| /* |
| * Copyright (C) 2014 Imagination Technologies |
| * Author: Paul Burton <paul.burton@imgtec.com> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; either version 2 of the License, or (at your |
| * option) any later version. |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/percpu.h> |
| #include <linux/slab.h> |
| |
| #include <asm/asm-offsets.h> |
| #include <asm/cacheflush.h> |
| #include <asm/cacheops.h> |
| #include <asm/idle.h> |
| #include <asm/mips-cm.h> |
| #include <asm/mips-cpc.h> |
| #include <asm/mipsmtregs.h> |
| #include <asm/pm.h> |
| #include <asm/pm-cps.h> |
| #include <asm/smp-cps.h> |
| #include <asm/uasm.h> |
| |
| /* |
| * cps_nc_entry_fn - type of a generated non-coherent state entry function |
| * @online: the count of online coupled VPEs |
| * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count |
| * |
| * The code entering & exiting non-coherent states is generated at runtime |
| * using uasm, in order to ensure that the compiler cannot insert a stray |
| * memory access at an unfortunate time and to allow the generation of optimal |
| * core-specific code particularly for cache routines. If coupled_coherence |
| * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state, |
| * returns the number of VPEs that were in the wait state at the point this |
| * VPE left it. Returns garbage if coupled_coherence is zero or this is not |
| * the entry function for CPS_PM_NC_WAIT. |
| */ |
| typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count); |
| |
| /* |
| * The entry point of the generated non-coherent idle state entry/exit |
| * functions. Actually per-core rather than per-CPU. |
| */ |
| static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT], |
| nc_asm_enter); |
| |
| /* Bitmap indicating which states are supported by the system */ |
| DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT); |
| |
| /* |
| * Indicates the number of coupled VPEs ready to operate in a non-coherent |
| * state. Actually per-core rather than per-CPU. |
| */ |
| static DEFINE_PER_CPU_ALIGNED(u32*, ready_count); |
| |
| /* Indicates online CPUs coupled with the current CPU */ |
| static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled); |
| |
| /* |
| * Used to synchronize entry to deep idle states. Actually per-core rather |
| * than per-CPU. |
| */ |
| static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier); |
| |
| /* Saved CPU state across the CPS_PM_POWER_GATED state */ |
| DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state); |
| |
| /* A somewhat arbitrary number of labels & relocs for uasm */ |
| static struct uasm_label labels[32] __initdata; |
| static struct uasm_reloc relocs[32] __initdata; |
| |
| /* CPU dependant sync types */ |
| static unsigned stype_intervention; |
| static unsigned stype_memory; |
| static unsigned stype_ordering; |
| |
| enum mips_reg { |
| zero, at, v0, v1, a0, a1, a2, a3, |
| t0, t1, t2, t3, t4, t5, t6, t7, |
| s0, s1, s2, s3, s4, s5, s6, s7, |
| t8, t9, k0, k1, gp, sp, fp, ra, |
| }; |
| |
| bool cps_pm_support_state(enum cps_pm_state state) |
| { |
| return test_bit(state, state_support); |
| } |
| |
| static void coupled_barrier(atomic_t *a, unsigned online) |
| { |
| /* |
| * This function is effectively the same as |
| * cpuidle_coupled_parallel_barrier, which can't be used here since |
| * there's no cpuidle device. |
| */ |
| |
| if (!coupled_coherence) |
| return; |
| |
| smp_mb__before_atomic(); |
| atomic_inc(a); |
| |
| while (atomic_read(a) < online) |
| cpu_relax(); |
| |
| if (atomic_inc_return(a) == online * 2) { |
| atomic_set(a, 0); |
| return; |
| } |
| |
| while (atomic_read(a) > online) |
