| /* align.c - handle alignment exceptions for the Power PC. |
| * |
| * Copyright (c) 1996 Paul Mackerras <paulus@cs.anu.edu.au> |
| * Copyright (c) 1998-1999 TiVo, Inc. |
| * PowerPC 403GCX modifications. |
| * Copyright (c) 1999 Grant Erickson <grant@lcse.umn.edu> |
| * PowerPC 403GCX/405GP modifications. |
| * Copyright (c) 2001-2002 PPC64 team, IBM Corp |
| * 64-bit and Power4 support |
| * Copyright (c) 2005 Benjamin Herrenschmidt, IBM Corp |
| * <benh@kernel.crashing.org> |
| * Merge ppc32 and ppc64 implementations |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <asm/processor.h> |
| #include <asm/uaccess.h> |
| #include <asm/cache.h> |
| #include <asm/cputable.h> |
| #include <asm/emulated_ops.h> |
| #include <asm/switch_to.h> |
| #include <asm/disassemble.h> |
| |
| struct aligninfo { |
| unsigned char len; |
| unsigned char flags; |
| }; |
| |
| |
| #define INVALID { 0, 0 } |
| |
| /* Bits in the flags field */ |
| #define LD 0 /* load */ |
| #define ST 1 /* store */ |
| #define SE 2 /* sign-extend value, or FP ld/st as word */ |
| #define F 4 /* to/from fp regs */ |
| #define U 8 /* update index register */ |
| #define M 0x10 /* multiple load/store */ |
| #define SW 0x20 /* byte swap */ |
| #define S 0x40 /* single-precision fp or... */ |
| #define SX 0x40 /* ... byte count in XER */ |
| #define HARD 0x80 /* string, stwcx. */ |
| #define E4 0x40 /* SPE endianness is word */ |
| #define E8 0x80 /* SPE endianness is double word */ |
| #define SPLT 0x80 /* VSX SPLAT load */ |
| |
| /* DSISR bits reported for a DCBZ instruction: */ |
| #define DCBZ 0x5f /* 8xx/82xx dcbz faults when cache not enabled */ |
| |
| /* |
| * The PowerPC stores certain bits of the instruction that caused the |
| * alignment exception in the DSISR register. This array maps those |
| * bits to information about the operand length and what the |
| * instruction would do. |
| */ |
| static struct aligninfo aligninfo[128] = { |
| { 4, LD }, /* 00 0 0000: lwz / lwarx */ |
| INVALID, /* 00 0 0001 */ |
| { 4, ST }, /* 00 0 0010: stw */ |
| INVALID, /* 00 0 0011 */ |
| { 2, LD }, /* 00 0 0100: lhz */ |
| { 2, LD+SE }, /* 00 0 0101: lha */ |
| { 2, ST }, /* 00 0 0110: sth */ |
| { 4, LD+M }, /* 00 0 0111: lmw */ |
| { 4, LD+F+S }, /* 00 0 1000: lfs */ |
| { 8, LD+F }, /* 00 0 1001: lfd */ |
| { 4, ST+F+S }, /* 00 0 1010: stfs */ |
| { 8, ST+F }, /* 00 0 1011: stfd */ |
| { 16, LD }, /* 00 0 1100: lq */ |
| { 8, LD }, /* 00 0 1101: ld/ldu/lwa */ |
| INVALID, /* 00 0 1110 */ |
| { 8, ST }, /* 00 0 1111: std/stdu */ |
| { 4, LD+U }, /* 00 1 0000: lwzu */ |
| INVALID, /* 00 1 0001 */ |
| { 4, ST+U }, /* 00 1 0010: stwu */ |
| INVALID, /* 00 1 0011 */ |
| { 2, LD+U }, /* 00 1 0100: lhzu */ |
| { 2, LD+SE+U }, /* 00 1 0101: lhau */ |
| { 2, ST+U }, /* 00 1 0110: sthu */ |
| { 4, ST+M }, /* 00 1 0111: stmw */ |
| { 4, LD+F+S+U }, /* 00 1 1000: lfsu */ |
| { 8, LD+F+U }, /* 00 1 1001: lfdu */ |
| { 4, ST+F+S+U }, /* 00 1 1010: stfsu */ |
| { 8, ST+F+U }, /* 00 1 1011: stfdu */ |
| { 16, LD+F }, /* 00 1 1100: lfdp */ |
| INVALID, /* 00 1 1101 */ |
| { 16, ST+F }, /* 00 1 1110: stfdp */ |
| INVALID, /* 00 1 1111 */ |
| { 8, LD }, /* 01 0 0000: ldx */ |
| INVALID, /* 01 0 0001 */ |
| { 8, ST }, /* 01 0 0010: stdx */ |
| INVALID, /* 01 0 0011 */ |
| INVALID, /* 01 0 0100 */ |
| { 4, LD+SE }, /* 01 0 0101: lwax */ |
| INVALID, /* 01 0 0110 */ |
| INVALID, /* 01 0 0111 */ |
| { 4, LD+M+HARD+SX }, /* 01 0 1000: lswx */ |
| { 4, LD+M+HARD }, /* 01 0 1001: lswi */ |
| { 4, ST+M+HARD+SX }, /* 01 0 1010: stswx */ |
| { 4, ST+M+HARD }, /* 01 0 1011: stswi */ |
| INVALID, /* 01 0 1100 */ |
