |
| return (x >> 26) & 1; |
| } |
| |
| static __always_inline u8 /*bool*/ |
| subborrow_u25(u8 /*bool*/ c, u32 a, u32 b, u32 *low) |
| { |
| /* This function extracts 25 bits of result and 1 bit of borrow |
| * (26 total), so a 32-bit intermediate is sufficient. |
| */ |
| u32 x = a - b - c; |
| *low = x & ((1 << 25) - 1); |
| return x >> 31; |
| } |
| |
| static __always_inline u8 /*bool*/ |
| subborrow_u26(u8 /*bool*/ c, u32 a, u32 b, u32 *low) |
| { |
| /* This function extracts 26 bits of result and 1 bit of borrow |
| *(27 total), so a 32-bit intermediate is sufficient. |
| */ |
| u32 x = a - b - c; |
| *low = x & ((1 << 26) - 1); |
| return x >> 31; |
| } |
| |
| static __always_inline u32 cmovznz32(u32 t, u32 z, u32 nz) |
| { |
| t = -!!t; /* all set if nonzero, 0 if 0 */ |
| return (t&nz) | ((~t)&z); |
| } |
| |
| static __always_inline void fe_freeze(u32 out[10], const u32 in1[10]) |
| { |
| { const u32 x17 = in1[9]; |
| { const u32 x18 = in1[8]; |
| { const u32 x16 = in1[7]; |
| { const u32 x14 = in1[6]; |
| { const u32 x12 = in1[5]; |
| { const u32 x10 = in1[4]; |
| { const u32 x8 = in1[3]; |
| { const u32 x6 = in1[2]; |
| { const u32 x4 = in1[1]; |
| { const u32 x2 = in1[0]; |
| { u32 x20; u8/*bool*/ x21 = subborrow_u26(0x0, x2, 0x3ffffed, &x20); |
| { u32 x23; u8/*bool*/ x24 = subborrow_u25(x21, x4, 0x1ffffff, &x23); |
| { u32 x26; u8/*bool*/ x27 = subborrow_u26(x24, x6, 0x3ffffff, &x26); |
| { u32 x29; u8/*bool*/ x30 = subborrow_u25(x27, x8, 0x1ffffff, &x29); |
| { u32 x32; u8/*bool*/ x33 = subborrow_u26(x30, x10, 0x3ffffff, &x32); |
| { u32 x35; u8/*bool*/ x36 = subborrow_u25(x33, x12, 0x1ffffff, &x35); |
| { u32 x38; u8/*bool*/ x39 = subborrow_u26(x36, x14, 0x3ffffff, &x38); |
| { u32 x41; u8/*bool*/ x42 = subborrow_u25(x39, x16, 0x1ffffff, &x41); |
| { u32 x44; u8/*bool*/ x45 = subborrow_u26(x42, x18, 0x3ffffff, &x44); |
| { u32 x47; u8/*bool*/ x48 = subborrow_u25(x45, x17, 0x1ffffff, &x47); |
| { u32 x49 = cmovznz32(x48, 0x0, 0xffffffff); |
| { u32 x50 = (x49 & 0x3ffffed); |
| { u32 x52; u8/*bool*/ x53 = addcarryx_u26(0x0, x20, x50, &x52); |
| { u32 x54 = (x49 & 0x1ffffff); |
| { u32 x56; u8/*bool*/ x57 = addcarryx_u25(x53, x23, x54, &x56); |
| { u32 x58 = (x49 & 0x3ffffff); |
| { u32 x60; u8/*bool*/ x61 = addcarryx_u26(x57, x26, x58, &x60); |
| { u32 x62 = (x49 & 0x1ffffff); |
| { u32 x64; u8/*bool*/ x65 = addcarryx_u25(x61, x29, x62, &x64); |
| { u32 x66 = (x49 & 0x3ffffff); |
| { u32 x68; u8/*bool*/ x69 = addcarryx_u26(x65, x32, x66, &x68); |
| { u32 x70 = (x49 & 0x1ffffff); |
| { u32 x72; u8/*bool*/ x73 = addcarryx_u25(x69, x35, x70, &x72); |
| { u32 x74 = (x49 & 0x3ffffff); |
| { u32 x76; u8/*bool*/ x77 = addcarryx_u26(x73, x38, x74, &x76); |
| { u32 x78 = (x49 & 0x1ffffff); |
| { u32 x80; u8/*bool*/ x81 = addcarryx_u25(x77, x41, x78, &x80); |
| { u32 x82 = (x49 & 0x3ffffff); |
| { u32 x84; u8/*bool*/ x85 = addcarryx_u26(x81, x44, x82, &x84); |
| { u32 x86 = (x49 & 0x1ffffff); |
| { u32 x88; addcarryx_u25(x85, x47, x86, &x88); |
| out[0] = x52; |
| out[1] = x56; |
| out[2] = x60; |
| out[3] = x64; |
| out[4] = x68; |
| out[5] = x72; |
| out[6] = x76; |
| out[7] = x80; |
| out[8] = x84; |
| out[9] = x88; |
| }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} |
| } |
| |
| static __always_inline void fe_tobytes(u8 s[32], const fe *f) |
| { |
| u32 h[10]; |
| fe_freeze(h, f->v); |
| s[0] = h[0] >> 0; |
| s[1] = h[0] >> 8; |
| s[2] = h[0] >> 16; |
| s[3] = (h[0] >> 24) | (h[1] << 2); |
| s[4] = h[1] >> 6; |
| s[5] = h[1] >> 14; |
| s[6] = (h[1] >> 22) | (h[2] << 3); |
| s[7] = h[2] >> 5; |
| s[8] = h[2] >> 13; |
| s[9] = (h[2] >> 21) | (h[3] << 5); |