| cpu_relax(); |
| } |
| |
| int cps_pm_enter_state(enum cps_pm_state state) |
| { |
| unsigned cpu = smp_processor_id(); |
| unsigned core = current_cpu_data.core; |
| unsigned online, left; |
| cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled); |
| u32 *core_ready_count, *nc_core_ready_count; |
| void *nc_addr; |
| cps_nc_entry_fn entry; |
| struct core_boot_config *core_cfg; |
| struct vpe_boot_config *vpe_cfg; |
| |
| /* Check that there is an entry function for this state */ |
| entry = per_cpu(nc_asm_enter, core)[state]; |
| if (!entry) |
| return -EINVAL; |
| |
| /* Calculate which coupled CPUs (VPEs) are online */ |
| #ifdef CONFIG_MIPS_MT |
| if (cpu_online(cpu)) { |
| cpumask_and(coupled_mask, cpu_online_mask, |
| &cpu_sibling_map[cpu]); |
| online = cpumask_weight(coupled_mask); |
| cpumask_clear_cpu(cpu, coupled_mask); |
| } else |
| #endif |
| { |
| cpumask_clear(coupled_mask); |
| online = 1; |
| } |
| |
| /* Setup the VPE to run mips_cps_pm_restore when started again */ |
| if (config_enabled(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) { |
| /* Power gating relies upon CPS SMP */ |
| if (!mips_cps_smp_in_use()) |
| return -EINVAL; |
| |
| core_cfg = &mips_cps_core_bootcfg[core]; |
| vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(¤t_cpu_data)]; |
| vpe_cfg->pc = (unsigned long)mips_cps_pm_restore; |
| vpe_cfg->gp = (unsigned long)current_thread_info(); |
| vpe_cfg->sp = 0; |
| } |
| |
| /* Indicate that this CPU might not be coherent */ |
| cpumask_clear_cpu(cpu, &cpu_coherent_mask); |
| smp_mb__after_atomic(); |
| |
| /* Create a non-coherent mapping of the core ready_count */ |
| core_ready_count = per_cpu(ready_count, core); |
| nc_addr = kmap_noncoherent(virt_to_page(core_ready_count), |
| (unsigned long)core_ready_count); |
| nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK); |
| nc_core_ready_count = nc_addr; |
| |
| /* Ensure ready_count is zero-initialised before the assembly runs */ |
| ACCESS_ONCE(*nc_core_ready_count) = 0; |
| coupled_barrier(&per_cpu(pm_barrier, core), online); |
| |
| /* Run the generated entry code */ |
| left = entry(online, nc_core_ready_count); |
| |
| /* Remove the non-coherent mapping of ready_count */ |
| kunmap_noncoherent(); |
| |
| /* Indicate that this CPU is definitely coherent */ |
| cpumask_set_cpu(cpu, &cpu_coherent_mask); |
| |
| /* |
| * If this VPE is the first to leave the non-coherent wait state then |
| * it needs to wake up any coupled VPEs still running their wait |
| * instruction so that they return to cpuidle, which can then complete |
| * coordination between the coupled VPEs & provide the governor with |
| * a chance to reflect on the length of time the VPEs were in the |
| * idle state. |
| */ |
| if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online)) |
| arch_send_call_function_ipi_mask(coupled_mask); |
| |
| return 0; |
| } |
| |
| static void __init cps_gen_cache_routine(u32 **pp, struct uasm_label **pl, |
| struct uasm_reloc **pr, |
| const struct cache_desc *cache, |
| unsigned op, int lbl) |
| { |
| unsigned cache_size = cache->ways << cache->waybit; |
| unsigned i; |
| const unsigned unroll_lines = 32; |
| |
| /* If the cache isn't present this function has it easy */ |
| if (cache->flags & MIPS_CACHE_NOT_PRESENT) |
| return; |
| |
| /* Load base address */ |
| UASM_i_LA(pp, t0, (long)CKSEG0); |
| |
| /* Calculate end address */ |
| if (cache_size < 0x8000) |
| uasm_i_addiu(pp, t1, t0, cache_size); |
| else |
| UASM_i_LA(pp, t1, (long)(CKSEG0 + cache_size)); |
| |
| /* Start of cache op loop */ |
| uasm_build_label(pl, *pp, lbl); |
| |
| /* Generate the cache ops */ |
| for (i = 0; i < unroll_lines; i++) { |
