| /* |
| * ds2490.c USB to one wire bridge |
| * |
| * Copyright (c) 2004 Evgeniy Polyakov <zbr@ioremap.net> |
| * |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/mod_devicetable.h> |
| #include <linux/usb.h> |
| #include <linux/slab.h> |
| |
| #include "../w1_int.h" |
| #include "../w1.h" |
| |
| /* USB Standard */ |
| /* USB Control request vendor type */ |
| #define VENDOR 0x40 |
| |
| /* COMMAND TYPE CODES */ |
| #define CONTROL_CMD 0x00 |
| #define COMM_CMD 0x01 |
| #define MODE_CMD 0x02 |
| |
| /* CONTROL COMMAND CODES */ |
| #define CTL_RESET_DEVICE 0x0000 |
| #define CTL_START_EXE 0x0001 |
| #define CTL_RESUME_EXE 0x0002 |
| #define CTL_HALT_EXE_IDLE 0x0003 |
| #define CTL_HALT_EXE_DONE 0x0004 |
| #define CTL_FLUSH_COMM_CMDS 0x0007 |
| #define CTL_FLUSH_RCV_BUFFER 0x0008 |
| #define CTL_FLUSH_XMT_BUFFER 0x0009 |
| #define CTL_GET_COMM_CMDS 0x000A |
| |
| /* MODE COMMAND CODES */ |
| #define MOD_PULSE_EN 0x0000 |
| #define MOD_SPEED_CHANGE_EN 0x0001 |
| #define MOD_1WIRE_SPEED 0x0002 |
| #define MOD_STRONG_PU_DURATION 0x0003 |
| #define MOD_PULLDOWN_SLEWRATE 0x0004 |
| #define MOD_PROG_PULSE_DURATION 0x0005 |
| #define MOD_WRITE1_LOWTIME 0x0006 |
| #define MOD_DSOW0_TREC 0x0007 |
| |
| /* COMMUNICATION COMMAND CODES */ |
| #define COMM_ERROR_ESCAPE 0x0601 |
| #define COMM_SET_DURATION 0x0012 |
| #define COMM_BIT_IO 0x0020 |
| #define COMM_PULSE 0x0030 |
| #define COMM_1_WIRE_RESET 0x0042 |
| #define COMM_BYTE_IO 0x0052 |
| #define COMM_MATCH_ACCESS 0x0064 |
| #define COMM_BLOCK_IO 0x0074 |
| #define COMM_READ_STRAIGHT 0x0080 |
| #define COMM_DO_RELEASE 0x6092 |
| #define COMM_SET_PATH 0x00A2 |
| #define COMM_WRITE_SRAM_PAGE 0x00B2 |
| #define COMM_WRITE_EPROM 0x00C4 |
| #define COMM_READ_CRC_PROT_PAGE 0x00D4 |
| #define COMM_READ_REDIRECT_PAGE_CRC 0x21E4 |
| #define COMM_SEARCH_ACCESS 0x00F4 |
| |
| /* Communication command bits */ |
| #define COMM_TYPE 0x0008 |
| #define COMM_SE 0x0008 |
| #define COMM_D 0x0008 |
| #define COMM_Z 0x0008 |
| #define COMM_CH 0x0008 |
| #define COMM_SM 0x0008 |
| #define COMM_R 0x0008 |
| #define COMM_IM 0x0001 |
| |
| #define COMM_PS 0x4000 |
| #define COMM_PST 0x4000 |
| #define COMM_CIB 0x4000 |
| #define COMM_RTS 0x4000 |
| #define COMM_DT 0x2000 |
| #define COMM_SPU 0x1000 |
| #define COMM_F 0x0800 |
| #define COMM_NTF 0x0400 |
| #define COMM_ICP 0x0200 |
| #define COMM_RST 0x0100 |
| |
| #define PULSE_PROG 0x01 |
| #define PULSE_SPUE 0x02 |
| |
| #define BRANCH_MAIN 0xCC |
| #define BRANCH_AUX 0x33 |
| |
| /* Status flags */ |
| #define ST_SPUA 0x01 /* Strong Pull-up is active */ |
| #define ST_PRGA 0x02 /* 12V programming pulse is being generated */ |
| #define ST_12VP 0x04 /* external 12V programming voltage is present */ |
| #define ST_PMOD 0x08 /* DS2490 powered from USB and external sources */ |
| #define ST_HALT 0x10 /* DS2490 is currently halted */ |
| #define ST_IDLE 0x20 /* DS2490 is currently idle */ |
| #define ST_EPOF 0x80 |
| /* Status transfer size, 16 bytes status, 16 byte result flags */ |
| #define ST_SIZE 0x20 |
| |
| /* Result Register flags */ |
| #define RR_DETECT 0xA5 /* New device detected */ |
| #define RR_NRS 0x01 /* Reset no presence or ... */ |
| #define RR_SH 0x02 /* short on reset or set path */ |
| #define RR_APP 0x04 /* alarming presence on reset */ |
| #define RR_VPP 0x08 /* 12V expected not seen */ |
| #define RR_CMP 0x10 /* compare error */ |
| #define RR_CRC 0x20 /* CRC error detected */ |
| #define RR_RDP 0x40 /* redirected page */ |
| #define RR_EOS 0x80 /* end of search error */ |
| |
| #define SPEED_NORMAL 0x00 |
| #define SPEED_FLEXIBLE 0x01 |
| #define SPEED_OVERDRIVE 0x02 |