| s[10] = h[3] >> 3; |
| s[11] = h[3] >> 11; |
| s[12] = (h[3] >> 19) | (h[4] << 6); |
| s[13] = h[4] >> 2; |
| s[14] = h[4] >> 10; |
| s[15] = h[4] >> 18; |
| s[16] = h[5] >> 0; |
| s[17] = h[5] >> 8; |
| s[18] = h[5] >> 16; |
| s[19] = (h[5] >> 24) | (h[6] << 1); |
| s[20] = h[6] >> 7; |
| s[21] = h[6] >> 15; |
| s[22] = (h[6] >> 23) | (h[7] << 3); |
| s[23] = h[7] >> 5; |
| s[24] = h[7] >> 13; |
| s[25] = (h[7] >> 21) | (h[8] << 4); |
| s[26] = h[8] >> 4; |
| s[27] = h[8] >> 12; |
| s[28] = (h[8] >> 20) | (h[9] << 6); |
| s[29] = h[9] >> 2; |
| s[30] = h[9] >> 10; |
| s[31] = h[9] >> 18; |
| } |
| |
| /* h = f */ |
| static __always_inline void fe_copy(fe *h, const fe *f) |
| { |
| memmove(h, f, sizeof(u32) * 10); |
| } |
| |
| static __always_inline void fe_copy_lt(fe_loose *h, const fe *f) |
| { |
| memmove(h, f, sizeof(u32) * 10); |
| } |
| |
| /* h = 0 */ |
| static __always_inline void fe_0(fe *h) |
| { |
| memset(h, 0, sizeof(u32) * 10); |
| } |
| |
| /* h = 1 */ |
| static __always_inline void fe_1(fe *h) |
| { |
| memset(h, 0, sizeof(u32) * 10); |
| h->v[0] = 1; |
| } |
| |
| static void fe_add_impl(u32 out[10], const u32 in1[10], const u32 in2[10]) |
| { |
| { const u32 x20 = in1[9]; |
| { const u32 x21 = in1[8]; |
| { const u32 x19 = in1[7]; |
| { const u32 x17 = in1[6]; |
| { const u32 x15 = in1[5]; |
| { const u32 x13 = in1[4]; |
| { const u32 x11 = in1[3]; |
| { const u32 x9 = in1[2]; |
| { const u32 x7 = in1[1]; |
| { const u32 x5 = in1[0]; |
| { const u32 x38 = in2[9]; |
| { const u32 x39 = in2[8]; |
| { const u32 x37 = in2[7]; |
| { const u32 x35 = in2[6]; |
| { const u32 x33 = in2[5]; |
| { const u32 x31 = in2[4]; |
| { const u32 x29 = in2[3]; |
| { const u32 x27 = in2[2]; |
| { const u32 x25 = in2[1]; |
| { const u32 x23 = in2[0]; |
| out[0] = (x5 + x23); |
| out[1] = (x7 + x25); |
| out[2] = (x9 + x27); |
| out[3] = (x11 + x29); |
| out[4] = (x13 + x31); |
| out[5] = (x15 + x33); |
| out[6] = (x17 + x35); |
| out[7] = (x19 + x37); |
| out[8] = (x21 + x39); |
| out[9] = (x20 + x38); |
| }}}}}}}}}}}}}}}}}}}} |
| } |
| |
| /* h = f + g |
| * Can overlap h with f or g. |
| */ |
| static __always_inline void fe_add(fe_loose *h, const fe *f, const fe *g) |
| { |
| fe_add_impl(h->v, f->v, g->v); |
| } |
| |
| static void fe_sub_impl(u32 out[10], const u32 in1[10], const u32 in2[10]) |
| { |
| { const u32 x20 = in1[9]; |
| { const u32 x21 = in1[8]; |
| { const u32 x19 = in1[7]; |
| { const u32 x17 = in1[6]; |
| { const u32 x15 = in1[5]; |
| { const u32 x13 = in1[4]; |
| { const u32 x11 = in1[3]; |
| { const u32 x9 = in1[2]; |
| { const u32 x7 = in1[1]; |
| { const u32 x5 = in1[0]; |
| { const u32 x38 = in2[9]; |
| { const u32 x39 = in2[8]; |
| { const u32 x37 = in2[7]; |
| { const u32 x35 = in2[6]; |
| { const u32 x33 = in2[5]; |
| { const u32 x31 = in2[4]; |
| { const u32 x29 = in2[3]; |
| { const u32 x27 = in2[2]; |
| { const u32 x25 = in2[1]; |
| { const u32 x23 = in2[0]; |
| out[0] = ((0x7ffffda + x5) - x23); |
| out[1] = ((0x3fffffe + x7) - x25); |
| out[2] = ((0x7fffffe + x9) - x27); |
| out[3] = ((0x3fffffe + x11) - x29); |
| out[4] = ((0x7fffffe + x13) - x31); |
| out[5] = ((0x3fffffe + x15) - x33); |
| out[6] = ((0x7fffffe + x17) - x35); |
| out[7] = ((0x3fffffe + x19) - x37); |
| out[8] = ((0x7fffffe + x21) - x39); |
| out[9] = ((0x3fffffe + x20) - x38); |
| }}}}}}}}}}}}}}}}}}}} |
| } |
| |
| /* h = f - g |
| * Can overlap h with f or g. |
| */ |
| static __always_inline void fe_sub(fe_loose *h, const fe *f, const fe *g) |
| { |
| fe_sub_impl(h->v, f->v, g->v); |
| } |
| |
| static void fe_mul_impl(u32 out[10], const u32 in1[10], const u32 in2[10]) |