| { 8, LD+U }, /* 01 0 1101: ldu */ |
| INVALID, /* 01 0 1110 */ |
| { 8, ST+U }, /* 01 0 1111: stdu */ |
| { 8, LD+U }, /* 01 1 0000: ldux */ |
| INVALID, /* 01 1 0001 */ |
| { 8, ST+U }, /* 01 1 0010: stdux */ |
| INVALID, /* 01 1 0011 */ |
| INVALID, /* 01 1 0100 */ |
| { 4, LD+SE+U }, /* 01 1 0101: lwaux */ |
| INVALID, /* 01 1 0110 */ |
| INVALID, /* 01 1 0111 */ |
| INVALID, /* 01 1 1000 */ |
| INVALID, /* 01 1 1001 */ |
| INVALID, /* 01 1 1010 */ |
| INVALID, /* 01 1 1011 */ |
| INVALID, /* 01 1 1100 */ |
| INVALID, /* 01 1 1101 */ |
| INVALID, /* 01 1 1110 */ |
| INVALID, /* 01 1 1111 */ |
| INVALID, /* 10 0 0000 */ |
| INVALID, /* 10 0 0001 */ |
| INVALID, /* 10 0 0010: stwcx. */ |
| INVALID, /* 10 0 0011 */ |
| INVALID, /* 10 0 0100 */ |
| INVALID, /* 10 0 0101 */ |
| INVALID, /* 10 0 0110 */ |
| INVALID, /* 10 0 0111 */ |
| { 4, LD+SW }, /* 10 0 1000: lwbrx */ |
| INVALID, /* 10 0 1001 */ |
| { 4, ST+SW }, /* 10 0 1010: stwbrx */ |
| INVALID, /* 10 0 1011 */ |
| { 2, LD+SW }, /* 10 0 1100: lhbrx */ |
| { 4, LD+SE }, /* 10 0 1101 lwa */ |
| { 2, ST+SW }, /* 10 0 1110: sthbrx */ |
| { 16, ST }, /* 10 0 1111: stq */ |
| INVALID, /* 10 1 0000 */ |
| INVALID, /* 10 1 0001 */ |
| INVALID, /* 10 1 0010 */ |
| INVALID, /* 10 1 0011 */ |
| INVALID, /* 10 1 0100 */ |
| INVALID, /* 10 1 0101 */ |
| INVALID, /* 10 1 0110 */ |
| INVALID, /* 10 1 0111 */ |
| INVALID, /* 10 1 1000 */ |
| INVALID, /* 10 1 1001 */ |
| INVALID, /* 10 1 1010 */ |
| INVALID, /* 10 1 1011 */ |
| INVALID, /* 10 1 1100 */ |
| INVALID, /* 10 1 1101 */ |
| INVALID, /* 10 1 1110 */ |
| { 0, ST+HARD }, /* 10 1 1111: dcbz */ |
| { 4, LD }, /* 11 0 0000: lwzx */ |
| INVALID, /* 11 0 0001 */ |
| { 4, ST }, /* 11 0 0010: stwx */ |
| INVALID, /* 11 0 0011 */ |
| { 2, LD }, /* 11 0 0100: lhzx */ |
| { 2, LD+SE }, /* 11 0 0101: lhax */ |
| { 2, ST }, /* 11 0 0110: sthx */ |
| INVALID, /* 11 0 0111 */ |
| { 4, LD+F+S }, /* 11 0 1000: lfsx */ |
| { 8, LD+F }, /* 11 0 1001: lfdx */ |
| { 4, ST+F+S }, /* 11 0 1010: stfsx */ |
| { 8, ST+F }, /* 11 0 1011: stfdx */ |
| { 16, LD+F }, /* 11 0 1100: lfdpx */ |
| { 4, LD+F+SE }, /* 11 0 1101: lfiwax */ |
| { 16, ST+F }, /* 11 0 1110: stfdpx */ |
| { 4, ST+F }, /* 11 0 1111: stfiwx */ |
| { 4, LD+U }, /* 11 1 0000: lwzux */ |
| INVALID, /* 11 1 0001 */ |
| { 4, ST+U }, /* 11 1 0010: stwux */ |
| INVALID, /* 11 1 0011 */ |
| { 2, LD+U }, /* 11 1 0100: lhzux */ |
| { 2, LD+SE+U }, /* 11 1 0101: lhaux */ |
| { 2, ST+U }, /* 11 1 0110: sthux */ |
| INVALID, /* 11 1 0111 */ |
| { 4, LD+F+S+U }, /* 11 1 1000: lfsux */ |
| { 8, LD+F+U }, /* 11 1 1001: lfdux */ |
| { 4, ST+F+S+U }, /* 11 1 1010: stfsux */ |
| { 8, ST+F+U }, /* 11 1 1011: stfdux */ |
| INVALID, /* 11 1 1100 */ |
| { 4, LD+F }, /* 11 1 1101: lfiwzx */ |
| INVALID, /* 11 1 1110 */ |
| INVALID, /* 11 1 1111 */ |
| }; |
| |
| /* |
| * The dcbz (data cache block zero) instruction |
| * gives an alignment fault if used on non-cacheable |
| * memory. We handle the fault mainly for the |
| * case when we are running with the cache disabled |
| * for debugging. |
| */ |
| static int emulate_dcbz(struct pt_regs *regs, unsigned char __user *addr) |
| { |
| long __user *p; |
| int i, size; |
| |
| #ifdef __powerpc64__ |
| size = ppc64_caches.dline_size; |
| #else |
| size = L1_CACHE_BYTES; |
| #endif |
| p = (long __user *) (regs->dar & -size); |
| if (user_mode(regs) && !access_ok(VERIFY_WRITE, p, size)) |
| return -EFAULT; |
| for (i = 0; i < size / sizeof(long); ++i) |
| if (__put_user_inatomic(0, p+i)) |
| return -EFAULT; |
| return 1; |
| } |
| |
| /* |
| * Emulate load & store multiple instructions |
