| /* |
| * HEH: Hash-Encrypt-Hash mode |
| * |
| * Copyright (c) 2016 Google Inc. |
| * |
| * Authors: |
| * Alex Cope <alexcope@google.com> |
| * Eric Biggers <ebiggers@google.com> |
| */ |
| |
| /* |
| * Hash-Encrypt-Hash (HEH) is a proposed block cipher mode of operation which |
| * extends the strong pseudo-random permutation (SPRP) property of block ciphers |
| * (e.g. AES) to arbitrary length input strings. It uses two keyed invertible |
| * hash functions with a layer of ECB encryption applied in-between. The |
| * algorithm is specified by the following Internet Draft: |
| * |
| * https://tools.ietf.org/html/draft-cope-heh-01 |
| * |
| * Although HEH can be used as either a regular symmetric cipher or as an AEAD, |
| * currently this module only provides it as a symmetric cipher. Additionally, |
| * only 16-byte nonces are supported. |
| */ |
| |
| #include <crypto/gf128mul.h> |
| #include <crypto/internal/hash.h> |
| #include <crypto/internal/skcipher.h> |
| #include <crypto/scatterwalk.h> |
| #include <crypto/skcipher.h> |
| #include "internal.h" |
| |
| /* |
| * The block size is the size of GF(2^128) elements and also the required block |
| * size of the underlying block cipher. |
| */ |
| #define HEH_BLOCK_SIZE 16 |
| |
| struct heh_instance_ctx { |
| struct crypto_shash_spawn cmac; |
| struct crypto_shash_spawn poly_hash; |
| struct crypto_skcipher_spawn ecb; |
| }; |
| |
| struct heh_tfm_ctx { |
| struct crypto_shash *cmac; |
| struct crypto_shash *poly_hash; /* keyed with tau_key */ |
| struct crypto_ablkcipher *ecb; |
| }; |
| |
| struct heh_cmac_data { |
| u8 nonce[HEH_BLOCK_SIZE]; |
| __le32 nonce_length; |
| __le32 aad_length; |
| __le32 message_length; |
| __le32 padding; |
| }; |
| |
| struct heh_req_ctx { /* aligned to alignmask */ |
| be128 beta1_key; |
| be128 beta2_key; |
| union { |
| struct { |
| struct heh_cmac_data data; |
| struct shash_desc desc; |
| /* + crypto_shash_descsize(cmac) */ |
| } cmac; |
| struct { |
| struct shash_desc desc; |
| /* + crypto_shash_descsize(poly_hash) */ |
| } poly_hash; |
| struct { |
| u8 keystream[HEH_BLOCK_SIZE]; |
| u8 tmp[HEH_BLOCK_SIZE]; |
| struct scatterlist tmp_sgl[2]; |
| struct ablkcipher_request req; |
| /* + crypto_ablkcipher_reqsize(ecb) */ |
| } ecb; |
| } u; |
| }; |
| |
| /* |
| * Get the offset in bytes to the last full block, or equivalently the length of |
| * all full blocks excluding the last |
| */ |
| static inline unsigned int get_tail_offset(unsigned int len) |
| { |
| len -= len % HEH_BLOCK_SIZE; |
| return len - HEH_BLOCK_SIZE; |
| } |
| |
| static inline struct heh_req_ctx *heh_req_ctx(struct ablkcipher_request *req) |
| { |
| unsigned int alignmask = crypto_ablkcipher_alignmask( |
| crypto_ablkcipher_reqtfm(req)); |
| |
| return (void *)PTR_ALIGN((u8 *)ablkcipher_request_ctx(req), |
| alignmask + 1); |
| } |
| |
| static inline void async_done(struct crypto_async_request *areq, int err, |
| int (*next_step)(struct ablkcipher_request *, |
| u32)) |
| { |
| struct ablkcipher_request *req = areq->data; |
| |
| if (err) |
| goto out; |
| |
| err = next_step(req, req->base.flags & ~CRYPTO_TFM_REQ_MAY_SLEEP); |
| if (err == -EINPROGRESS || |
| (err == -EBUSY && (req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))) |
| return; |
| out: |
| ablkcipher_request_complete(req, err); |
| } |
| |
| /* |
| * Generate the per-message "beta" keys used by the hashing layers of HEH. The |