| { |
| { const u32 x20 = in1[9]; |
| { const u32 x21 = in1[8]; |
| { const u32 x19 = in1[7]; |
| { const u32 x17 = in1[6]; |
| { const u32 x15 = in1[5]; |
| { const u32 x13 = in1[4]; |
| { const u32 x11 = in1[3]; |
| { const u32 x9 = in1[2]; |
| { const u32 x7 = in1[1]; |
| { const u32 x5 = in1[0]; |
| { const u32 x38 = in2[9]; |
| { const u32 x39 = in2[8]; |
| { const u32 x37 = in2[7]; |
| { const u32 x35 = in2[6]; |
| { const u32 x33 = in2[5]; |
| { const u32 x31 = in2[4]; |
| { const u32 x29 = in2[3]; |
| { const u32 x27 = in2[2]; |
| { const u32 x25 = in2[1]; |
| { const u32 x23 = in2[0]; |
| { u64 x40 = ((u64)x23 * x5); |
| { u64 x41 = (((u64)x23 * x7) + ((u64)x25 * x5)); |
| { u64 x42 = ((((u64)(0x2 * x25) * x7) + ((u64)x23 * x9)) + ((u64)x27 * x5)); |
| { u64 x43 = (((((u64)x25 * x9) + ((u64)x27 * x7)) + ((u64)x23 * x11)) + ((u64)x29 * x5)); |
| { u64 x44 = (((((u64)x27 * x9) + (0x2 * (((u64)x25 * x11) + ((u64)x29 * x7)))) + ((u64)x23 * x13)) + ((u64)x31 * x5)); |
| { u64 x45 = (((((((u64)x27 * x11) + ((u64)x29 * x9)) + ((u64)x25 * x13)) + ((u64)x31 * x7)) + ((u64)x23 * x15)) + ((u64)x33 * x5)); |
| { u64 x46 = (((((0x2 * ((((u64)x29 * x11) + ((u64)x25 * x15)) + ((u64)x33 * x7))) + ((u64)x27 * x13)) + ((u64)x31 * x9)) + ((u64)x23 * x17)) + ((u64)x35 * x5)); |
| { u64 x47 = (((((((((u64)x29 * x13) + ((u64)x31 * x11)) + ((u64)x27 * x15)) + ((u64)x33 * x9)) + ((u64)x25 * x17)) + ((u64)x35 * x7)) + ((u64)x23 * x19)) + ((u64)x37 * x5)); |
| { u64 x48 = (((((((u64)x31 * x13) + (0x2 * (((((u64)x29 * x15) + ((u64)x33 * x11)) + ((u64)x25 * x19)) + ((u64)x37 * x7)))) + ((u64)x27 * x17)) + ((u64)x35 * x9)) + ((u64)x23 * x21)) + ((u64)x39 * x5)); |
| { u64 x49 = (((((((((((u64)x31 * x15) + ((u64)x33 * x13)) + ((u64)x29 * x17)) + ((u64)x35 * x11)) + ((u64)x27 * x19)) + ((u64)x37 * x9)) + ((u64)x25 * x21)) + ((u64)x39 * x7)) + ((u64)x23 * x20)) + ((u64)x38 * x5)); |
| { u64 x50 = (((((0x2 * ((((((u64)x33 * x15) + ((u64)x29 * x19)) + ((u64)x37 * x11)) + ((u64)x25 * x20)) + ((u64)x38 * x7))) + ((u64)x31 * x17)) + ((u64)x35 * x13)) + ((u64)x27 * x21)) + ((u64)x39 * x9)); |
| { u64 x51 = (((((((((u64)x33 * x17) + ((u64)x35 * x15)) + ((u64)x31 * x19)) + ((u64)x37 * x13)) + ((u64)x29 * x21)) + ((u64)x39 * x11)) + ((u64)x27 * x20)) + ((u64)x38 * x9)); |
| { u64 x52 = (((((u64)x35 * x17) + (0x2 * (((((u64)x33 * x19) + ((u64)x37 * x15)) + ((u64)x29 * x20)) + ((u64)x38 * x11)))) + ((u64)x31 * x21)) + ((u64)x39 * x13)); |
| { u64 x53 = (((((((u64)x35 * x19) + ((u64)x37 * x17)) + ((u64)x33 * x21)) + ((u64)x39 * x15)) + ((u64)x31 * x20)) + ((u64)x38 * x13)); |
| { u64 x54 = (((0x2 * ((((u64)x37 * x19) + ((u64)x33 * x20)) + ((u64)x38 * x15))) + ((u64)x35 * x21)) + ((u64)x39 * x17)); |
| { u64 x55 = (((((u64)x37 * x21) + ((u64)x39 * x19)) + ((u64)x35 * x20)) + ((u64)x38 * x17)); |
| { u64 x56 = (((u64)x39 * x21) + (0x2 * (((u64)x37 * x20) + ((u64)x38 * x19)))); |
| { u64 x57 = (((u64)x39 * x20) + ((u64)x38 * x21)); |
| { u64 x58 = ((u64)(0x2 * x38) * x20); |
| { u64 x59 = (x48 + (x58 << 0x4)); |
| { u64 x60 = (x59 + (x58 << 0x1)); |
| { u64 x61 = (x60 + x58); |
| { u64 x62 = (x47 + (x57 << 0x4)); |
| { u64 x63 = (x62 + (x57 << 0x1)); |
| { u64 x64 = (x63 + x57); |
| { u64 x65 = (x46 + (x56 << 0x4)); |
| { u64 x66 = (x65 + (x56 << 0x1)); |
| { u64 x67 = (x66 + x56); |
| { u64 x68 = (x45 + (x55 << 0x4)); |
| { u64 x69 = (x68 + (x55 << 0x1)); |
| { u64 x70 = (x69 + x55); |
| { u64 x71 = (x44 + (x54 << 0x4)); |
| { u64 x72 = (x71 + (x54 << 0x1)); |
| { u64 x73 = (x72 + x54); |
| { u64 x74 = (x43 + (x53 << 0x4)); |
| { u64 x75 = (x74 + (x53 << 0x1)); |