| * On 64-bit machines, these instructions only affect/use the |
| * bottom 4 bytes of each register, and the loads clear the |
| * top 4 bytes of the affected register. |
| */ |
| #ifdef __BIG_ENDIAN__ |
| #ifdef CONFIG_PPC64 |
| #define REG_BYTE(rp, i) *((u8 *)((rp) + ((i) >> 2)) + ((i) & 3) + 4) |
| #else |
| #define REG_BYTE(rp, i) *((u8 *)(rp) + (i)) |
| #endif |
| #endif |
| |
| #ifdef __LITTLE_ENDIAN__ |
| #define REG_BYTE(rp, i) (*(((u8 *)((rp) + ((i)>>2)) + ((i)&3)))) |
| #endif |
| |
| #define SWIZ_PTR(p) ((unsigned char __user *)((p) ^ swiz)) |
| |
| #define __get_user_or_set_dar(_regs, _dest, _addr) \ |
| ({ \ |
| int rc = 0; \ |
| typeof(_addr) __addr = (_addr); \ |
| if (__get_user_inatomic(_dest, __addr)) { \ |
| _regs->dar = (unsigned long)__addr; \ |
| rc = -EFAULT; \ |
| } \ |
| rc; \ |
| }) |
| |
| #define __put_user_or_set_dar(_regs, _src, _addr) \ |
| ({ \ |
| int rc = 0; \ |
| typeof(_addr) __addr = (_addr); \ |
| if (__put_user_inatomic(_src, __addr)) { \ |
| _regs->dar = (unsigned long)__addr; \ |
| rc = -EFAULT; \ |
| } \ |
| rc; \ |
| }) |
| |
| static int emulate_multiple(struct pt_regs *regs, unsigned char __user *addr, |
| unsigned int reg, unsigned int nb, |
| unsigned int flags, unsigned int instr, |
| unsigned long swiz) |
| { |
| unsigned long *rptr; |
| unsigned int nb0, i, bswiz; |
| unsigned long p; |
| |
| /* |
| * We do not try to emulate 8 bytes multiple as they aren't really |
| * available in our operating environments and we don't try to |
| * emulate multiples operations in kernel land as they should never |
| * be used/generated there at least not on unaligned boundaries |
| */ |
| if (unlikely((nb > 4) || !user_mode(regs))) |
| return 0; |
| |
| /* lmw, stmw, lswi/x, stswi/x */ |
| nb0 = 0; |
| if (flags & HARD) { |
| if (flags & SX) { |
| nb = regs->xer & 127; |
| if (nb == 0) |
| return 1; |
| } else { |
| unsigned long pc = regs->nip ^ (swiz & 4); |
| |
| if (__get_user_or_set_dar(regs, instr, |
| (unsigned int __user *)pc)) |
| return -EFAULT; |
| |
| if (swiz == 0 && (flags & SW)) |
| instr = cpu_to_le32(instr); |
| nb = (instr >> 11) & 0x1f; |
| if (nb == 0) |
| nb = 32; |
| } |
| if (nb + reg * 4 > 128) { |
| nb0 = nb + reg * 4 - 128; |
| nb = 128 - reg * 4; |
| } |
| #ifdef __LITTLE_ENDIAN__ |
| /* |
| * String instructions are endian neutral but the code |
| * below is not. Force byte swapping on so that the |
| * effects of swizzling are undone in the load/store |
| * loops below. |
| */ |
| flags ^= SW; |
| #endif |
| } else { |
| /* lwm, stmw */ |
| nb = (32 - reg) * 4; |
| } |
| |
| if (!access_ok((flags & ST ? VERIFY_WRITE: VERIFY_READ), addr, nb+nb0)) |
| return -EFAULT; /* bad address */ |
| |
| rptr = ®s->gpr[reg]; |
| p = (unsigned long) addr; |
| bswiz = (flags & SW)? 3: 0; |
| |
| if (!(flags & ST)) { |
| /* |
| * This zeroes the top 4 bytes of the affected registers |
| * in 64-bit mode, and also zeroes out any remaining |
| * bytes of the last register for lsw*. |
| */ |
| memset(rptr, 0, ((nb + 3) / 4) * sizeof(unsigned long)); |
| if (nb0 > 0) |
| memset(®s->gpr[0], 0, |
| ((nb0 + 3) / 4) * sizeof(unsigned long)); |
| |
| for (i = 0; i < nb; ++i, ++p) |
| if (__get_user_or_set_dar(regs, REG_BYTE(rptr, i ^ bswiz), |
| SWIZ_PTR(p))) |
| return -EFAULT; |
| if (nb0 > 0) { |
| rptr = ®s->gpr[0]; |
| addr += nb; |
| for (i = 0; i < nb0; ++i, ++p) |
| if (__get_user_or_set_dar(regs, |
| REG_BYTE(rptr, i ^ bswiz), |
| SWIZ_PTR(p))) |
| return -EFAULT; |
| } |
| |
| } else { |
| for (i = 0; i < nb; ++i, ++p) |
| if (__put_user_or_set_dar(regs, REG_BYTE(rptr, i ^ bswiz), |