| |
| #define NUM_EP 4 |
| #define EP_CONTROL 0 |
| #define EP_STATUS 1 |
| #define EP_DATA_OUT 2 |
| #define EP_DATA_IN 3 |
| |
| struct ds_device |
| { |
| struct list_head ds_entry; |
| |
| struct usb_device *udev; |
| struct usb_interface *intf; |
| |
| int ep[NUM_EP]; |
| |
| /* Strong PullUp |
| * 0: pullup not active, else duration in milliseconds |
| */ |
| int spu_sleep; |
| /* spu_bit contains COMM_SPU or 0 depending on if the strong pullup |
| * should be active or not for writes. |
| */ |
| u16 spu_bit; |
| |
| u8 st_buf[ST_SIZE]; |
| u8 byte_buf; |
| |
| struct w1_bus_master master; |
| }; |
| |
| struct ds_status |
| { |
| u8 enable; |
| u8 speed; |
| u8 pullup_dur; |
| u8 ppuls_dur; |
| u8 pulldown_slew; |
| u8 write1_time; |
| u8 write0_time; |
| u8 reserved0; |
| u8 status; |
| u8 command0; |
| u8 command1; |
| u8 command_buffer_status; |
| u8 data_out_buffer_status; |
| u8 data_in_buffer_status; |
| u8 reserved1; |
| u8 reserved2; |
| }; |
| |
| static struct usb_device_id ds_id_table [] = { |
| { USB_DEVICE(0x04fa, 0x2490) }, |
| { }, |
| }; |
| MODULE_DEVICE_TABLE(usb, ds_id_table); |
| |
| static int ds_probe(struct usb_interface *, const struct usb_device_id *); |
| static void ds_disconnect(struct usb_interface *); |
| |
| static int ds_send_control(struct ds_device *, u16, u16); |
| static int ds_send_control_cmd(struct ds_device *, u16, u16); |
| |
| static LIST_HEAD(ds_devices); |
| static DEFINE_MUTEX(ds_mutex); |
| |
| static struct usb_driver ds_driver = { |
| .name = "DS9490R", |
| .probe = ds_probe, |
| .disconnect = ds_disconnect, |
| .id_table = ds_id_table, |
| }; |
| |
| static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index) |
| { |
| int err; |
| |
| err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]), |
| CONTROL_CMD, VENDOR, value, index, NULL, 0, 1000); |
| if (err < 0) { |
| pr_err("Failed to send command control message %x.%x: err=%d.\n", |
| value, index, err); |
| return err; |
| } |
| |
| return err; |
| } |
| |
| static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index) |
| { |
| int err; |
| |
| err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]), |
| MODE_CMD, VENDOR, value, index, NULL, 0, 1000); |
| if (err < 0) { |
| pr_err("Failed to send mode control message %x.%x: err=%d.\n", |
| value, index, err); |
| return err; |
| } |
| |
| return err; |
| } |
| |
| static int ds_send_control(struct ds_device *dev, u16 value, u16 index) |
| { |
| int err; |
| |
| err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]), |
| COMM_CMD, VENDOR, value, index, NULL, 0, 1000); |
| if (err < 0) { |
| pr_err("Failed to send control message %x.%x: err=%d.\n", |
| value, index, err); |
| return err; |
| } |
| |
| return err; |
| } |
| |
| static inline void ds_print_msg(unsigned char *buf, unsigned char *str, int off) |
| { |
| pr_info("%45s: %8x\n", str, buf[off]); |
| } |
| |
| static void ds_dump_status(struct ds_device *dev, unsigned char *buf, int count) |
| { |
| int i; |
| |
| pr_info("0x%x: count=%d, status: ", dev->ep[EP_STATUS], count); |
| for (i=0; i<count; ++i) |
| pr_info("%02x ", buf[i]); |
| pr_info("\n"); |
| |
| if (count >= 16) { |
| ds_print_msg(buf, "enable flag", 0); |
| ds_print_msg(buf, "1-wire speed", 1); |
| ds_print_msg(buf, "strong pullup duration", 2); |
| ds_print_msg(buf, "programming pulse duration", 3); |
| ds_print_msg(buf, "pulldown slew rate control", 4); |
| ds_print_msg(buf, "write-1 low time", 5); |
| ds_print_msg(buf, "data sample offset/write-0 recovery time", |
| 6); |
| ds_print_msg(buf, "reserved (test register)", 7); |
| ds_print_msg(buf, "device status flags", 8); |