| { u64 x76 = (x75 + x53); |
| { u64 x77 = (x42 + (x52 << 0x4)); |
| { u64 x78 = (x77 + (x52 << 0x1)); |
| { u64 x79 = (x78 + x52); |
| { u64 x80 = (x41 + (x51 << 0x4)); |
| { u64 x81 = (x80 + (x51 << 0x1)); |
| { u64 x82 = (x81 + x51); |
| { u64 x83 = (x40 + (x50 << 0x4)); |
| { u64 x84 = (x83 + (x50 << 0x1)); |
| { u64 x85 = (x84 + x50); |
| { u64 x86 = (x85 >> 0x1a); |
| { u32 x87 = ((u32)x85 & 0x3ffffff); |
| { u64 x88 = (x86 + x82); |
| { u64 x89 = (x88 >> 0x19); |
| { u32 x90 = ((u32)x88 & 0x1ffffff); |
| { u64 x91 = (x89 + x79); |
| { u64 x92 = (x91 >> 0x1a); |
| { u32 x93 = ((u32)x91 & 0x3ffffff); |
| { u64 x94 = (x92 + x76); |
| { u64 x95 = (x94 >> 0x19); |
| { u32 x96 = ((u32)x94 & 0x1ffffff); |
| { u64 x97 = (x95 + x73); |
| { u64 x98 = (x97 >> 0x1a); |
| { u32 x99 = ((u32)x97 & 0x3ffffff); |
| { u64 x100 = (x98 + x70); |
| { u64 x101 = (x100 >> 0x19); |
| { u32 x102 = ((u32)x100 & 0x1ffffff); |
| { u64 x103 = (x101 + x67); |
| { u64 x104 = (x103 >> 0x1a); |
| { u32 x105 = ((u32)x103 & 0x3ffffff); |
| { u64 x106 = (x104 + x64); |
| { u64 x107 = (x106 >> 0x19); |
| { u32 x108 = ((u32)x106 & 0x1ffffff); |
| { u64 x109 = (x107 + x61); |
| { u64 x110 = (x109 >> 0x1a); |
| { u32 x111 = ((u32)x109 & 0x3ffffff); |
| { u64 x112 = (x110 + x49); |
| { u64 x113 = (x112 >> 0x19); |
| { u32 x114 = ((u32)x112 & 0x1ffffff); |
| { u64 x115 = (x87 + (0x13 * x113)); |
| { u32 x116 = (u32) (x115 >> 0x1a); |
| { u32 x117 = ((u32)x115 & 0x3ffffff); |
| { u32 x118 = (x116 + x90); |
| { u32 x119 = (x118 >> 0x19); |
| { u32 x120 = (x118 & 0x1ffffff); |
| out[0] = x117; |
| out[1] = x120; |
| out[2] = (x119 + x93); |
| out[3] = x96; |
| out[4] = x99; |
| out[5] = x102; |
| out[6] = x105; |
| out[7] = x108; |
| out[8] = x111; |
| out[9] = x114; |
| }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} |
| } |
| |
| static __always_inline void fe_mul_ttt(fe *h, const fe *f, const fe *g) |
| { |
| fe_mul_impl(h->v, f->v, g->v); |
| } |
| |
| static __always_inline void fe_mul_tlt(fe *h, const fe_loose *f, const fe *g) |
| { |
| fe_mul_impl(h->v, f->v, g->v); |
| } |
| |
| static __always_inline void |
| fe_mul_tll(fe *h, const fe_loose *f, const fe_loose *g) |
| { |
| fe_mul_impl(h->v, f->v, g->v); |
| } |
| |
| static void fe_sqr_impl(u32 out[10], const u32 in1[10]) |
| { |
| { const u32 x17 = in1[9]; |
| { const u32 x18 = in1[8]; |
| { const u32 x16 = in1[7]; |
| { const u32 x14 = in1[6]; |
| { const u32 x12 = in1[5]; |
| { const u32 x10 = in1[4]; |
| { const u32 x8 = in1[3]; |
| { const u32 x6 = in1[2]; |
| { const u32 x4 = in1[1]; |
| { const u32 x2 = in1[0]; |
| { u64 x19 = ((u64)x2 * x2); |
| { u64 x20 = ((u64)(0x2 * x2) * x4); |
| { u64 x21 = (0x2 * (((u64)x4 * x4) + ((u64)x2 * x6))); |
| { u64 x22 = (0x2 * (((u64)x4 * x6) + ((u64)x2 * x8))); |
| { u64 x23 = ((((u64)x6 * x6) + ((u64)(0x4 * x4) * x8)) + ((u64)(0x2 * x2) * x10)); |
| { u64 x24 = (0x2 * ((((u64)x6 * x8) + ((u64)x4 * x10)) + ((u64)x2 * x12))); |
| { u64 x25 = (0x2 * (((((u64)x8 * x8) + ((u64)x6 * x10)) + ((u64)x2 * x14)) + ((u64)(0x2 * x4) * x12))); |
| { u64 x26 = (0x2 * (((((u64)x8 * x10) + ((u64)x6 * x12)) + ((u64)x4 * x14)) + ((u64)x2 * x16))); |
| { u64 x27 = (((u64)x10 * x10) + (0x2 * ((((u64)x6 * x14) + ((u64)x2 * x18)) + (0x2 * (((u64)x4 * x16) + ((u64)x8 * x12)))))); |
| { u64 x28 = (0x2 * ((((((u64)x10 * x12) + ((u64)x8 * x14)) + ((u64)x6 * x16)) + ((u64)x4 * x18)) + ((u64)x2 * x17))); |
| { u64 x29 = (0x2 * (((((u64)x12 * x12) + ((u64)x10 * x14)) + ((u64)x6 * x18)) + (0x2 * (((u64)x8 * x16) + ((u64)x4 * x17))))); |
| { u64 x30 = (0x2 * (((((u64)x12 * x14) + ((u64)x10 * x16)) + ((u64)x8 * x18)) + ((u64)x6 * x17))); |