| SWIZ_PTR(p))) |
| return -EFAULT; |
| if (nb0 > 0) { |
| rptr = ®s->gpr[0]; |
| addr += nb; |
| for (i = 0; i < nb0; ++i, ++p) |
| if (__put_user_or_set_dar(regs, |
| REG_BYTE(rptr, i ^ bswiz), |
| SWIZ_PTR(p))) |
| return -EFAULT; |
| } |
| } |
| return 1; |
| } |
| |
| /* |
| * Emulate floating-point pair loads and stores. |
| * Only POWER6 has these instructions, and it does true little-endian, |
| * so we don't need the address swizzling. |
| */ |
| static int emulate_fp_pair(struct pt_regs *regs, unsigned char __user *addr, |
| unsigned int reg, unsigned int flags) |
| { |
| char *ptr0 = (char *) ¤t->thread.TS_FPR(reg); |
| char *ptr1 = (char *) ¤t->thread.TS_FPR(reg+1); |
| int i, sw = 0; |
| |
| if (reg & 1) |
| return 0; /* invalid form: FRS/FRT must be even */ |
| if (flags & SW) |
| sw = 7; |
| |
| for (i = 0; i < 8; ++i) { |
| if (!(flags & ST)) { |
| if (__get_user_or_set_dar(regs, ptr0[i^sw], addr + i)) |
| return -EFAULT; |
| if (__get_user_or_set_dar(regs, ptr1[i^sw], addr + i + 8)) |
| return -EFAULT; |
| } else { |
| if (__put_user_or_set_dar(regs, ptr0[i^sw], addr + i)) |
| return -EFAULT; |
| if (__put_user_or_set_dar(regs, ptr1[i^sw], addr + i + 8)) |
| return -EFAULT; |
| } |
| } |
| |
| return 1; /* exception handled and fixed up */ |
| } |
| |
| #ifdef CONFIG_PPC64 |
| static int emulate_lq_stq(struct pt_regs *regs, unsigned char __user *addr, |
| unsigned int reg, unsigned int flags) |
| { |
| char *ptr0 = (char *)®s->gpr[reg]; |
| char *ptr1 = (char *)®s->gpr[reg+1]; |
| int i, sw = 0; |
| |
| if (reg & 1) |
| return 0; /* invalid form: GPR must be even */ |
| if (flags & SW) |
| sw = 7; |
| |
| for (i = 0; i < 8; ++i) { |
| if (!(flags & ST)) { |
| if (__get_user_or_set_dar(regs, ptr0[i^sw], addr + i)) |
| return -EFAULT; |
| if (__get_user_or_set_dar(regs, ptr1[i^sw], addr + i + 8)) |
| return -EFAULT; |
| } else { |
| if (__put_user_or_set_dar(regs, ptr0[i^sw], addr + i)) |
| return -EFAULT; |
| if (__put_user_or_set_dar(regs, ptr1[i^sw], addr + i + 8)) |
| return -EFAULT; |
| } |
| } |
| |
| return 1; /* exception handled and fixed up */ |
| } |
| #endif /* CONFIG_PPC64 */ |
| |
| #ifdef CONFIG_SPE |
| |
| static struct aligninfo spe_aligninfo[32] = { |
| { 8, LD+E8 }, /* 0 00 00: evldd[x] */ |
| { 8, LD+E4 }, /* 0 00 01: evldw[x] */ |
| { 8, LD }, /* 0 00 10: evldh[x] */ |
| INVALID, /* 0 00 11 */ |
| { 2, LD }, /* 0 01 00: evlhhesplat[x] */ |
| INVALID, /* 0 01 01 */ |
| { 2, LD }, /* 0 01 10: evlhhousplat[x] */ |
| { 2, LD+SE }, /* 0 01 11: evlhhossplat[x] */ |
| { 4, LD }, /* 0 10 00: evlwhe[x] */ |
| INVALID, /* 0 10 01 */ |
| { 4, LD }, /* 0 10 10: evlwhou[x] */ |
| { 4, LD+SE }, /* 0 10 11: evlwhos[x] */ |
| { 4, LD+E4 }, /* 0 11 00: evlwwsplat[x] */ |
| INVALID, /* 0 11 01 */ |
| { 4, LD }, /* 0 11 10: evlwhsplat[x] */ |
| INVALID, /* 0 11 11 */ |
| |
| { 8, ST+E8 }, /* 1 00 00: evstdd[x] */ |
| { 8, ST+E4 }, /* 1 00 01: evstdw[x] */ |
| { 8, ST }, /* 1 00 10: evstdh[x] */ |
| INVALID, /* 1 00 11 */ |
| INVALID, /* 1 01 00 */ |
| INVALID, /* 1 01 01 */ |
| INVALID, /* 1 01 10 */ |
| INVALID, /* 1 01 11 */ |
| { 4, ST }, /* 1 10 00: evstwhe[x] */ |
| INVALID, /* 1 10 01 */ |
| { 4, ST }, /* 1 10 10: evstwho[x] */ |
| INVALID, /* 1 10 11 */ |
| { 4, ST+E4 }, /* 1 11 00: evstwwe[x] */ |
| INVALID, /* 1 11 01 */ |
| { 4, ST+E4 }, /* 1 11 10: evstwwo[x] */ |
| INVALID, /* 1 11 11 */ |
| }; |
| |
| #define EVLDD 0x00 |
| #define EVLDW 0x01 |
| #define EVLDH 0x02 |
| #define EVLHHESPLAT 0x04 |
| #define EVLHHOUSPLAT 0x06 |
| #define EVLHHOSSPLAT 0x07 |
| #define EVLWHE 0x08 |
| #define EVLWHOU 0x0A |