| * first beta key is the CMAC of the nonce, the additional authenticated data |
| * (AAD), and the lengths in bytes of the nonce, AAD, and message. The nonce |
| * and AAD are each zero-padded to the next 16-byte block boundary, and the |
| * lengths are serialized as 4-byte little endian integers and zero-padded to |
| * the next 16-byte block boundary. |
| * The second beta key is the first one interpreted as an element in GF(2^128) |
| * and multiplied by x. |
| * |
| * Note that because the nonce and AAD may, in general, be variable-length, the |
| * key generation must be done by a pseudo-random function (PRF) on |
| * variable-length inputs. CBC-MAC does not satisfy this, as it is only a PRF |
| * on fixed-length inputs. CMAC remedies this flaw. Including the lengths of |
| * the nonce, AAD, and message is also critical to avoid collisions. |
| * |
| * That being said, this implementation does not yet operate as an AEAD and |
| * therefore there is never any AAD, nor are variable-length nonces supported. |
| */ |
| static int generate_betas(struct ablkcipher_request *req, |
| be128 *beta1_key, be128 *beta2_key) |
| { |
| struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req); |
| struct heh_tfm_ctx *ctx = crypto_ablkcipher_ctx(tfm); |
| struct heh_req_ctx *rctx = heh_req_ctx(req); |
| struct heh_cmac_data *data = &rctx->u.cmac.data; |
| struct shash_desc *desc = &rctx->u.cmac.desc; |
| int err; |
| |
| BUILD_BUG_ON(sizeof(*data) != 2 * HEH_BLOCK_SIZE); |
| memcpy(data->nonce, req->info, HEH_BLOCK_SIZE); |
| data->nonce_length = cpu_to_le32(HEH_BLOCK_SIZE); |
| data->aad_length = cpu_to_le32(0); |
| data->message_length = cpu_to_le32(req->nbytes); |
| data->padding = cpu_to_le32(0); |
| |
| desc->tfm = ctx->cmac; |
| desc->flags = req->base.flags; |
| |
| err = crypto_shash_digest(desc, (const u8 *)data, sizeof(*data), |
| (u8 *)beta1_key); |
| if (err) |
| return err; |
| |
| gf128mul_x_ble(beta2_key, beta1_key); |
| return 0; |
| } |
| |
| /*****************************************************************************/ |
| |
| /* |
| * This is the generic version of poly_hash. It does the GF(2^128) |
| * multiplication by 'tau_key' using a precomputed table, without using any |
| * special CPU instructions. On some platforms, an accelerated version (with |
| * higher cra_priority) may be used instead. |
| */ |
| |
| struct poly_hash_tfm_ctx { |
| struct gf128mul_4k *tau_key; |
| }; |
| |
| struct poly_hash_desc_ctx { |
| be128 digest; |
| unsigned int count; |
| }; |
| |
| static int poly_hash_setkey(struct crypto_shash *tfm, |
| const u8 *key, unsigned int keylen) |
| { |
| struct poly_hash_tfm_ctx *tctx = crypto_shash_ctx(tfm); |
| be128 key128; |
| |
| if (keylen != HEH_BLOCK_SIZE) { |
| crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| return -EINVAL; |
| } |
| |
| if (tctx->tau_key) |
| gf128mul_free_4k(tctx->tau_key); |
| memcpy(&key128, key, HEH_BLOCK_SIZE); |
| tctx->tau_key = gf128mul_init_4k_ble(&key128); |
| if (!tctx->tau_key) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static int poly_hash_init(struct shash_desc *desc) |
| { |
| struct poly_hash_desc_ctx *ctx = shash_desc_ctx(desc); |
| |
| ctx->digest = (be128) { 0 }; |
| ctx->count = 0; |
| return 0; |
| } |
| |
| static int poly_hash_update(struct shash_desc *desc, const u8 *src, |
| unsigned int len) |
| { |
| struct poly_hash_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm); |
| struct poly_hash_desc_ctx *ctx = shash_desc_ctx(desc); |