| ds_print_msg(buf, "communication command byte 1", 9); |
| ds_print_msg(buf, "communication command byte 2", 10); |
| ds_print_msg(buf, "communication command buffer status", 11); |
| ds_print_msg(buf, "1-wire data output buffer status", 12); |
| ds_print_msg(buf, "1-wire data input buffer status", 13); |
| ds_print_msg(buf, "reserved", 14); |
| ds_print_msg(buf, "reserved", 15); |
| } |
| for (i = 16; i < count; ++i) { |
| if (buf[i] == RR_DETECT) { |
| ds_print_msg(buf, "new device detect", i); |
| continue; |
| } |
| ds_print_msg(buf, "Result Register Value: ", i); |
| if (buf[i] & RR_NRS) |
| pr_info("NRS: Reset no presence or ...\n"); |
| if (buf[i] & RR_SH) |
| pr_info("SH: short on reset or set path\n"); |
| if (buf[i] & RR_APP) |
| pr_info("APP: alarming presence on reset\n"); |
| if (buf[i] & RR_VPP) |
| pr_info("VPP: 12V expected not seen\n"); |
| if (buf[i] & RR_CMP) |
| pr_info("CMP: compare error\n"); |
| if (buf[i] & RR_CRC) |
| pr_info("CRC: CRC error detected\n"); |
| if (buf[i] & RR_RDP) |
| pr_info("RDP: redirected page\n"); |
| if (buf[i] & RR_EOS) |
| pr_info("EOS: end of search error\n"); |
| } |
| } |
| |
| static int ds_recv_status(struct ds_device *dev, struct ds_status *st, |
| bool dump) |
| { |
| int count, err; |
| |
| if (st) |
| memset(st, 0, sizeof(*st)); |
| |
| count = 0; |
| err = usb_interrupt_msg(dev->udev, |
| usb_rcvintpipe(dev->udev, |
| dev->ep[EP_STATUS]), |
| dev->st_buf, sizeof(dev->st_buf), |
| &count, 1000); |
| if (err < 0) { |
| pr_err("Failed to read 1-wire data from 0x%x: err=%d.\n", |
| dev->ep[EP_STATUS], err); |
| return err; |
| } |
| |
| if (dump) |
| ds_dump_status(dev, dev->st_buf, count); |
| |
| if (st && count >= sizeof(*st)) |
| memcpy(st, dev->st_buf, sizeof(*st)); |
| |
| return count; |
| } |
| |
| static void ds_reset_device(struct ds_device *dev) |
| { |
| ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0); |
| /* Always allow strong pullup which allow individual writes to use |
| * the strong pullup. |
| */ |
| if (ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_SPUE)) |
| pr_err("ds_reset_device: Error allowing strong pullup\n"); |
| /* Chip strong pullup time was cleared. */ |
| if (dev->spu_sleep) { |
| /* lower 4 bits are 0, see ds_set_pullup */ |
| u8 del = dev->spu_sleep>>4; |
| if (ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del)) |
| pr_err("ds_reset_device: Error setting duration\n"); |
| } |
| } |
| |
| static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size) |
| { |
| int count, err; |
| |
| /* Careful on size. If size is less than what is available in |
| * the input buffer, the device fails the bulk transfer and |
| * clears the input buffer. It could read the maximum size of |
| * the data buffer, but then do you return the first, last, or |
| * some set of the middle size bytes? As long as the rest of |
| * the code is correct there will be size bytes waiting. A |
| * call to ds_wait_status will wait until the device is idle |
| * and any data to be received would have been available. |
| */ |
| count = 0; |
| err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]), |
| buf, size, &count, 1000); |
| if (err < 0) { |
| pr_info("Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]); |
| usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN])); |
| ds_recv_status(dev, NULL, true); |
| return err; |
| } |
| |
| #if 0 |
| { |
| int i; |
| |
| printk("%s: count=%d: ", __func__, count); |
| for (i=0; i<count; ++i) |
| printk("%02x ", buf[i]); |
| printk("\n"); |
| } |
| #endif |
| return count; |
| } |
| |