| { u64 x31 = (((u64)x14 * x14) + (0x2 * (((u64)x10 * x18) + (0x2 * (((u64)x12 * x16) + ((u64)x8 * x17)))))); |
| { u64 x32 = (0x2 * ((((u64)x14 * x16) + ((u64)x12 * x18)) + ((u64)x10 * x17))); |
| { u64 x33 = (0x2 * ((((u64)x16 * x16) + ((u64)x14 * x18)) + ((u64)(0x2 * x12) * x17))); |
| { u64 x34 = (0x2 * (((u64)x16 * x18) + ((u64)x14 * x17))); |
| { u64 x35 = (((u64)x18 * x18) + ((u64)(0x4 * x16) * x17)); |
| { u64 x36 = ((u64)(0x2 * x18) * x17); |
| { u64 x37 = ((u64)(0x2 * x17) * x17); |
| { u64 x38 = (x27 + (x37 << 0x4)); |
| { u64 x39 = (x38 + (x37 << 0x1)); |
| { u64 x40 = (x39 + x37); |
| { u64 x41 = (x26 + (x36 << 0x4)); |
| { u64 x42 = (x41 + (x36 << 0x1)); |
| { u64 x43 = (x42 + x36); |
| { u64 x44 = (x25 + (x35 << 0x4)); |
| { u64 x45 = (x44 + (x35 << 0x1)); |
| { u64 x46 = (x45 + x35); |
| { u64 x47 = (x24 + (x34 << 0x4)); |
| { u64 x48 = (x47 + (x34 << 0x1)); |
| { u64 x49 = (x48 + x34); |
| { u64 x50 = (x23 + (x33 << 0x4)); |
| { u64 x51 = (x50 + (x33 << 0x1)); |
| { u64 x52 = (x51 + x33); |
| { u64 x53 = (x22 + (x32 << 0x4)); |
| { u64 x54 = (x53 + (x32 << 0x1)); |
| { u64 x55 = (x54 + x32); |
| { u64 x56 = (x21 + (x31 << 0x4)); |
| { u64 x57 = (x56 + (x31 << 0x1)); |
| { u64 x58 = (x57 + x31); |
| { u64 x59 = (x20 + (x30 << 0x4)); |
| { u64 x60 = (x59 + (x30 << 0x1)); |
| { u64 x61 = (x60 + x30); |
| { u64 x62 = (x19 + (x29 << 0x4)); |
| { u64 x63 = (x62 + (x29 << 0x1)); |
| { u64 x64 = (x63 + x29); |
| { u64 x65 = (x64 >> 0x1a); |
| { u32 x66 = ((u32)x64 & 0x3ffffff); |
| { u64 x67 = (x65 + x61); |
| { u64 x68 = (x67 >> 0x19); |
| { u32 x69 = ((u32)x67 & 0x1ffffff); |
| { u64 x70 = (x68 + x58); |
| { u64 x71 = (x70 >> 0x1a); |
| { u32 x72 = ((u32)x70 & 0x3ffffff); |
| { u64 x73 = (x71 + x55); |
| { u64 x74 = (x73 >> 0x19); |
| { u32 x75 = ((u32)x73 & 0x1ffffff); |
| { u64 x76 = (x74 + x52); |
| { u64 x77 = (x76 >> 0x1a); |
| { u32 x78 = ((u32)x76 & 0x3ffffff); |
| { u64 x79 = (x77 + x49); |
| { u64 x80 = (x79 >> 0x19); |
| { u32 x81 = ((u32)x79 & 0x1ffffff); |
| { u64 x82 = (x80 + x46); |
| { u64 x83 = (x82 >> 0x1a); |
| { u32 x84 = ((u32)x82 & 0x3ffffff); |
| { u64 x85 = (x83 + x43); |
| { u64 x86 = (x85 >> 0x19); |
| { u32 x87 = ((u32)x85 & 0x1ffffff); |
| { u64 x88 = (x86 + x40); |
| { u64 x89 = (x88 >> 0x1a); |
| { u32 x90 = ((u32)x88 & 0x3ffffff); |
| { u64 x91 = (x89 + x28); |
| { u64 x92 = (x91 >> 0x19); |
| { u32 x93 = ((u32)x91 & 0x1ffffff); |
| { u64 x94 = (x66 + (0x13 * x92)); |
| { u32 x95 = (u32) (x94 >> 0x1a); |
| { u32 x96 = ((u32)x94 & 0x3ffffff); |
| { u32 x97 = (x95 + x69); |
| { u32 x98 = (x97 >> 0x19); |
| { u32 x99 = (x97 & 0x1ffffff); |
| out[0] = x96; |
| out[1] = x99; |
| out[2] = (x98 + x72); |
| out[3] = x75; |
| out[4] = x78; |
| out[5] = x81; |
| out[6] = x84; |
| out[7] = x87; |
| out[8] = x90; |
| out[9] = x93; |
| }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} |
| } |
| |
| static __always_inline void fe_sq_tl(fe *h, const fe_loose *f) |
| { |
| fe_sqr_impl(h->v, f->v); |
| } |
| |
| static __always_inline void fe_sq_tt(fe *h, const fe *f) |
| { |
| fe_sqr_impl(h->v, f->v); |
| } |
| |
| static __always_inline void fe_loose_invert(fe *out, const fe_loose *z) |
| { |
| fe t0; |
| fe t1; |
| fe t2; |
| fe t3; |
| int i; |
| |
| fe_sq_tl(&t0, z); |
| fe_sq_tt(&t1, &t0); |
| for (i = 1; i < 2; ++i) |
| fe_sq_tt(&t1, &t1); |
| fe_mul_tlt(&t1, z, &t1); |
| fe_mul_ttt(&t0, &t0, &t1); |
| fe_sq_tt(&t2, &t0); |
| fe_mul_ttt(&t1, &t1, &t2); |
| fe_sq_tt(&t2, &t1); |
| for (i = 1; i < 5; ++i) |
| fe_sq_tt(&t2, &t2); |
| fe_mul_ttt(&t1, &t2, &t1); |
| fe_sq_tt(&t2, &t1); |
| for (i = 1; i < 10; ++i) |