| if (cpu_has_mips_r6) { |
| uasm_i_cache(pp, op, 0, t0); |
| uasm_i_addiu(pp, t0, t0, cache->linesz); |
| } else { |
| uasm_i_cache(pp, op, i * cache->linesz, t0); |
| } |
| } |
| |
| if (!cpu_has_mips_r6) |
| /* Update the base address */ |
| uasm_i_addiu(pp, t0, t0, unroll_lines * cache->linesz); |
| |
| /* Loop if we haven't reached the end address yet */ |
| uasm_il_bne(pp, pr, t0, t1, lbl); |
| uasm_i_nop(pp); |
| } |
| |
| static int __init cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl, |
| struct uasm_reloc **pr, |
| const struct cpuinfo_mips *cpu_info, |
| int lbl) |
| { |
| unsigned i, fsb_size = 8; |
| unsigned num_loads = (fsb_size * 3) / 2; |
| unsigned line_stride = 2; |
| unsigned line_size = cpu_info->dcache.linesz; |
| unsigned perf_counter, perf_event; |
| unsigned revision = cpu_info->processor_id & PRID_REV_MASK; |
| |
| /* |
| * Determine whether this CPU requires an FSB flush, and if so which |
| * performance counter/event reflect stalls due to a full FSB. |
| */ |
| switch (__get_cpu_type(cpu_info->cputype)) { |
| case CPU_INTERAPTIV: |
| perf_counter = 1; |
| perf_event = 51; |
| break; |
| |
| case CPU_PROAPTIV: |
| /* Newer proAptiv cores don't require this workaround */ |
| if (revision >= PRID_REV_ENCODE_332(1, 1, 0)) |
| return 0; |
| |
| /* On older ones it's unavailable */ |
| return -1; |
| |
| default: |
| /* Assume that the CPU does not need this workaround */ |
| return 0; |
| } |
| |
| /* |
| * Ensure that the fill/store buffer (FSB) is not holding the results |
| * of a prefetch, since if it is then the CPC sequencer may become |
| * stuck in the D3 (ClrBus) state whilst entering a low power state. |
| */ |
| |
| /* Preserve perf counter setup */ |
| uasm_i_mfc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */ |
| uasm_i_mfc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */ |
| |
| /* Setup perf counter to count FSB full pipeline stalls */ |
| uasm_i_addiu(pp, t0, zero, (perf_event << 5) | 0xf); |
| uasm_i_mtc0(pp, t0, 25, (perf_counter * 2) + 0); /* PerfCtlN */ |
| uasm_i_ehb(pp); |
| uasm_i_mtc0(pp, zero, 25, (perf_counter * 2) + 1); /* PerfCntN */ |
| uasm_i_ehb(pp); |
| |
| /* Base address for loads */ |
| UASM_i_LA(pp, t0, (long)CKSEG0); |
| |
| /* Start of clear loop */ |
| uasm_build_label(pl, *pp, lbl); |
| |
| /* Perform some loads to fill the FSB */ |
| for (i = 0; i < num_loads; i++) |
| uasm_i_lw(pp, zero, i * line_size * line_stride, t0); |
| |
| /* |
| * Invalidate the new D-cache entries so that the cache will need |
| * refilling (via the FSB) if the loop is executed again. |
| */ |
| for (i = 0; i < num_loads; i++) { |
| uasm_i_cache(pp, Hit_Invalidate_D, |
| i * line_size * line_stride, t0); |
| uasm_i_cache(pp, Hit_Writeback_Inv_SD, |
| i * line_size * line_stride, t0); |
| } |
| |
| /* Completion barrier */ |
| uasm_i_sync(pp, stype_memory); |
| uasm_i_ehb(pp); |
| |
| /* Check whether the pipeline stalled due to the FSB being full */ |
| uasm_i_mfc0(pp, t1, 25, (perf_counter * 2) + 1); /* PerfCntN */ |
| |
| /* Loop if it didn't */ |
| uasm_il_beqz(pp, pr, t1, lbl); |
| uasm_i_nop(pp); |
| |
| /* Restore perf counter 1. The count may well now be wrong... */ |
| uasm_i_mtc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */ |
| uasm_i_ehb(pp); |
| uasm_i_mtc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */ |
| uasm_i_ehb(pp); |
| |
| return 0; |
| } |
| |
| static void __init cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl, |
| struct uasm_reloc **pr, |
| unsigned r_addr, int lbl) |
| { |
| uasm_i_lui(pp, t0, uasm_rel_hi(0x80000000)); |
| uasm_build_label(pl, *pp, lbl); |
| uasm_i_ll(pp, t1, 0, r_addr); |
| uasm_i_or(pp, t1, t1, t0); |