| static int ds_send_data(struct ds_device *dev, unsigned char *buf, int len) |
| { |
| int count, err; |
| |
| count = 0; |
| err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000); |
| if (err < 0) { |
| pr_err("Failed to write 1-wire data to ep0x%x: " |
| "err=%d.\n", dev->ep[EP_DATA_OUT], err); |
| return err; |
| } |
| |
| return err; |
| } |
| |
| #if 0 |
| |
| int ds_stop_pulse(struct ds_device *dev, int limit) |
| { |
| struct ds_status st; |
| int count = 0, err = 0; |
| |
| do { |
| err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0); |
| if (err) |
| break; |
| err = ds_send_control(dev, CTL_RESUME_EXE, 0); |
| if (err) |
| break; |
| err = ds_recv_status(dev, &st, false); |
| if (err) |
| break; |
| |
| if ((st.status & ST_SPUA) == 0) { |
| err = ds_send_control_mode(dev, MOD_PULSE_EN, 0); |
| if (err) |
| break; |
| } |
| } while(++count < limit); |
| |
| return err; |
| } |
| |
| int ds_detect(struct ds_device *dev, struct ds_status *st) |
| { |
| int err; |
| |
| err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0); |
| if (err) |
| return err; |
| |
| err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0); |
| if (err) |
| return err; |
| |
| err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40); |
| if (err) |
| return err; |
| |
| err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG); |
| if (err) |
| return err; |
| |
| err = ds_dump_status(dev, st); |
| |
| return err; |
| } |
| |
| #endif /* 0 */ |
| |
| static int ds_wait_status(struct ds_device *dev, struct ds_status *st) |
| { |
| int err, count = 0; |
| |
| do { |
| st->status = 0; |
| err = ds_recv_status(dev, st, false); |
| #if 0 |
| if (err >= 0) { |
| int i; |
| printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err); |
| for (i=0; i<err; ++i) |
| printk("%02x ", dev->st_buf[i]); |
| printk("\n"); |
| } |
| #endif |
| } while (!(st->status & ST_IDLE) && !(err < 0) && ++count < 100); |
| |
| if (err >= 16 && st->status & ST_EPOF) { |
| pr_info("Resetting device after ST_EPOF.\n"); |
| ds_reset_device(dev); |
| /* Always dump the device status. */ |
| count = 101; |
| } |
| |
| /* Dump the status for errors or if there is extended return data. |
| * The extended status includes new device detection (maybe someone |
| * can do something with it). |
| */ |
| if (err > 16 || count >= 100 || err < 0) |
| ds_dump_status(dev, dev->st_buf, err); |
| |
| /* Extended data isn't an error. Well, a short is, but the dump |
| * would have already told the user that and we can't do anything |
| * about it in software anyway. |
| */ |
| if (count >= 100 || err < 0) |
| return -1; |
| else |
| return 0; |
| } |
| |
| static int ds_reset(struct ds_device *dev) |
| { |
| int err; |
| |
| /* Other potentionally interesting flags for reset. |
| * |
| * COMM_NTF: Return result register feedback. This could be used to |
| * detect some conditions such as short, alarming presence, or |
| * detect if a new device was detected. |
| * |
| * COMM_SE which allows SPEED_NORMAL, SPEED_FLEXIBLE, SPEED_OVERDRIVE: |
| * Select the data transfer rate. |
| */ |
| err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_IM, SPEED_NORMAL); |
| if (err) |
| return err; |
| |
| return 0; |
| } |
| |
| #if 0 |
| static int ds_set_speed(struct ds_device *dev, int speed) |
| { |
| int err; |
| |
| if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE) |
| return -EINVAL; |
| |
| if (speed != SPEED_OVERDRIVE) |
| speed = SPEED_FLEXIBLE; |
| |
| speed &= 0xff; |
| |
| err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed); |
| if (err) |
| return err; |
| |
| return err; |
| } |
| #endif /* 0 */ |
| |