| unsigned int partial = ctx->count % HEH_BLOCK_SIZE; |
| u8 *dst = (u8 *)&ctx->digest + partial; |
| |
| ctx->count += len; |
| |
| /* Finishing at least one block? */ |
| if (partial + len >= HEH_BLOCK_SIZE) { |
| |
| if (partial) { |
| /* Finish the pending block. */ |
| unsigned int n = HEH_BLOCK_SIZE - partial; |
| |
| len -= n; |
| do { |
| *dst++ ^= *src++; |
| } while (--n); |
| |
| gf128mul_4k_ble(&ctx->digest, tctx->tau_key); |
| } |
| |
| /* Process zero or more full blocks. */ |
| while (len >= HEH_BLOCK_SIZE) { |
| be128 coeff; |
| |
| memcpy(&coeff, src, HEH_BLOCK_SIZE); |
| be128_xor(&ctx->digest, &ctx->digest, &coeff); |
| src += HEH_BLOCK_SIZE; |
| len -= HEH_BLOCK_SIZE; |
| gf128mul_4k_ble(&ctx->digest, tctx->tau_key); |
| } |
| dst = (u8 *)&ctx->digest; |
| } |
| |
| /* Continue adding the next block to 'digest'. */ |
| while (len--) |
| *dst++ ^= *src++; |
| return 0; |
| } |
| |
| static int poly_hash_final(struct shash_desc *desc, u8 *out) |
| { |
| struct poly_hash_desc_ctx *ctx = shash_desc_ctx(desc); |
| |
| /* Finish the last block if needed. */ |
| if (ctx->count % HEH_BLOCK_SIZE) { |
| struct poly_hash_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm); |
| |
| gf128mul_4k_ble(&ctx->digest, tctx->tau_key); |
| } |
| |
| memcpy(out, &ctx->digest, HEH_BLOCK_SIZE); |
| return 0; |
| } |
| |
| static void poly_hash_exit(struct crypto_tfm *tfm) |
| { |
| struct poly_hash_tfm_ctx *tctx = crypto_tfm_ctx(tfm); |
| |
| gf128mul_free_4k(tctx->tau_key); |
| } |
| |
| static struct shash_alg poly_hash_alg = { |
| .digestsize = HEH_BLOCK_SIZE, |
| .init = poly_hash_init, |
| .update = poly_hash_update, |
| .final = poly_hash_final, |
| .setkey = poly_hash_setkey, |
| .descsize = sizeof(struct poly_hash_desc_ctx), |
| .base = { |
| .cra_name = "poly_hash", |
| .cra_driver_name = "poly_hash-generic", |
| .cra_priority = 100, |
| .cra_ctxsize = sizeof(struct poly_hash_tfm_ctx), |
| .cra_exit = poly_hash_exit, |
| .cra_module = THIS_MODULE, |
| }, |
| }; |
| |
| /*****************************************************************************/ |
| |
| /* |
| * Split the message into 16 byte blocks, padding out the last block, and use |
| * the blocks as coefficients in the evaluation of a polynomial over GF(2^128) |
| * at the secret point 'tau_key'. For ease of implementing the higher-level |
| * heh_hash_inv() function, the constant and degree-1 coefficients are swapped |
| * if there is a partial block. |
| * |
| * Mathematically, compute: |
| * if (no partial block) |
| * k^{N-1} * m_0 + ... + k * m_{N-2} + m_{N-1} |
| * else if (partial block) |
| * k^N * m_0 + ... + k^2 * m_{N-2} + k * m_N + m_{N-1} |
| * |
| * where: |
| * t is tau_key |
| * N is the number of full blocks in the message |
| * m_i is the i-th full block in the message for i = 0 to N-1 inclusive |
| * m_N is the partial block of the message zero-padded up to 16 bytes |
| * |
| * Note that most of this is now separated out into its own keyed hash |
| * algorithm, to allow optimized implementations. However, we still handle the |
| * swapping of the last two coefficients here in the HEH template because this |
| * simplifies the poly_hash algorithms: they don't have to buffer an extra |
| * block, don't have to duplicate as much code, and are more similar to GHASH. |
| */ |
| static int poly_hash(struct ablkcipher_request *req, struct scatterlist *sgl, |
| be128 *hash) |
| { |