| uasm_i_sc(pp, t1, 0, r_addr); |
| uasm_il_beqz(pp, pr, t1, lbl); |
| uasm_i_nop(pp); |
| } |
| |
| static void * __init cps_gen_entry_code(unsigned cpu, enum cps_pm_state state) |
| { |
| struct uasm_label *l = labels; |
| struct uasm_reloc *r = relocs; |
| u32 *buf, *p; |
| const unsigned r_online = a0; |
| const unsigned r_nc_count = a1; |
| const unsigned r_pcohctl = t7; |
| const unsigned max_instrs = 256; |
| unsigned cpc_cmd; |
| int err; |
| enum { |
| lbl_incready = 1, |
| lbl_poll_cont, |
| lbl_secondary_hang, |
| lbl_disable_coherence, |
| lbl_flush_fsb, |
| lbl_invicache, |
| lbl_flushdcache, |
| lbl_hang, |
| lbl_set_cont, |
| lbl_secondary_cont, |
| lbl_decready, |
| }; |
| |
| /* Allocate a buffer to hold the generated code */ |
| p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL); |
| if (!buf) |
| return NULL; |
| |
| /* Clear labels & relocs ready for (re)use */ |
| memset(labels, 0, sizeof(labels)); |
| memset(relocs, 0, sizeof(relocs)); |
| |
| if (config_enabled(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) { |
| /* Power gating relies upon CPS SMP */ |
| if (!mips_cps_smp_in_use()) |
| goto out_err; |
| |
| /* |
| * Save CPU state. Note the non-standard calling convention |
| * with the return address placed in v0 to avoid clobbering |
| * the ra register before it is saved. |
| */ |
| UASM_i_LA(&p, t0, (long)mips_cps_pm_save); |
| uasm_i_jalr(&p, v0, t0); |
| uasm_i_nop(&p); |
| } |
| |
| /* |
| * Load addresses of required CM & CPC registers. This is done early |
| * because they're needed in both the enable & disable coherence steps |
| * but in the coupled case the enable step will only run on one VPE. |
| */ |
| UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence()); |
| |
| if (coupled_coherence) { |
| /* Increment ready_count */ |
| uasm_i_sync(&p, stype_ordering); |
| uasm_build_label(&l, p, lbl_incready); |
| uasm_i_ll(&p, t1, 0, r_nc_count); |
| uasm_i_addiu(&p, t2, t1, 1); |
| uasm_i_sc(&p, t2, 0, r_nc_count); |
| uasm_il_beqz(&p, &r, t2, lbl_incready); |
| uasm_i_addiu(&p, t1, t1, 1); |
| |
| /* Ordering barrier */ |
| uasm_i_sync(&p, stype_ordering); |
| |
| /* |
| * If this is the last VPE to become ready for non-coherence |
| * then it should branch below. |
| */ |
| uasm_il_beq(&p, &r, t1, r_online, lbl_disable_coherence); |
| uasm_i_nop(&p); |
| |
| if (state < CPS_PM_POWER_GATED) { |
| /* |
| * Otherwise this is not the last VPE to become ready |
| * for non-coherence. It needs to wait until coherence |
| * has been disabled before proceeding, which it will do |
| * by polling for the top bit of ready_count being set. |
| */ |
| uasm_i_addiu(&p, t1, zero, -1); |
| uasm_build_label(&l, p, lbl_poll_cont); |
| uasm_i_lw(&p, t0, 0, r_nc_count); |
| uasm_il_bltz(&p, &r, t0, lbl_secondary_cont); |
| uasm_i_ehb(&p); |
| uasm_i_yield(&p, zero, t1); |
| uasm_il_b(&p, &r, lbl_poll_cont); |
| uasm_i_nop(&p); |
| } else { |
| /* |
| * The core will lose power & this VPE will not continue |
| * so it can simply halt here. |
| */ |
| uasm_i_addiu(&p, t0, zero, TCHALT_H); |
| uasm_i_mtc0(&p, t0, 2, 4); |
| uasm_build_label(&l, p, lbl_secondary_hang); |
| uasm_il_b(&p, &r, lbl_secondary_hang); |
| uasm_i_nop(&p); |
| } |
| } |
| |
| /* |
| * This is the point of no return - this VPE will now proceed to |
| * disable coherence. At this point we *must* be sure that no other |
| * VPE within the core will interfere with the L1 dcache. |
| */ |
| uasm_build_label(&l, p, lbl_disable_coherence); |
| |
| /* Invalidate the L1 icache */ |
| cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache, |
| Index_Invalidate_I, lbl_invicache); |
| |