| static int ds_set_pullup(struct ds_device *dev, int delay) |
| { |
| int err = 0; |
| u8 del = 1 + (u8)(delay >> 4); |
| /* Just storing delay would not get the trunication and roundup. */ |
| int ms = del<<4; |
| |
| /* Enable spu_bit if a delay is set. */ |
| dev->spu_bit = delay ? COMM_SPU : 0; |
| /* If delay is zero, it has already been disabled, if the time is |
| * the same as the hardware was last programmed to, there is also |
| * nothing more to do. Compare with the recalculated value ms |
| * rather than del or delay which can have a different value. |
| */ |
| if (delay == 0 || ms == dev->spu_sleep) |
| return err; |
| |
| err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del); |
| if (err) |
| return err; |
| |
| dev->spu_sleep = ms; |
| |
| return err; |
| } |
| |
| static int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit) |
| { |
| int err; |
| struct ds_status st; |
| |
| err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | (bit ? COMM_D : 0), |
| 0); |
| if (err) |
| return err; |
| |
| ds_wait_status(dev, &st); |
| |
| err = ds_recv_data(dev, tbit, sizeof(*tbit)); |
| if (err < 0) |
| return err; |
| |
| return 0; |
| } |
| |
| #if 0 |
| static int ds_write_bit(struct ds_device *dev, u8 bit) |
| { |
| int err; |
| struct ds_status st; |
| |
| /* Set COMM_ICP to write without a readback. Note, this will |
| * produce one time slot, a down followed by an up with COMM_D |
| * only determing the timing. |
| */ |
| err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | COMM_ICP | |
| (bit ? COMM_D : 0), 0); |
| if (err) |
| return err; |
| |
| ds_wait_status(dev, &st); |
| |
| return 0; |
| } |
| #endif |
| |
| static int ds_write_byte(struct ds_device *dev, u8 byte) |
| { |
| int err; |
| struct ds_status st; |
| |
| err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | dev->spu_bit, byte); |
| if (err) |
| return err; |
| |
| if (dev->spu_bit) |
| msleep(dev->spu_sleep); |
| |
| err = ds_wait_status(dev, &st); |
| if (err) |
| return err; |
| |
| err = ds_recv_data(dev, &dev->byte_buf, 1); |
| if (err < 0) |
| return err; |
| |
| return !(byte == dev->byte_buf); |
| } |
| |
| static int ds_read_byte(struct ds_device *dev, u8 *byte) |
| { |
| int err; |
| struct ds_status st; |
| |
| err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM , 0xff); |
| if (err) |
| return err; |
| |
| ds_wait_status(dev, &st); |
| |
| err = ds_recv_data(dev, byte, sizeof(*byte)); |
| if (err < 0) |
| return err; |
| |
| return 0; |
| } |
| |
| static int ds_read_block(struct ds_device *dev, u8 *buf, int len) |
| { |
| struct ds_status st; |
| int err; |
| |
| if (len > 64*1024) |
| return -E2BIG; |
| |
| memset(buf, 0xFF, len); |
| |
| err = ds_send_data(dev, buf, len); |
| if (err < 0) |
| return err; |
| |
| err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM, len); |
| if (err) |
| return err; |
| |
| ds_wait_status(dev, &st); |
| |
| memset(buf, 0x00, len); |
| err = ds_recv_data(dev, buf, len); |
| |
| return err; |
| } |
| |
| static int ds_write_block(struct ds_device *dev, u8 *buf, int len) |
| { |
| int err; |
| struct ds_status st; |
| |
| err = ds_send_data(dev, buf, len); |
| if (err < 0) |
| return err; |
| |
| err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | dev->spu_bit, len); |
| if (err) |
| return err; |
| |
| if (dev->spu_bit) |
| msleep(dev->spu_sleep); |
| |
| ds_wait_status(dev, &st); |
| |
| err = ds_recv_data(dev, buf, len); |
| if (err < 0) |
| return err; |
| |
| return !(err == len); |
| } |
| |
| static void ds9490r_search(void *data, struct w1_master *master, |
| u8 search_type, w1_slave_found_callback callback) |