| struct heh_req_ctx *rctx = heh_req_ctx(req); |
| struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req); |
| struct heh_tfm_ctx *ctx = crypto_ablkcipher_ctx(tfm); |
| struct shash_desc *desc = &rctx->u.poly_hash.desc; |
| unsigned int tail_offset = get_tail_offset(req->nbytes); |
| unsigned int tail_len = req->nbytes - tail_offset; |
| be128 tail[2]; |
| unsigned int i, n; |
| struct sg_mapping_iter miter; |
| int err; |
| |
| desc->tfm = ctx->poly_hash; |
| desc->flags = req->base.flags; |
| |
| /* Handle all full blocks except the last */ |
| err = crypto_shash_init(desc); |
| sg_miter_start(&miter, sgl, sg_nents(sgl), |
| SG_MITER_FROM_SG | SG_MITER_ATOMIC); |
| for (i = 0; i < tail_offset && !err; i += n) { |
| sg_miter_next(&miter); |
| n = min_t(unsigned int, miter.length, tail_offset - i); |
| err = crypto_shash_update(desc, miter.addr, n); |
| } |
| sg_miter_stop(&miter); |
| if (err) |
| return err; |
| |
| /* Handle the last full block and the partial block */ |
| scatterwalk_map_and_copy(tail, sgl, tail_offset, tail_len, 0); |
| |
| if (tail_len != HEH_BLOCK_SIZE) { |
| /* handle the partial block */ |
| memset((u8 *)tail + tail_len, 0, sizeof(tail) - tail_len); |
| err = crypto_shash_update(desc, (u8 *)&tail[1], HEH_BLOCK_SIZE); |
| if (err) |
| return err; |
| } |
| err = crypto_shash_final(desc, (u8 *)hash); |
| if (err) |
| return err; |
| be128_xor(hash, hash, &tail[0]); |
| return 0; |
| } |
| |
| /* |
| * Transform all full blocks except the last. |
| * This is used by both the hash and inverse hash phases. |
| */ |
| static int heh_tfm_blocks(struct ablkcipher_request *req, |
| struct scatterlist *src_sgl, |
| struct scatterlist *dst_sgl, unsigned int len, |
| const be128 *hash, const be128 *beta_key) |
| { |
| struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req); |
| struct blkcipher_desc desc = { .flags = req->base.flags }; |
| struct blkcipher_walk walk; |
| be128 e = *beta_key; |
| int err; |
| unsigned int nbytes; |
| |
| blkcipher_walk_init(&walk, dst_sgl, src_sgl, len); |
| |
| err = blkcipher_ablkcipher_walk_virt(&desc, &walk, tfm); |
| |
| while ((nbytes = walk.nbytes)) { |
| const be128 *src = (be128 *)walk.src.virt.addr; |
| be128 *dst = (be128 *)walk.dst.virt.addr; |
| |
| do { |
| gf128mul_x_ble(&e, &e); |
| be128_xor(dst, src, hash); |
| be128_xor(dst, dst, &e); |
| src++; |
| dst++; |
| } while ((nbytes -= HEH_BLOCK_SIZE) >= HEH_BLOCK_SIZE); |
| err = blkcipher_walk_done(&desc, &walk, nbytes); |
| } |
| return err; |
| } |
| |
| /* |
| * The hash phase of HEH. Given a message, compute: |
| * |
| * (m_0 + H, ..., m_{N-2} + H, H, m_N) + (xb, x^2b, ..., x^{N-1}b, b, 0) |
| * |
| * where: |
| * N is the number of full blocks in the message |
| * m_i is the i-th full block in the message for i = 0 to N-1 inclusive |
| * m_N is the unpadded partial block, possibly empty |
| * H is the poly_hash() of the message, keyed by tau_key |
| * b is beta_key |
| * x is the element x in our representation of GF(2^128) |
| * |
| * Note that the partial block remains unchanged, but it does affect the result |
| * of poly_hash() and therefore the transformation of all the full blocks. |
| */ |
| static int heh_hash(struct ablkcipher_request *req, const be128 *beta_key) |
| { |
| be128 hash; |
| unsigned int tail_offset = get_tail_offset(req->nbytes); |
| unsigned int partial_len = req->nbytes % HEH_BLOCK_SIZE; |
| int err; |
| |
| /* poly_hash() the full message including the partial block */ |