| /* Writeback & invalidate the L1 dcache */ |
| cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache, |
| Index_Writeback_Inv_D, lbl_flushdcache); |
| |
| /* Completion barrier */ |
| uasm_i_sync(&p, stype_memory); |
| uasm_i_ehb(&p); |
| |
| /* |
| * Disable all but self interventions. The load from COHCTL is defined |
| * by the interAptiv & proAptiv SUMs as ensuring that the operation |
| * resulting from the preceding store is complete. |
| */ |
| uasm_i_addiu(&p, t0, zero, 1 << cpu_data[cpu].core); |
| uasm_i_sw(&p, t0, 0, r_pcohctl); |
| uasm_i_lw(&p, t0, 0, r_pcohctl); |
| |
| /* Sync to ensure previous interventions are complete */ |
| uasm_i_sync(&p, stype_intervention); |
| uasm_i_ehb(&p); |
| |
| /* Disable coherence */ |
| uasm_i_sw(&p, zero, 0, r_pcohctl); |
| uasm_i_lw(&p, t0, 0, r_pcohctl); |
| |
| if (state >= CPS_PM_CLOCK_GATED) { |
| err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu], |
| lbl_flush_fsb); |
| if (err) |
| goto out_err; |
| |
| /* Determine the CPC command to issue */ |
| switch (state) { |
| case CPS_PM_CLOCK_GATED: |
| cpc_cmd = CPC_Cx_CMD_CLOCKOFF; |
| break; |
| case CPS_PM_POWER_GATED: |
| cpc_cmd = CPC_Cx_CMD_PWRDOWN; |
| break; |
| default: |
| BUG(); |
| goto out_err; |
| } |
| |
| /* Issue the CPC command */ |
| UASM_i_LA(&p, t0, (long)addr_cpc_cl_cmd()); |
| uasm_i_addiu(&p, t1, zero, cpc_cmd); |
| uasm_i_sw(&p, t1, 0, t0); |
| |
| if (state == CPS_PM_POWER_GATED) { |
| /* If anything goes wrong just hang */ |
| uasm_build_label(&l, p, lbl_hang); |
| uasm_il_b(&p, &r, lbl_hang); |
| uasm_i_nop(&p); |
| |
| /* |
| * There's no point generating more code, the core is |
| * powered down & if powered back up will run from the |
| * reset vector not from here. |
| */ |
| goto gen_done; |
| } |
| |
| /* Completion barrier */ |
| uasm_i_sync(&p, stype_memory); |
| uasm_i_ehb(&p); |
| } |
| |
| if (state == CPS_PM_NC_WAIT) { |
| /* |
| * At this point it is safe for all VPEs to proceed with |
| * execution. This VPE will set the top bit of ready_count |
| * to indicate to the other VPEs that they may continue. |
| */ |
| if (coupled_coherence) |
| cps_gen_set_top_bit(&p, &l, &r, r_nc_count, |
| lbl_set_cont); |
| |
| /* |
| * VPEs which did not disable coherence will continue |
| * executing, after coherence has been disabled, from this |
| * point. |
| */ |
| uasm_build_label(&l, p, lbl_secondary_cont); |
| |
| /* Now perform our wait */ |
| uasm_i_wait(&p, 0); |
| } |
| |
| /* |
| * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs |
| * will run this. The first will actually re-enable coherence & the |
| * rest will just be performing a rather unusual nop. |
| */ |
| uasm_i_addiu(&p, t0, zero, CM_GCR_Cx_COHERENCE_COHDOMAINEN_MSK); |
| uasm_i_sw(&p, t0, 0, r_pcohctl); |
| uasm_i_lw(&p, t0, 0, r_pcohctl); |
| |
| /* Completion barrier */ |
| uasm_i_sync(&p, stype_memory); |
| uasm_i_ehb(&p); |
| |
| if (coupled_coherence && (state == CPS_PM_NC_WAIT)) { |
| /* Decrement ready_count */ |
| uasm_build_label(&l, p, lbl_decready); |
| uasm_i_sync(&p, stype_ordering); |
| uasm_i_ll(&p, t1, 0, r_nc_count); |
| uasm_i_addiu(&p, t2, t1, -1); |
| uasm_i_sc(&p, t2, 0, r_nc_count); |
| uasm_il_beqz(&p, &r, t2, lbl_decready); |
| uasm_i_andi(&p, v0, t1, (1 << fls(smp_num_siblings)) - 1); |
| |
| /* Ordering barrier */ |
| uasm_i_sync(&p, stype_ordering); |
| } |
| |
| if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) { |
| /* |
| * At this point it is safe for all VPEs to proceed with |
| * execution. This VPE will set the top bit of ready_count |
| * to indicate to the other VPEs that they may continue. |
| */ |
| cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont); |
| |
| /* |