| { |
| /* When starting with an existing id, the first id returned will |
| * be that device (if it is still on the bus most likely). |
| * |
| * If the number of devices found is less than or equal to the |
| * search_limit, that number of IDs will be returned. If there are |
| * more, search_limit IDs will be returned followed by a non-zero |
| * discrepency value. |
| */ |
| struct ds_device *dev = data; |
| int err; |
| u16 value, index; |
| struct ds_status st; |
| int search_limit; |
| int found = 0; |
| int i; |
| |
| /* DS18b20 spec, 13.16 ms per device, 75 per second, sleep for |
| * discovering 8 devices (1 bulk transfer and 1/2 FIFO size) at a time. |
| */ |
| const unsigned long jtime = msecs_to_jiffies(1000*8/75); |
| /* FIFO 128 bytes, bulk packet size 64, read a multiple of the |
| * packet size. |
| */ |
| const size_t bufsize = 2 * 64; |
| u64 *buf; |
| |
| buf = kmalloc(bufsize, GFP_KERNEL); |
| if (!buf) |
| return; |
| |
| mutex_lock(&master->bus_mutex); |
| |
| /* address to start searching at */ |
| if (ds_send_data(dev, (u8 *)&master->search_id, 8) < 0) |
| goto search_out; |
| master->search_id = 0; |
| |
| value = COMM_SEARCH_ACCESS | COMM_IM | COMM_RST | COMM_SM | COMM_F | |
| COMM_RTS; |
| search_limit = master->max_slave_count; |
| if (search_limit > 255) |
| search_limit = 0; |
| index = search_type | (search_limit << 8); |
| if (ds_send_control(dev, value, index) < 0) |
| goto search_out; |
| |
| do { |
| schedule_timeout(jtime); |
| |
| err = ds_recv_status(dev, &st, false); |
| if (err < 0 || err < sizeof(st)) |
| break; |
| |
| if (st.data_in_buffer_status) { |
| /* Bulk in can receive partial ids, but when it does |
| * they fail crc and will be discarded anyway. |
| * That has only been seen when status in buffer |
| * is 0 and bulk is read anyway, so don't read |
| * bulk without first checking if status says there |
| * is data to read. |
| */ |
| err = ds_recv_data(dev, (u8 *)buf, bufsize); |
| if (err < 0) |
| break; |
| for (i = 0; i < err/8; ++i) { |
| ++found; |
| if (found <= search_limit) |
| callback(master, buf[i]); |
| /* can't know if there will be a discrepancy |
| * value after until the next id */ |
| if (found == search_limit) |
| master->search_id = buf[i]; |
| } |
| } |
| |
| if (test_bit(W1_ABORT_SEARCH, &master->flags)) |
| break; |
| } while (!(st.status & (ST_IDLE | ST_HALT))); |
| |
| /* only continue the search if some weren't found */ |
| if (found <= search_limit) { |
| master->search_id = 0; |
| } else if (!test_bit(W1_WARN_MAX_COUNT, &master->flags)) { |
| /* Only max_slave_count will be scanned in a search, |
| * but it will start where it left off next search |
| * until all ids are identified and then it will start |
| * over. A continued search will report the previous |
| * last id as the first id (provided it is still on the |
| * bus). |
| */ |
| dev_info(&dev->udev->dev, "%s: max_slave_count %d reached, " |
| "will continue next search.\n", __func__, |
| master->max_slave_count); |
| set_bit(W1_WARN_MAX_COUNT, &master->flags); |
| } |
| search_out: |
| mutex_unlock(&master->bus_mutex); |
| kfree(buf); |
| } |
| |
| #if 0 |
| /* |
| * FIXME: if this disabled code is ever used in the future all ds_send_data() |
| * calls must be changed to use a DMAable buffer. |
| */ |
| static int ds_match_access(struct ds_device *dev, u64 init) |
| { |
| int err; |
| struct ds_status st; |
| |
| err = ds_send_data(dev, (unsigned char *)&init, sizeof(init)); |
| if (err) |
| return err; |
| |
| ds_wait_status(dev, &st); |
| |
| err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055); |