| fe_sq_tt(&t2, &t2); |
| fe_mul_ttt(&t2, &t2, &t1); |
| fe_sq_tt(&t3, &t2); |
| for (i = 1; i < 20; ++i) |
| fe_sq_tt(&t3, &t3); |
| fe_mul_ttt(&t2, &t3, &t2); |
| fe_sq_tt(&t2, &t2); |
| for (i = 1; i < 10; ++i) |
| fe_sq_tt(&t2, &t2); |
| fe_mul_ttt(&t1, &t2, &t1); |
| fe_sq_tt(&t2, &t1); |
| for (i = 1; i < 50; ++i) |
| fe_sq_tt(&t2, &t2); |
| fe_mul_ttt(&t2, &t2, &t1); |
| fe_sq_tt(&t3, &t2); |
| for (i = 1; i < 100; ++i) |
| fe_sq_tt(&t3, &t3); |
| fe_mul_ttt(&t2, &t3, &t2); |
| fe_sq_tt(&t2, &t2); |
| for (i = 1; i < 50; ++i) |
| fe_sq_tt(&t2, &t2); |
| fe_mul_ttt(&t1, &t2, &t1); |
| fe_sq_tt(&t1, &t1); |
| for (i = 1; i < 5; ++i) |
| fe_sq_tt(&t1, &t1); |
| fe_mul_ttt(out, &t1, &t0); |
| } |
| |
| static __always_inline void fe_invert(fe *out, const fe *z) |
| { |
| fe_loose l; |
| fe_copy_lt(&l, z); |
| fe_loose_invert(out, &l); |
| } |
| |
| /* Replace (f,g) with (g,f) if b == 1; |
| * replace (f,g) with (f,g) if b == 0. |
| * |
| * Preconditions: b in {0,1} |
| */ |
| static __always_inline void fe_cswap(fe *f, fe *g, unsigned int b) |
| { |
| unsigned i; |
| b = 0 - b; |
| for (i = 0; i < 10; i++) { |
| u32 x = f->v[i] ^ g->v[i]; |
| x &= b; |
| f->v[i] ^= x; |
| g->v[i] ^= x; |
| } |
| } |
| |
| /* NOTE: based on fiat-crypto fe_mul, edited for in2=121666, 0, 0.*/ |
| static __always_inline void fe_mul_121666_impl(u32 out[10], const u32 in1[10]) |
| { |
| { const u32 x20 = in1[9]; |
| { const u32 x21 = in1[8]; |
| { const u32 x19 = in1[7]; |
| { const u32 x17 = in1[6]; |
| { const u32 x15 = in1[5]; |
| { const u32 x13 = in1[4]; |
| { const u32 x11 = in1[3]; |
| { const u32 x9 = in1[2]; |
| { const u32 x7 = in1[1]; |
| { const u32 x5 = in1[0]; |
| { const u32 x38 = 0; |
| { const u32 x39 = 0; |
| { const u32 x37 = 0; |
| { const u32 x35 = 0; |
| { const u32 x33 = 0; |
| { const u32 x31 = 0; |
| { const u32 x29 = 0; |
| { const u32 x27 = 0; |
| { const u32 x25 = 0; |
| { const u32 x23 = 121666; |
| { u64 x40 = ((u64)x23 * x5); |
| { u64 x41 = (((u64)x23 * x7) + ((u64)x25 * x5)); |
| { u64 x42 = ((((u64)(0x2 * x25) * x7) + ((u64)x23 * x9)) + ((u64)x27 * x5)); |
| { u64 x43 = (((((u64)x25 * x9) + ((u64)x27 * x7)) + ((u64)x23 * x11)) + ((u64)x29 * x5)); |
| { u64 x44 = (((((u64)x27 * x9) + (0x2 * (((u64)x25 * x11) + ((u64)x29 * x7)))) + ((u64)x23 * x13)) + ((u64)x31 * x5)); |
| { u64 x45 = (((((((u64)x27 * x11) + ((u64)x29 * x9)) + ((u64)x25 * x13)) + ((u64)x31 * x7)) + ((u64)x23 * x15)) + ((u64)x33 * x5)); |
| { u64 x46 = (((((0x2 * ((((u64)x29 * x11) + ((u64)x25 * x15)) + ((u64)x33 * x7))) + ((u64)x27 * x13)) + ((u64)x31 * x9)) + ((u64)x23 * x17)) + ((u64)x35 * x5)); |
| { u64 x47 = (((((((((u64)x29 * x13) + ((u64)x31 * x11)) + ((u64)x27 * x15)) + ((u64)x33 * x9)) + ((u64)x25 * x17)) + ((u64)x35 * x7)) + ((u64)x23 * x19)) + ((u64)x37 * x5)); |
| { u64 x48 = (((((((u64)x31 * x13) + (0x2 * (((((u64)x29 * x15) + ((u64)x33 * x11)) + ((u64)x25 * x19)) + ((u64)x37 * x7)))) + ((u64)x27 * x17)) + ((u64)x35 * x9)) + ((u64)x23 * x21)) + ((u64)x39 * x5)); |
| { u64 x49 = (((((((((((u64)x31 * x15) + ((u64)x33 * x13)) + ((u64)x29 * x17)) + ((u64)x35 * x11)) + ((u64)x27 * x19)) + ((u64)x37 * x9)) + ((u64)x25 * x21)) + ((u64)x39 * x7)) + ((u64)x23 * x20)) + ((u64)x38 * x5)); |
| { u64 x50 = (((((0x2 * ((((((u64)x33 * x15) + ((u64)x29 * x19)) + ((u64)x37 * x11)) + ((u64)x25 * x20)) + ((u64)x38 * x7))) + ((u64)x31 * x17)) + ((u64)x35 * x13)) + ((u64)x27 * x21)) + ((u64)x39 * x9)); |
| { u64 x51 = (((((((((u64)x33 * x17) + ((u64)x35 * x15)) + ((u64)x31 * x19)) + ((u64)x37 * x13)) + ((u64)x29 * x21)) + ((u64)x39 * x11)) + ((u64)x27 * x20)) + ((u64)x38 * x9)); |