| err = poly_hash(req, req->src, &hash); |
| if (err) |
| return err; |
| |
| /* Transform all full blocks except the last */ |
| err = heh_tfm_blocks(req, req->src, req->dst, tail_offset, &hash, |
| beta_key); |
| if (err) |
| return err; |
| |
| /* Set the last full block to hash XOR beta_key */ |
| be128_xor(&hash, &hash, beta_key); |
| scatterwalk_map_and_copy(&hash, req->dst, tail_offset, HEH_BLOCK_SIZE, |
| 1); |
| |
| /* Copy the partial block if needed */ |
| if (partial_len != 0 && req->src != req->dst) { |
| unsigned int offs = tail_offset + HEH_BLOCK_SIZE; |
| |
| scatterwalk_map_and_copy(&hash, req->src, offs, partial_len, 0); |
| scatterwalk_map_and_copy(&hash, req->dst, offs, partial_len, 1); |
| } |
| return 0; |
| } |
| |
| /* |
| * The inverse hash phase of HEH. This undoes the result of heh_hash(). |
| */ |
| static int heh_hash_inv(struct ablkcipher_request *req, const be128 *beta_key) |
| { |
| be128 hash; |
| be128 tmp; |
| struct scatterlist tmp_sgl[2]; |
| struct scatterlist *tail_sgl; |
| unsigned int tail_offset = get_tail_offset(req->nbytes); |
| struct scatterlist *sgl = req->dst; |
| int err; |
| |
| /* |
| * The last full block was computed as hash XOR beta_key, so XOR it with |
| * beta_key to recover hash. |
| */ |
| tail_sgl = scatterwalk_ffwd(tmp_sgl, sgl, tail_offset); |
| scatterwalk_map_and_copy(&hash, tail_sgl, 0, HEH_BLOCK_SIZE, 0); |
| be128_xor(&hash, &hash, beta_key); |
| |
| /* Transform all full blocks except the last */ |
| err = heh_tfm_blocks(req, sgl, sgl, tail_offset, &hash, beta_key); |
| if (err) |
| return err; |
| |
| /* |
| * Recover the last full block. We know 'hash', i.e. the poly_hash() of |
| * the the original message. The last full block was the constant term |
| * of the polynomial. To recover the last full block, temporarily zero |
| * it, compute the poly_hash(), and take the difference from 'hash'. |
| */ |
| memset(&tmp, 0, sizeof(tmp)); |
| scatterwalk_map_and_copy(&tmp, tail_sgl, 0, HEH_BLOCK_SIZE, 1); |
| err = poly_hash(req, sgl, &tmp); |
| if (err) |
| return err; |
| be128_xor(&tmp, &tmp, &hash); |
| scatterwalk_map_and_copy(&tmp, tail_sgl, 0, HEH_BLOCK_SIZE, 1); |
| return 0; |
| } |
| |
| static int heh_hash_inv_step(struct ablkcipher_request *req, u32 flags) |
| { |
| struct heh_req_ctx *rctx = heh_req_ctx(req); |
| |
| return heh_hash_inv(req, &rctx->beta2_key); |
| } |
| |
| static int heh_ecb_step_3(struct ablkcipher_request *req, u32 flags) |
| { |
| struct heh_req_ctx *rctx = heh_req_ctx(req); |
| u8 partial_block[HEH_BLOCK_SIZE] __aligned(__alignof__(u32)); |
| unsigned int tail_offset = get_tail_offset(req->nbytes); |
| unsigned int partial_offset = tail_offset + HEH_BLOCK_SIZE; |
| unsigned int partial_len = req->nbytes - partial_offset; |
| |
| /* |
| * Extract the pad in req->dst at tail_offset, and xor the partial block |
| * with it to create encrypted partial block |
| */ |
| scatterwalk_map_and_copy(rctx->u.ecb.keystream, req->dst, tail_offset, |
| HEH_BLOCK_SIZE, 0); |
| scatterwalk_map_and_copy(partial_block, req->dst, partial_offset, |
| partial_len, 0); |
| crypto_xor(partial_block, rctx->u.ecb.keystream, partial_len); |
| |
| /* |
| * Store the encrypted final block and partial block back in dst_sg |
| */ |
| scatterwalk_map_and_copy(&rctx->u.ecb.tmp, req->dst, tail_offset, |
| HEH_BLOCK_SIZE, 1); |
| scatterwalk_map_and_copy(partial_block, req->dst, partial_offset, |