| #define EVLWHOS 0x0B |
| #define EVLWWSPLAT 0x0C |
| #define EVLWHSPLAT 0x0E |
| #define EVSTDD 0x10 |
| #define EVSTDW 0x11 |
| #define EVSTDH 0x12 |
| #define EVSTWHE 0x18 |
| #define EVSTWHO 0x1A |
| #define EVSTWWE 0x1C |
| #define EVSTWWO 0x1E |
| |
| /* |
| * Emulate SPE loads and stores. |
| * Only Book-E has these instructions, and it does true little-endian, |
| * so we don't need the address swizzling. |
| */ |
| static int emulate_spe(struct pt_regs *regs, unsigned int reg, |
| unsigned int instr) |
| { |
| int ret; |
| union { |
| u64 ll; |
| u32 w[2]; |
| u16 h[4]; |
| u8 v[8]; |
| } data, temp; |
| unsigned char __user *p, *addr; |
| unsigned long *evr = ¤t->thread.evr[reg]; |
| unsigned int nb, flags; |
| |
| instr = (instr >> 1) & 0x1f; |
| |
| /* DAR has the operand effective address */ |
| addr = (unsigned char __user *)regs->dar; |
| |
| nb = spe_aligninfo[instr].len; |
| flags = spe_aligninfo[instr].flags; |
| |
| /* Verify the address of the operand */ |
| if (unlikely(user_mode(regs) && |
| !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ), |
| addr, nb))) |
| return -EFAULT; |
| |
| /* userland only */ |
| if (unlikely(!user_mode(regs))) |
| return 0; |
| |
| flush_spe_to_thread(current); |
| |
| /* If we are loading, get the data from user space, else |
| * get it from register values |
| */ |
| if (flags & ST) { |
| data.ll = 0; |
| switch (instr) { |
| case EVSTDD: |
| case EVSTDW: |
| case EVSTDH: |
| data.w[0] = *evr; |
| data.w[1] = regs->gpr[reg]; |
| break; |
| case EVSTWHE: |
| data.h[2] = *evr >> 16; |
| data.h[3] = regs->gpr[reg] >> 16; |
| break; |
| case EVSTWHO: |
| data.h[2] = *evr & 0xffff; |
| data.h[3] = regs->gpr[reg] & 0xffff; |
| break; |
| case EVSTWWE: |
| data.w[1] = *evr; |
| break; |
| case EVSTWWO: |
| data.w[1] = regs->gpr[reg]; |
| break; |
| default: |
| return -EINVAL; |
| } |
| } else { |
| temp.ll = data.ll = 0; |
| ret = 0; |
| p = addr; |
| |
| switch (nb) { |
| case 8: |
| ret |= __get_user_inatomic(temp.v[0], p++); |
| ret |= __get_user_inatomic(temp.v[1], p++); |
| ret |= __get_user_inatomic(temp.v[2], p++); |
| ret |= __get_user_inatomic(temp.v[3], p++); |
| case 4: |
| ret |= __get_user_inatomic(temp.v[4], p++); |
| ret |= __get_user_inatomic(temp.v[5], p++); |
| case 2: |
| ret |= __get_user_inatomic(temp.v[6], p++); |
| ret |= __get_user_inatomic(temp.v[7], p++); |
| if (unlikely(ret)) |
| return -EFAULT; |
| } |
| |
| switch (instr) { |
| case EVLDD: |
| case EVLDW: |
| case EVLDH: |
| data.ll = temp.ll; |
| break; |
| case EVLHHESPLAT: |
| data.h[0] = temp.h[3]; |
| data.h[2] = temp.h[3]; |
| break; |
| case EVLHHOUSPLAT: |
| case EVLHHOSSPLAT: |
| data.h[1] = temp.h[3]; |
| data.h[3] = temp.h[3]; |
| break; |
| case EVLWHE: |
| data.h[0] = temp.h[2]; |
| data.h[2] = temp.h[3]; |
| break; |
| case EVLWHOU: |
| case EVLWHOS: |
| data.h[1] = temp.h[2]; |
| data.h[3] = temp.h[3]; |
| break; |
| case EVLWWSPLAT: |
| data.w[0] = temp.w[1]; |
| data.w[1] = temp.w[1]; |
| break; |
| case EVLWHSPLAT: |
| data.h[0] = temp.h[2]; |
| data.h[1] = temp.h[2]; |
| data.h[2] = temp.h[3]; |
| data.h[3] = temp.h[3]; |
| break; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| if (flags & SW) { |
| switch (flags & 0xf0) { |
| case E8: |
| data.ll = swab64(data.ll); |
| break; |
| case E4: |
| data.w[0] = swab32(data.w[0]); |
| data.w[1] = swab32(data.w[1]); |
| break; |
| /* Its half word endian */ |
| default: |
| data.h[0] = swab16(data.h[0]); |
| data.h[1] = swab16(data.h[1]); |
| data.h[2] = swab16(data.h[2]); |
| data.h[3] = swab16(data.h[3]); |
| break; |
| } |
| } |
| |