| if (err) |
| return err; |
| |
| ds_wait_status(dev, &st); |
| |
| return 0; |
| } |
| |
| static int ds_set_path(struct ds_device *dev, u64 init) |
| { |
| int err; |
| struct ds_status st; |
| u8 buf[9]; |
| |
| memcpy(buf, &init, 8); |
| buf[8] = BRANCH_MAIN; |
| |
| err = ds_send_data(dev, buf, sizeof(buf)); |
| if (err) |
| return err; |
| |
| ds_wait_status(dev, &st); |
| |
| err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0); |
| if (err) |
| return err; |
| |
| ds_wait_status(dev, &st); |
| |
| return 0; |
| } |
| |
| #endif /* 0 */ |
| |
| static u8 ds9490r_touch_bit(void *data, u8 bit) |
| { |
| struct ds_device *dev = data; |
| |
| if (ds_touch_bit(dev, bit, &dev->byte_buf)) |
| return 0; |
| |
| return dev->byte_buf; |
| } |
| |
| #if 0 |
| static void ds9490r_write_bit(void *data, u8 bit) |
| { |
| struct ds_device *dev = data; |
| |
| ds_write_bit(dev, bit); |
| } |
| |
| static u8 ds9490r_read_bit(void *data) |
| { |
| struct ds_device *dev = data; |
| int err; |
| |
| err = ds_touch_bit(dev, 1, &dev->byte_buf); |
| if (err) |
| return 0; |
| |
| return dev->byte_buf & 1; |
| } |
| #endif |
| |
| static void ds9490r_write_byte(void *data, u8 byte) |
| { |
| struct ds_device *dev = data; |
| |
| ds_write_byte(dev, byte); |
| } |
| |
| static u8 ds9490r_read_byte(void *data) |
| { |
| struct ds_device *dev = data; |
| int err; |
| |
| err = ds_read_byte(dev, &dev->byte_buf); |
| if (err) |
| return 0; |
| |
| return dev->byte_buf; |
| } |
| |
| static void ds9490r_write_block(void *data, const u8 *buf, int len) |
| { |
| struct ds_device *dev = data; |
| u8 *tbuf; |
| |
| if (len <= 0) |
| return; |
| |
| tbuf = kmalloc(len, GFP_KERNEL); |
| if (!tbuf) |
| return; |
| |
| memcpy(tbuf, buf, len); |
| ds_write_block(dev, tbuf, len); |
| |
| kfree(tbuf); |
| } |
| |
| static u8 ds9490r_read_block(void *data, u8 *buf, int len) |
| { |
| struct ds_device *dev = data; |
| int err; |
| u8 *tbuf; |
| |
| if (len <= 0) |
| return 0; |
| |
| tbuf = kmalloc(len, GFP_KERNEL); |
| if (!tbuf) |
| return 0; |
| |
| err = ds_read_block(dev, tbuf, len); |
| if (err >= 0) |
| memcpy(buf, tbuf, len); |
| |
| kfree(tbuf); |
| |
| return err >= 0 ? len : 0; |
| } |
| |
| static u8 ds9490r_reset(void *data) |
| { |
| struct ds_device *dev = data; |
| int err; |
| |
| err = ds_reset(dev); |
| if (err) |
| return 1; |
| |
| return 0; |
| } |
| |
| static u8 ds9490r_set_pullup(void *data, int delay) |
| { |
| struct ds_device *dev = data; |
| |
| if (ds_set_pullup(dev, delay)) |
| return 1; |
| |
| return 0; |
| } |
| |
| static int ds_w1_init(struct ds_device *dev) |
| { |
| memset(&dev->master, 0, sizeof(struct w1_bus_master)); |
| |
| /* Reset the device as it can be in a bad state. |
| * This is necessary because a block write will wait for data |
| * to be placed in the output buffer and block any later |
| * commands which will keep accumulating and the device will |
| * not be idle. Another case is removing the ds2490 module |
| * while a bus search is in progress, somehow a few commands |
| * get through, but the input transfers fail leaving data in |
| * the input buffer. This will cause the next read to fail |
| * see the note in ds_recv_data. |
| */ |
| ds_reset_device(dev); |
| |
| dev->master.data = dev; |
| dev->master.touch_bit = &ds9490r_touch_bit; |
| /* read_bit and write_bit in w1_bus_master are expected to set and |
| * sample the line level. For write_bit that means it is expected to |
| * set it to that value and leave it there. ds2490 only supports an |
| * individual time slot at the lowest level. The requirement from |