| partial_len, 1); |
| |
| return heh_hash_inv_step(req, flags); |
| } |
| |
| static void heh_ecb_step_2_done(struct crypto_async_request *areq, int err) |
| { |
| return async_done(areq, err, heh_ecb_step_3); |
| } |
| |
| static int heh_ecb_step_2(struct ablkcipher_request *req, u32 flags) |
| { |
| struct heh_req_ctx *rctx = heh_req_ctx(req); |
| unsigned int partial_len = req->nbytes % HEH_BLOCK_SIZE; |
| struct scatterlist *tmp_sgl; |
| int err; |
| unsigned int tail_offset = get_tail_offset(req->nbytes); |
| |
| if (partial_len == 0) |
| return heh_hash_inv_step(req, flags); |
| |
| /* |
| * Extract the final full block, store it in tmp, and then xor that with |
| * the value saved in u.ecb.keystream |
| */ |
| scatterwalk_map_and_copy(rctx->u.ecb.tmp, req->dst, tail_offset, |
| HEH_BLOCK_SIZE, 0); |
| crypto_xor(rctx->u.ecb.keystream, rctx->u.ecb.tmp, HEH_BLOCK_SIZE); |
| |
| /* |
| * Encrypt the value in rctx->u.ecb.keystream to create the pad for the |
| * partial block. |
| * We cannot encrypt stack buffers, so re-use the dst_sg to do this |
| * encryption to avoid a malloc. The value at tail_offset is stored in |
| * tmp, and will be restored later. |
| */ |
| scatterwalk_map_and_copy(rctx->u.ecb.keystream, req->dst, tail_offset, |
| HEH_BLOCK_SIZE, 1); |
| tmp_sgl = scatterwalk_ffwd(rctx->u.ecb.tmp_sgl, req->dst, tail_offset); |
| ablkcipher_request_set_callback(&rctx->u.ecb.req, flags, |
| heh_ecb_step_2_done, req); |
| ablkcipher_request_set_crypt(&rctx->u.ecb.req, tmp_sgl, tmp_sgl, |
| HEH_BLOCK_SIZE, NULL); |
| err = crypto_ablkcipher_encrypt(&rctx->u.ecb.req); |
| if (err) |
| return err; |
| return heh_ecb_step_3(req, flags); |
| } |
| |
| static void heh_ecb_full_done(struct crypto_async_request *areq, int err) |
| { |
| return async_done(areq, err, heh_ecb_step_2); |
| } |
| |
| /* |
| * The encrypt phase of HEH. This uses ECB encryption, with special handling |
| * for the partial block at the end if any. The source data is already in |
| * req->dst, so the encryption happens in-place. |
| * |
| * After the encrypt phase we continue on to the inverse hash phase. The |
| * functions calls are chained to support asynchronous ECB algorithms. |
| */ |
| static int heh_ecb(struct ablkcipher_request *req, bool decrypt) |
| { |
| struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req); |
| struct heh_tfm_ctx *ctx = crypto_ablkcipher_ctx(tfm); |
| struct heh_req_ctx *rctx = heh_req_ctx(req); |
| struct ablkcipher_request *ecb_req = &rctx->u.ecb.req; |
| unsigned int tail_offset = get_tail_offset(req->nbytes); |
| unsigned int full_len = tail_offset + HEH_BLOCK_SIZE; |
| int err; |
| |
| /* |
| * Save the last full block before it is encrypted/decrypted. This will |
| * be used later to encrypt/decrypt the partial block |
| */ |
| scatterwalk_map_and_copy(rctx->u.ecb.keystream, req->dst, tail_offset, |
| HEH_BLOCK_SIZE, 0); |
| |
| /* Encrypt/decrypt all full blocks */ |
| ablkcipher_request_set_tfm(ecb_req, ctx->ecb); |
| ablkcipher_request_set_callback(ecb_req, req->base.flags, |
| heh_ecb_full_done, req); |
| ablkcipher_request_set_crypt(ecb_req, req->dst, req->dst, full_len, |
| NULL); |
| if (decrypt) |
| err = crypto_ablkcipher_decrypt(ecb_req); |
| else |
| err = crypto_ablkcipher_encrypt(ecb_req); |
| if (err) |
| return err; |
| |
| return heh_ecb_step_2(req, req->base.flags); |
| } |
| |
| static int heh_crypt(struct ablkcipher_request *req, bool decrypt) |
| { |