| if (flags & SE) { |
| data.w[0] = (s16)data.h[1]; |
| data.w[1] = (s16)data.h[3]; |
| } |
| |
| /* Store result to memory or update registers */ |
| if (flags & ST) { |
| ret = 0; |
| p = addr; |
| switch (nb) { |
| case 8: |
| ret |= __put_user_inatomic(data.v[0], p++); |
| ret |= __put_user_inatomic(data.v[1], p++); |
| ret |= __put_user_inatomic(data.v[2], p++); |
| ret |= __put_user_inatomic(data.v[3], p++); |
| case 4: |
| ret |= __put_user_inatomic(data.v[4], p++); |
| ret |= __put_user_inatomic(data.v[5], p++); |
| case 2: |
| ret |= __put_user_inatomic(data.v[6], p++); |
| ret |= __put_user_inatomic(data.v[7], p++); |
| } |
| if (unlikely(ret)) |
| return -EFAULT; |
| } else { |
| *evr = data.w[0]; |
| regs->gpr[reg] = data.w[1]; |
| } |
| |
| return 1; |
| } |
| #endif /* CONFIG_SPE */ |
| |
| #ifdef CONFIG_VSX |
| /* |
| * Emulate VSX instructions... |
| */ |
| static int emulate_vsx(unsigned char __user *addr, unsigned int reg, |
| unsigned int areg, struct pt_regs *regs, |
| unsigned int flags, unsigned int length, |
| unsigned int elsize) |
| { |
| char *ptr; |
| unsigned long *lptr; |
| int ret = 0; |
| int sw = 0; |
| int i, j; |
| |
| /* userland only */ |
| if (unlikely(!user_mode(regs))) |
| return 0; |
| |
| flush_vsx_to_thread(current); |
| |
| if (reg < 32) |
| ptr = (char *) ¤t->thread.fp_state.fpr[reg][0]; |
| else |
| ptr = (char *) ¤t->thread.vr_state.vr[reg - 32]; |
| |
| lptr = (unsigned long *) ptr; |
| |
| #ifdef __LITTLE_ENDIAN__ |
| if (flags & SW) { |
| elsize = length; |
| sw = length-1; |
| } else { |
| /* |
| * The elements are BE ordered, even in LE mode, so process |
| * them in reverse order. |
| */ |
| addr += length - elsize; |
| |
| /* 8 byte memory accesses go in the top 8 bytes of the VR */ |
| if (length == 8) |
| ptr += 8; |
| } |
| #else |
| if (flags & SW) |
| sw = elsize-1; |
| #endif |
| |
| for (j = 0; j < length; j += elsize) { |
| for (i = 0; i < elsize; ++i) { |
| if (flags & ST) |
| ret = __put_user_or_set_dar(regs, ptr[i^sw], |
| addr + i); |
| else |
| ret = __get_user_or_set_dar(regs, ptr[i^sw], |
| addr + i); |
| |
| if (ret) |
| return ret; |
| } |
| ptr += elsize; |
| #ifdef __LITTLE_ENDIAN__ |
| addr -= elsize; |
| #else |
| addr += elsize; |
| #endif |
| } |
| |
| #ifdef __BIG_ENDIAN__ |
| #define VSX_HI 0 |
| #define VSX_LO 1 |
| #else |
| #define VSX_HI 1 |
| #define VSX_LO 0 |
| #endif |
| |
| if (!ret) { |
| if (flags & U) |
| regs->gpr[areg] = regs->dar; |
| |
| /* Splat load copies the same data to top and bottom 8 bytes */ |
| if (flags & SPLT) |
| lptr[VSX_LO] = lptr[VSX_HI]; |
| /* For 8 byte loads, zero the low 8 bytes */ |
| else if (!(flags & ST) && (8 == length)) |
| lptr[VSX_LO] = 0; |
| } else |
| return -EFAULT; |
| |
| return 1; |
| } |
| #endif |
| |
| /* |
| * Called on alignment exception. Attempts to fixup |
| * |
| * Return 1 on success |
| * Return 0 if unable to handle the interrupt |
| * Return -EFAULT if data address is bad |
| */ |
| |
| int fix_alignment(struct pt_regs *regs) |
| { |
| unsigned int instr, nb, flags, instruction = 0; |
| unsigned int reg, areg; |
| unsigned int dsisr; |
| unsigned char __user *addr; |
| unsigned long p, swiz; |
| int i; |
| union data { |
| u64 ll; |
| double dd; |
| unsigned char v[8]; |
| struct { |
| #ifdef __LITTLE_ENDIAN__ |
| int low32; |
| unsigned hi32; |
| #else |
| unsigned hi32; |
| int low32; |
| #endif |
| } x32; |
| struct { |
| #ifdef __LITTLE_ENDIAN__ |
| short low16; |
| unsigned char hi48[6]; |
| #else |
| unsigned char hi48[6]; |
| short low16; |
| #endif |
| } x16; |
| } data; |
| |
| /* |