| { u64 x52 = (((((u64)x35 * x17) + (0x2 * (((((u64)x33 * x19) + ((u64)x37 * x15)) + ((u64)x29 * x20)) + ((u64)x38 * x11)))) + ((u64)x31 * x21)) + ((u64)x39 * x13)); |
| { u64 x53 = (((((((u64)x35 * x19) + ((u64)x37 * x17)) + ((u64)x33 * x21)) + ((u64)x39 * x15)) + ((u64)x31 * x20)) + ((u64)x38 * x13)); |
| { u64 x54 = (((0x2 * ((((u64)x37 * x19) + ((u64)x33 * x20)) + ((u64)x38 * x15))) + ((u64)x35 * x21)) + ((u64)x39 * x17)); |
| { u64 x55 = (((((u64)x37 * x21) + ((u64)x39 * x19)) + ((u64)x35 * x20)) + ((u64)x38 * x17)); |
| { u64 x56 = (((u64)x39 * x21) + (0x2 * (((u64)x37 * x20) + ((u64)x38 * x19)))); |
| { u64 x57 = (((u64)x39 * x20) + ((u64)x38 * x21)); |
| { u64 x58 = ((u64)(0x2 * x38) * x20); |
| { u64 x59 = (x48 + (x58 << 0x4)); |
| { u64 x60 = (x59 + (x58 << 0x1)); |
| { u64 x61 = (x60 + x58); |
| { u64 x62 = (x47 + (x57 << 0x4)); |
| { u64 x63 = (x62 + (x57 << 0x1)); |
| { u64 x64 = (x63 + x57); |
| { u64 x65 = (x46 + (x56 << 0x4)); |
| { u64 x66 = (x65 + (x56 << 0x1)); |
| { u64 x67 = (x66 + x56); |
| { u64 x68 = (x45 + (x55 << 0x4)); |
| { u64 x69 = (x68 + (x55 << 0x1)); |
| { u64 x70 = (x69 + x55); |
| { u64 x71 = (x44 + (x54 << 0x4)); |
| { u64 x72 = (x71 + (x54 << 0x1)); |
| { u64 x73 = (x72 + x54); |
| { u64 x74 = (x43 + (x53 << 0x4)); |
| { u64 x75 = (x74 + (x53 << 0x1)); |
| { u64 x76 = (x75 + x53); |
| { u64 x77 = (x42 + (x52 << 0x4)); |
| { u64 x78 = (x77 + (x52 << 0x1)); |
| { u64 x79 = (x78 + x52); |
| { u64 x80 = (x41 + (x51 << 0x4)); |
| { u64 x81 = (x80 + (x51 << 0x1)); |
| { u64 x82 = (x81 + x51); |
| { u64 x83 = (x40 + (x50 << 0x4)); |
| { u64 x84 = (x83 + (x50 << 0x1)); |
| { u64 x85 = (x84 + x50); |
| { u64 x86 = (x85 >> 0x1a); |
| { u32 x87 = ((u32)x85 & 0x3ffffff); |
| { u64 x88 = (x86 + x82); |
| { u64 x89 = (x88 >> 0x19); |
| { u32 x90 = ((u32)x88 & 0x1ffffff); |
| { u64 x91 = (x89 + x79); |
| { u64 x92 = (x91 >> 0x1a); |
| { u32 x93 = ((u32)x91 & 0x3ffffff); |
| { u64 x94 = (x92 + x76); |
| { u64 x95 = (x94 >> 0x19); |
| { u32 x96 = ((u32)x94 & 0x1ffffff); |
| { u64 x97 = (x95 + x73); |
| { u64 x98 = (x97 >> 0x1a); |
| { u32 x99 = ((u32)x97 & 0x3ffffff); |
| { u64 x100 = (x98 + x70); |
| { u64 x101 = (x100 >> 0x19); |
| { u32 x102 = ((u32)x100 & 0x1ffffff); |
| { u64 x103 = (x101 + x67); |
| { u64 x104 = (x103 >> 0x1a); |
| { u32 x105 = ((u32)x103 & 0x3ffffff); |
| { u64 x106 = (x104 + x64); |
| { u64 x107 = (x106 >> 0x19); |
| { u32 x108 = ((u32)x106 & 0x1ffffff); |
| { u64 x109 = (x107 + x61); |
| { u64 x110 = (x109 >> 0x1a); |
| { u32 x111 = ((u32)x109 & 0x3ffffff); |
| { u64 x112 = (x110 + x49); |
| { u64 x113 = (x112 >> 0x19); |
| { u32 x114 = ((u32)x112 & 0x1ffffff); |
| { u64 x115 = (x87 + (0x13 * x113)); |
| { u32 x116 = (u32) (x115 >> 0x1a); |
| { u32 x117 = ((u32)x115 & 0x3ffffff); |
| { u32 x118 = (x116 + x90); |
| { u32 x119 = (x118 >> 0x19); |
| { u32 x120 = (x118 & 0x1ffffff); |
| out[0] = x117; |
| out[1] = x120; |
| out[2] = (x119 + x93); |
| out[3] = x96; |
| out[4] = x99; |
| out[5] = x102; |
| out[6] = x105; |
| out[7] = x108; |
| out[8] = x111; |
| out[9] = x114; |
| }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} |
| } |
| |
| static __always_inline void fe_mul121666(fe *h, const fe_loose *f) |
| { |
| fe_mul_121666_impl(h->v, f->v); |
| } |
| |
| static void curve25519_generic(u8 out[CURVE25519_KEY_SIZE], |
| const u8 scalar[CURVE25519_KEY_SIZE], |
| const u8 point[CURVE25519_KEY_SIZE]) |
| { |
| fe x1, x2, z2, x3, z3; |
| fe_loose x2l, z2l, x3l; |
| unsigned swap = 0; |
| int pos; |
| u8 e[32]; |
| |
| memcpy(e, scalar, 32); |
| curve25519_clamp_secret(e); |
| |