| struct heh_req_ctx *rctx = heh_req_ctx(req); |
| int err; |
| |
| /* Inputs must be at least one full block */ |
| if (req->nbytes < HEH_BLOCK_SIZE) |
| return -EINVAL; |
| |
| err = generate_betas(req, &rctx->beta1_key, &rctx->beta2_key); |
| if (err) |
| return err; |
| |
| if (decrypt) |
| swap(rctx->beta1_key, rctx->beta2_key); |
| |
| err = heh_hash(req, &rctx->beta1_key); |
| if (err) |
| return err; |
| |
| return heh_ecb(req, decrypt); |
| } |
| |
| static int heh_encrypt(struct ablkcipher_request *req) |
| { |
| return heh_crypt(req, false); |
| } |
| |
| static int heh_decrypt(struct ablkcipher_request *req) |
| { |
| return heh_crypt(req, true); |
| } |
| |
| static int heh_setkey(struct crypto_ablkcipher *parent, const u8 *key, |
| unsigned int keylen) |
| { |
| struct heh_tfm_ctx *ctx = crypto_ablkcipher_ctx(parent); |
| struct crypto_shash *cmac = ctx->cmac; |
| struct crypto_ablkcipher *ecb = ctx->ecb; |
| SHASH_DESC_ON_STACK(desc, cmac); |
| u8 *derived_keys; |
| u8 digest[HEH_BLOCK_SIZE]; |
| unsigned int i; |
| int err; |
| |
| /* set prf_key = key */ |
| crypto_shash_clear_flags(cmac, CRYPTO_TFM_REQ_MASK); |
| crypto_shash_set_flags(cmac, crypto_ablkcipher_get_flags(parent) & |
| CRYPTO_TFM_REQ_MASK); |
| err = crypto_shash_setkey(cmac, key, keylen); |
| crypto_ablkcipher_set_flags(parent, crypto_shash_get_flags(cmac) & |
| CRYPTO_TFM_RES_MASK); |
| if (err) |
| return err; |
| |
| /* |
| * Generate tau_key and ecb_key as follows: |
| * tau_key = cmac(prf_key, 0x00...01) |
| * ecb_key = cmac(prf_key, 0x00...02) || cmac(prf_key, 0x00...03) || ... |
| * truncated to keylen bytes |
| */ |
| derived_keys = kzalloc(round_up(HEH_BLOCK_SIZE + keylen, |
| HEH_BLOCK_SIZE), GFP_KERNEL); |
| if (!derived_keys) |
| return -ENOMEM; |
| desc->tfm = cmac; |
| desc->flags = (crypto_shash_get_flags(cmac) & CRYPTO_TFM_REQ_MASK); |
| for (i = 0; i < keylen + HEH_BLOCK_SIZE; i += HEH_BLOCK_SIZE) { |
| derived_keys[i + HEH_BLOCK_SIZE - 1] = |
| 0x01 + i / HEH_BLOCK_SIZE; |
| err = crypto_shash_digest(desc, derived_keys + i, |
| HEH_BLOCK_SIZE, digest); |
| if (err) |
| goto out; |
| memcpy(derived_keys + i, digest, HEH_BLOCK_SIZE); |
| } |
| |
| err = crypto_shash_setkey(ctx->poly_hash, derived_keys, HEH_BLOCK_SIZE); |
| if (err) |
| goto out; |
| |
| crypto_ablkcipher_clear_flags(ecb, CRYPTO_TFM_REQ_MASK); |
| crypto_ablkcipher_set_flags(ecb, crypto_ablkcipher_get_flags(parent) & |
| CRYPTO_TFM_REQ_MASK); |
| err = crypto_ablkcipher_setkey(ecb, derived_keys + HEH_BLOCK_SIZE, |
| keylen); |
| crypto_ablkcipher_set_flags(parent, crypto_ablkcipher_get_flags(ecb) & |
| CRYPTO_TFM_RES_MASK); |
| out: |
| kzfree(derived_keys); |
| return err; |
| } |
| |
| static int heh_init_tfm(struct crypto_tfm *tfm) |
| { |
| struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); |
| struct heh_instance_ctx *ictx = crypto_instance_ctx(inst); |
| struct heh_tfm_ctx *ctx = crypto_tfm_ctx(tfm); |
| struct crypto_shash *cmac; |
| struct crypto_shash *poly_hash; |
| struct crypto_ablkcipher *ecb; |
| unsigned int reqsize; |
| int err; |
| |
| cmac = crypto_spawn_shash(&ictx->cmac); |
| if (IS_ERR(cmac)) |
| return PTR_ERR(cmac); |
| |
| poly_hash = crypto_spawn_shash(&ictx->poly_hash); |
| err = PTR_ERR(poly_hash); |
| if (IS_ERR(poly_hash)) |
| goto err_free_cmac; |
| |
| ecb = crypto_spawn_skcipher(&ictx->ecb); |
| err = PTR_ERR(ecb); |
| if (IS_ERR(ecb)) |
| goto err_free_poly_hash; |
| |
| ctx->cmac = cmac; |