| * We require a complete register set, if not, then our assembly |
| * is broken |
| */ |
| CHECK_FULL_REGS(regs); |
| |
| dsisr = regs->dsisr; |
| |
| /* Some processors don't provide us with a DSISR we can use here, |
| * let's make one up from the instruction |
| */ |
| if (cpu_has_feature(CPU_FTR_NODSISRALIGN)) { |
| unsigned long pc = regs->nip; |
| |
| if (cpu_has_feature(CPU_FTR_PPC_LE) && (regs->msr & MSR_LE)) |
| pc ^= 4; |
| if (unlikely(__get_user_inatomic(instr, |
| (unsigned int __user *)pc))) |
| return -EFAULT; |
| if (cpu_has_feature(CPU_FTR_REAL_LE) && (regs->msr & MSR_LE)) |
| instr = cpu_to_le32(instr); |
| dsisr = make_dsisr(instr); |
| instruction = instr; |
| } |
| |
| /* extract the operation and registers from the dsisr */ |
| reg = (dsisr >> 5) & 0x1f; /* source/dest register */ |
| areg = dsisr & 0x1f; /* register to update */ |
| |
| #ifdef CONFIG_SPE |
| if ((instr >> 26) == 0x4) { |
| PPC_WARN_ALIGNMENT(spe, regs); |
| return emulate_spe(regs, reg, instr); |
| } |
| #endif |
| |
| instr = (dsisr >> 10) & 0x7f; |
| instr |= (dsisr >> 13) & 0x60; |
| |
| /* Lookup the operation in our table */ |
| nb = aligninfo[instr].len; |
| flags = aligninfo[instr].flags; |
| |
| /* |
| * Handle some cases which give overlaps in the DSISR values. |
| */ |
| if (IS_XFORM(instruction)) { |
| switch (get_xop(instruction)) { |
| case 532: /* ldbrx */ |
| nb = 8; |
| flags = LD+SW; |
| break; |
| case 660: /* stdbrx */ |
| nb = 8; |
| flags = ST+SW; |
| break; |
| case 20: /* lwarx */ |
| case 84: /* ldarx */ |
| case 116: /* lharx */ |
| case 276: /* lqarx */ |
| return 0; /* not emulated ever */ |
| } |
| } |
| |
| /* Byteswap little endian loads and stores */ |
| swiz = 0; |
| if ((regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE)) { |
| flags ^= SW; |
| #ifdef __BIG_ENDIAN__ |
| /* |
| * So-called "PowerPC little endian" mode works by |
| * swizzling addresses rather than by actually doing |
| * any byte-swapping. To emulate this, we XOR each |
| * byte address with 7. We also byte-swap, because |
| * the processor's address swizzling depends on the |
| * operand size (it xors the address with 7 for bytes, |
| * 6 for halfwords, 4 for words, 0 for doublewords) but |
| * we will xor with 7 and load/store each byte separately. |
| */ |
| if (cpu_has_feature(CPU_FTR_PPC_LE)) |
| swiz = 7; |
| #endif |
| } |
| |
| /* DAR has the operand effective address */ |
| addr = (unsigned char __user *)regs->dar; |
| |
| #ifdef CONFIG_VSX |
| if ((instruction & 0xfc00003e) == 0x7c000018) { |
| unsigned int elsize; |
| |
| /* Additional register addressing bit (64 VSX vs 32 FPR/GPR) */ |
| reg |= (instruction & 0x1) << 5; |
| /* Simple inline decoder instead of a table */ |
| /* VSX has only 8 and 16 byte memory accesses */ |
| nb = 8; |
| if (instruction & 0x200) |
| nb = 16; |
| |
| /* Vector stores in little-endian mode swap individual |
| elements, so process them separately */ |
| elsize = 4; |
| if (instruction & 0x80) |
| elsize = 8; |
| |
| flags = 0; |
| if ((regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE)) |
| flags |= SW; |
| if (instruction & 0x100) |
| flags |= ST; |
| if (instruction & 0x040) |
| flags |= U; |
| /* splat load needs a special decoder */ |
| if ((instruction & 0x400) == 0){ |
| flags |= SPLT; |
| nb = 8; |
| } |
| PPC_WARN_ALIGNMENT(vsx, regs); |
| return emulate_vsx(addr, reg, areg, regs, flags, nb, elsize); |
| } |
| #endif |
| /* A size of 0 indicates an instruction we don't support, with |
| * the exception of DCBZ which is handled as a special case here |
| */ |
| if (instr == DCBZ) { |