| * This core will be reliant upon another core sending a |
| * power-up command to the CPC in order to resume operation. |
| * Thus an arbitrary VPE can't trigger the core leaving the |
| * idle state and the one that disables coherence might as well |
| * be the one to re-enable it. The rest will continue from here |
| * after that has been done. |
| */ |
| uasm_build_label(&l, p, lbl_secondary_cont); |
| |
| /* Ordering barrier */ |
| uasm_i_sync(&p, stype_ordering); |
| } |
| |
| /* The core is coherent, time to return to C code */ |
| uasm_i_jr(&p, ra); |
| uasm_i_nop(&p); |
| |
| gen_done: |
| /* Ensure the code didn't exceed the resources allocated for it */ |
| BUG_ON((p - buf) > max_instrs); |
| BUG_ON((l - labels) > ARRAY_SIZE(labels)); |
| BUG_ON((r - relocs) > ARRAY_SIZE(relocs)); |
| |
| /* Patch branch offsets */ |
| uasm_resolve_relocs(relocs, labels); |
| |
| /* Flush the icache */ |
| local_flush_icache_range((unsigned long)buf, (unsigned long)p); |
| |
| return buf; |
| out_err: |
| kfree(buf); |
| return NULL; |
| } |
| |
| static int __init cps_gen_core_entries(unsigned cpu) |
| { |
| enum cps_pm_state state; |
| unsigned core = cpu_data[cpu].core; |
| void *entry_fn, *core_rc; |
| |
| for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) { |
| if (per_cpu(nc_asm_enter, core)[state]) |
| continue; |
| if (!test_bit(state, state_support)) |
| continue; |
| |
| entry_fn = cps_gen_entry_code(cpu, state); |
| if (!entry_fn) { |
| pr_err("Failed to generate core %u state %u entry\n", |
| core, state); |
| clear_bit(state, state_support); |
| } |
| |
| per_cpu(nc_asm_enter, core)[state] = entry_fn; |
| } |
| |
| if (!per_cpu(ready_count, core)) { |
| core_rc = kmalloc(sizeof(u32), GFP_KERNEL); |
| if (!core_rc) { |
| pr_err("Failed allocate core %u ready_count\n", core); |
| return -ENOMEM; |
| } |
| per_cpu(ready_count, core) = core_rc; |
| } |
| |
| return 0; |
| } |
| |
| static int __init cps_pm_init(void) |
| { |
| unsigned cpu; |
| int err; |
| |
| /* Detect appropriate sync types for the system */ |
| switch (current_cpu_data.cputype) { |
| case CPU_INTERAPTIV: |
| case CPU_PROAPTIV: |
| case CPU_M5150: |
| case CPU_P5600: |
| case CPU_I6400: |
| stype_intervention = 0x2; |
| stype_memory = 0x3; |
| stype_ordering = 0x10; |
| break; |
| |
| default: |
| pr_warn("Power management is using heavyweight sync 0\n"); |
| } |
| |
| /* A CM is required for all non-coherent states */ |
| if (!mips_cm_present()) { |
| pr_warn("pm-cps: no CM, non-coherent states unavailable\n"); |
| goto out; |
| } |
| |
| /* |
| * If interrupts were enabled whilst running a wait instruction on a |
| * non-coherent core then the VPE may end up processing interrupts |
| * whilst non-coherent. That would be bad. |
| */ |
| if (cpu_wait == r4k_wait_irqoff) |
| set_bit(CPS_PM_NC_WAIT, state_support); |
| else |
| pr_warn("pm-cps: non-coherent wait unavailable\n"); |
| |
| /* Detect whether a CPC is present */ |
| if (mips_cpc_present()) { |
| /* Detect whether clock gating is implemented */ |
| if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL_MSK) |
| set_bit(CPS_PM_CLOCK_GATED, state_support); |
| else |
| pr_warn("pm-cps: CPC does not support clock gating\n"); |
| |
| /* Power gating is available with CPS SMP & any CPC */ |
| if (mips_cps_smp_in_use()) |
| set_bit(CPS_PM_POWER_GATED, state_support); |
| else |
| pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n"); |
| } else { |
| pr_warn("pm-cps: no CPC, clock & power gating unavailable\n"); |
| } |
| |
| for_each_present_cpu(cpu) { |
| err = cps_gen_core_entries(cpu); |
| if (err) |
| return err; |
| } |
| out: |
| return 0; |
| } |
| arch_initcall(cps_pm_init); |