| /* The following implementation was transcribed to Coq and proven to |
| * correspond to unary scalar multiplication in affine coordinates given |
| * that x1 != 0 is the x coordinate of some point on the curve. It was |
| * also checked in Coq that doing a ladderstep with x1 = x3 = 0 gives |
| * z2' = z3' = 0, and z2 = z3 = 0 gives z2' = z3' = 0. The statement was |
| * quantified over the underlying field, so it applies to Curve25519 |
| * itself and the quadratic twist of Curve25519. It was not proven in |
| * Coq that prime-field arithmetic correctly simulates extension-field |
| * arithmetic on prime-field values. The decoding of the byte array |
| * representation of e was not considered. |
| * |
| * Specification of Montgomery curves in affine coordinates: |
| * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Spec/MontgomeryCurve.v#L27> |
| * |
| * Proof that these form a group that is isomorphic to a Weierstrass |
| * curve: |
| * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/AffineProofs.v#L35> |
| * |
| * Coq transcription and correctness proof of the loop |
| * (where scalarbits=255): |
| * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L118> |
| * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L278> |
| * preconditions: 0 <= e < 2^255 (not necessarily e < order), |
| * fe_invert(0) = 0 |
| */ |
| fe_frombytes(&x1, point); |
| fe_1(&x2); |
| fe_0(&z2); |
| fe_copy(&x3, &x1); |
| fe_1(&z3); |
| |
| for (pos = 254; pos >= 0; --pos) { |
| fe tmp0, tmp1; |
| fe_loose tmp0l, tmp1l; |
| /* loop invariant as of right before the test, for the case |
| * where x1 != 0: |
| * pos >= -1; if z2 = 0 then x2 is nonzero; if z3 = 0 then x3 |
| * is nonzero |
| * let r := e >> (pos+1) in the following equalities of |
| * projective points: |
| * to_xz (r*P) === if swap then (x3, z3) else (x2, z2) |
| * to_xz ((r+1)*P) === if swap then (x2, z2) else (x3, z3) |
| * x1 is the nonzero x coordinate of the nonzero |
| * point (r*P-(r+1)*P) |
| */ |
| unsigned b = 1 & (e[pos / 8] >> (pos & 7)); |
| swap ^= b; |
| fe_cswap(&x2, &x3, swap); |
| fe_cswap(&z2, &z3, swap); |
| swap = b; |
| /* Coq transcription of ladderstep formula (called from |
| * transcribed loop): |
| * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L89> |
| * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L131> |
| * x1 != 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L217> |
| * x1 = 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L147> |
| */ |
| fe_sub(&tmp0l, &x3, &z3); |
| fe_sub(&tmp1l, &x2, &z2); |
| fe_add(&x2l, &x2, &z2); |
| fe_add(&z2l, &x3, &z3); |
| fe_mul_tll(&z3, &tmp0l, &x2l); |
| fe_mul_tll(&z2, &z2l, &tmp1l); |
| fe_sq_tl(&tmp0, &tmp1l); |
| fe_sq_tl(&tmp1, &x2l); |
| fe_add(&x3l, &z3, &z2); |
| fe_sub(&z2l, &z3, &z2); |
| fe_mul_ttt(&x2, &tmp1, &tmp0); |
| fe_sub(&tmp1l, &tmp1, &tmp0); |
| fe_sq_tl(&z2, &z2l); |
| fe_mul121666(&z3, &tmp1l); |
| fe_sq_tl(&x3, &x3l); |
| fe_add(&tmp0l, &tmp0, &z3); |
| fe_mul_ttt(&z3, &x1, &z2); |
| fe_mul_tll(&z2, &tmp1l, &tmp0l); |
| } |
| /* here pos=-1, so r=e, so to_xz (e*P) === if swap then (x3, z3) |
| * else (x2, z2) |
| */ |
| fe_cswap(&x2, &x3, swap); |
| fe_cswap(&z2, &z3, swap); |
| |
| fe_invert(&z2, &z2); |
| fe_mul_ttt(&x2, &x2, &z2); |
| fe_tobytes(out, &x2); |
| |
| memzero_explicit(&x1, sizeof(x1)); |
| memzero_explicit(&x2, sizeof(x2)); |
| memzero_explicit(&z2, sizeof(z2)); |
| memzero_explicit(&x3, sizeof(x3)); |
| memzero_explicit(&z3, sizeof(z3)); |
| memzero_explicit(&x2l, sizeof(x2l)); |
| memzero_explicit(&z2l, sizeof(z2l)); |
| memzero_explicit(&x3l, sizeof(x3l)); |
| memzero_explicit(&e, sizeof(e)); |
| } |