| * pulling the bus state down to reading the state is 15us, something |
| * that isn't realistic on the USB bus anyway. |
| dev->master.read_bit = &ds9490r_read_bit; |
| dev->master.write_bit = &ds9490r_write_bit; |
| */ |
| dev->master.read_byte = &ds9490r_read_byte; |
| dev->master.write_byte = &ds9490r_write_byte; |
| dev->master.read_block = &ds9490r_read_block; |
| dev->master.write_block = &ds9490r_write_block; |
| dev->master.reset_bus = &ds9490r_reset; |
| dev->master.set_pullup = &ds9490r_set_pullup; |
| dev->master.search = &ds9490r_search; |
| |
| return w1_add_master_device(&dev->master); |
| } |
| |
| static void ds_w1_fini(struct ds_device *dev) |
| { |
| w1_remove_master_device(&dev->master); |
| } |
| |
| static int ds_probe(struct usb_interface *intf, |
| const struct usb_device_id *udev_id) |
| { |
| struct usb_device *udev = interface_to_usbdev(intf); |
| struct usb_endpoint_descriptor *endpoint; |
| struct usb_host_interface *iface_desc; |
| struct ds_device *dev; |
| int i, err, alt; |
| |
| dev = kzalloc(sizeof(struct ds_device), GFP_KERNEL); |
| if (!dev) { |
| pr_info("Failed to allocate new DS9490R structure.\n"); |
| return -ENOMEM; |
| } |
| dev->udev = usb_get_dev(udev); |
| if (!dev->udev) { |
| err = -ENOMEM; |
| goto err_out_free; |
| } |
| memset(dev->ep, 0, sizeof(dev->ep)); |
| |
| usb_set_intfdata(intf, dev); |
| |
| err = usb_reset_configuration(dev->udev); |
| if (err) { |
| dev_err(&dev->udev->dev, |
| "Failed to reset configuration: err=%d.\n", err); |
| goto err_out_clear; |
| } |
| |
| /* alternative 3, 1ms interrupt (greatly speeds search), 64 byte bulk */ |
| alt = 3; |
| err = usb_set_interface(dev->udev, |
| intf->altsetting[alt].desc.bInterfaceNumber, alt); |
| if (err) { |
| dev_err(&dev->udev->dev, "Failed to set alternative setting %d " |
| "for %d interface: err=%d.\n", alt, |
| intf->altsetting[alt].desc.bInterfaceNumber, err); |
| goto err_out_clear; |
| } |
| |
| iface_desc = &intf->altsetting[alt]; |
| if (iface_desc->desc.bNumEndpoints != NUM_EP-1) { |
| pr_info("Num endpoints=%d. It is not DS9490R.\n", |
| iface_desc->desc.bNumEndpoints); |
| err = -EINVAL; |
| goto err_out_clear; |
| } |
| |
| /* |
| * This loop doesn'd show control 0 endpoint, |
| * so we will fill only 1-3 endpoints entry. |
| */ |
| for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) { |
| endpoint = &iface_desc->endpoint[i].desc; |
| |
| dev->ep[i+1] = endpoint->bEndpointAddress; |
| #if 0 |
| printk("%d: addr=%x, size=%d, dir=%s, type=%x\n", |
| i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize), |
| (endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT", |
| endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK); |
| #endif |
| } |
| |
| err = ds_w1_init(dev); |
| if (err) |
| goto err_out_clear; |
| |
| mutex_lock(&ds_mutex); |
| list_add_tail(&dev->ds_entry, &ds_devices); |
| mutex_unlock(&ds_mutex); |
| |
| return 0; |
| |
| err_out_clear: |
| usb_set_intfdata(intf, NULL); |
| usb_put_dev(dev->udev); |
| err_out_free: |
| kfree(dev); |
| return err; |
| } |
| |
| static void ds_disconnect(struct usb_interface *intf) |
| { |
| struct ds_device *dev; |
| |
| dev = usb_get_intfdata(intf); |
| if (!dev) |
| return; |
| |
| mutex_lock(&ds_mutex); |
| list_del(&dev->ds_entry); |
| mutex_unlock(&ds_mutex); |
| |
| ds_w1_fini(dev); |
| |
| usb_set_intfdata(intf, NULL); |
| |
| usb_put_dev(dev->udev); |
| kfree(dev); |
| } |
| |
| module_usb_driver(ds_driver); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Evgeniy Polyakov <zbr@ioremap.net>"); |
| MODULE_DESCRIPTION("DS2490 USB <-> W1 bus master driver (DS9490*)"); |