| PPC_WARN_ALIGNMENT(dcbz, regs); |
| return emulate_dcbz(regs, addr); |
| } |
| if (unlikely(nb == 0)) |
| return 0; |
| |
| /* Load/Store Multiple instructions are handled in their own |
| * function |
| */ |
| if (flags & M) { |
| PPC_WARN_ALIGNMENT(multiple, regs); |
| return emulate_multiple(regs, addr, reg, nb, |
| flags, instr, swiz); |
| } |
| |
| /* Verify the address of the operand */ |
| if (unlikely(user_mode(regs) && |
| !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ), |
| addr, nb))) |
| return -EFAULT; |
| |
| /* Force the fprs into the save area so we can reference them */ |
| if (flags & F) { |
| /* userland only */ |
| if (unlikely(!user_mode(regs))) |
| return 0; |
| flush_fp_to_thread(current); |
| } |
| |
| if (nb == 16) { |
| if (flags & F) { |
| /* Special case for 16-byte FP loads and stores */ |
| PPC_WARN_ALIGNMENT(fp_pair, regs); |
| return emulate_fp_pair(regs, addr, reg, flags); |
| } else { |
| #ifdef CONFIG_PPC64 |
| /* Special case for 16-byte loads and stores */ |
| PPC_WARN_ALIGNMENT(lq_stq, regs); |
| return emulate_lq_stq(regs, addr, reg, flags); |
| #else |
| return 0; |
| #endif |
| } |
| } |
| |
| PPC_WARN_ALIGNMENT(unaligned, regs); |
| |
| /* If we are loading, get the data from user space, else |
| * get it from register values |
| */ |
| if (!(flags & ST)) { |
| unsigned int start = 0; |
| |
| switch (nb) { |
| case 4: |
| start = offsetof(union data, x32.low32); |
| break; |
| case 2: |
| start = offsetof(union data, x16.low16); |
| break; |
| } |
| |
| data.ll = 0; |
| p = (unsigned long)addr; |
| |
| for (i = 0; i < nb; i++) |
| if (__get_user_or_set_dar(regs, data.v[start + i], |
| SWIZ_PTR(p++))) |
| return -EFAULT; |
| |
| } else if (flags & F) { |
| data.ll = current->thread.TS_FPR(reg); |
| if (flags & S) { |
| /* Single-precision FP store requires conversion... */ |
| #ifdef CONFIG_PPC_FPU |
| preempt_disable(); |
| enable_kernel_fp(); |
| cvt_df(&data.dd, (float *)&data.x32.low32); |
| preempt_enable(); |
| #else |
| return 0; |
| #endif |
| } |
| } else |
| data.ll = regs->gpr[reg]; |
| |
| if (flags & SW) { |
| switch (nb) { |
| case 8: |
| data.ll = swab64(data.ll); |
| break; |
| case 4: |
| data.x32.low32 = swab32(data.x32.low32); |
| break; |
| case 2: |
| data.x16.low16 = swab16(data.x16.low16); |
| break; |
| } |
| } |
| |
| /* Perform other misc operations like sign extension |
| * or floating point single precision conversion |
| */ |
| switch (flags & ~(U|SW)) { |
| case LD+SE: /* sign extending integer loads */ |
| case LD+F+SE: /* sign extend for lfiwax */ |
| if ( nb == 2 ) |
| data.ll = data.x16.low16; |
| else /* nb must be 4 */ |
| data.ll = data.x32.low32; |
| break; |
| |
| /* Single-precision FP load requires conversion... */ |
| case LD+F+S: |
| #ifdef CONFIG_PPC_FPU |
| preempt_disable(); |
| enable_kernel_fp(); |
| cvt_fd((float *)&data.x32.low32, &data.dd); |
| preempt_enable(); |
| #else |
| return 0; |
| #endif |
| break; |
| } |
| |
| /* Store result to memory or update registers */ |
| if (flags & ST) { |
| unsigned int start = 0; |
| |
| switch (nb) { |
| case 4: |
| start = offsetof(union data, x32.low32); |
| break; |
| case 2: |
| start = offsetof(union data, x16.low16); |
| break; |
| } |
| |
| p = (unsigned long)addr; |
| |
| for (i = 0; i < nb; i++) |
| if (__put_user_or_set_dar(regs, data.v[start + i], |
| SWIZ_PTR(p++))) |
| return -EFAULT; |
| |
| } else if (flags & F) |
| current->thread.TS_FPR(reg) = data.ll; |
| else |
| regs->gpr[reg] = data.ll; |
| |
| /* Update RA as needed */ |
| if (flags & U) |
| regs->gpr[areg] = regs->dar; |
| |
| return 1; |
| } |