| ctx->poly_hash = poly_hash; |
| ctx->ecb = ecb; |
| |
| reqsize = crypto_tfm_alg_alignmask(tfm) & |
| ~(crypto_tfm_ctx_alignment() - 1); |
| reqsize += max3(offsetof(struct heh_req_ctx, u.cmac.desc) + |
| sizeof(struct shash_desc) + |
| crypto_shash_descsize(cmac), |
| offsetof(struct heh_req_ctx, u.poly_hash.desc) + |
| sizeof(struct shash_desc) + |
| crypto_shash_descsize(poly_hash), |
| offsetof(struct heh_req_ctx, u.ecb.req) + |
| sizeof(struct ablkcipher_request) + |
| crypto_ablkcipher_reqsize(ecb)); |
| tfm->crt_ablkcipher.reqsize = reqsize; |
| |
| return 0; |
| |
| err_free_poly_hash: |
| crypto_free_shash(poly_hash); |
| err_free_cmac: |
| crypto_free_shash(cmac); |
| return err; |
| } |
| |
| static void heh_exit_tfm(struct crypto_tfm *tfm) |
| { |
| struct heh_tfm_ctx *ctx = crypto_tfm_ctx(tfm); |
| |
| crypto_free_shash(ctx->cmac); |
| crypto_free_shash(ctx->poly_hash); |
| crypto_free_ablkcipher(ctx->ecb); |
| } |
| |
| static void heh_free_instance(struct crypto_instance *inst) |
| { |
| struct heh_instance_ctx *ctx = crypto_instance_ctx(inst); |
| |
| crypto_drop_shash(&ctx->cmac); |
| crypto_drop_shash(&ctx->poly_hash); |
| crypto_drop_skcipher(&ctx->ecb); |
| kfree(inst); |
| } |
| |
| /* |
| * Create an instance of HEH as a ablkcipher. |
| * |
| * This relies on underlying CMAC and ECB algorithms, usually cmac(aes) and |
| * ecb(aes). For performance reasons we support asynchronous ECB algorithms. |
| * However, we do not yet support asynchronous CMAC algorithms because CMAC is |
| * only used on a small fixed amount of data per request, independent of the |
| * request length. This would change if AEAD or variable-length nonce support |
| * were to be exposed. |
| */ |
| static int heh_create_common(struct crypto_template *tmpl, struct rtattr **tb, |
| const char *full_name, const char *cmac_name, |
| const char *poly_hash_name, const char *ecb_name) |
| { |
| struct crypto_attr_type *algt; |
| struct crypto_instance *inst; |
| struct heh_instance_ctx *ctx; |
| struct shash_alg *cmac; |
| struct shash_alg *poly_hash; |
| struct crypto_alg *ecb; |
| int err; |
| |
| algt = crypto_get_attr_type(tb); |
| if (IS_ERR(algt)) |
| return PTR_ERR(algt); |
| |
| /* User must be asking for something compatible with ablkcipher */ |
| if ((algt->type ^ CRYPTO_ALG_TYPE_ABLKCIPHER) & algt->mask) |
| return -EINVAL; |
| |
| /* Allocate the ablkcipher instance */ |
| inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL); |
| if (!inst) |
| return -ENOMEM; |
| |
| ctx = crypto_instance_ctx(inst); |
| |
| /* Set up the cmac spawn */ |
| ctx->cmac.base.inst = inst; |
| err = crypto_grab_shash(&ctx->cmac, cmac_name, 0, 0); |
| if (err) |
| goto err_free_inst; |
| cmac = crypto_spawn_shash_alg(&ctx->cmac); |
| err = -EINVAL; |
| if (cmac->digestsize != HEH_BLOCK_SIZE) |
| goto err_drop_cmac; |
| |
| /* Set up the poly_hash spawn */ |
| ctx->poly_hash.base.inst = inst; |
| err = crypto_grab_shash(&ctx->poly_hash, poly_hash_name, 0, 0); |
| if (err) |
| goto err_drop_cmac; |
| poly_hash = crypto_spawn_shash_alg(&ctx->poly_hash); |
| err = -EINVAL; |
| if (poly_hash->digestsize != HEH_BLOCK_SIZE) |
| goto err_drop_poly_hash; |
| |
| /* Set up the ecb spawn */ |
| ctx->ecb.base.inst = inst; |
| err = crypto_grab_skcipher(&ctx->ecb, ecb_name, 0, |
| crypto_requires_sync(algt->type, |
| algt->mask)); |
| if (err) |
| goto err_drop_poly_hash; |
| ecb = crypto_skcipher_spawn_alg(&ctx->ecb); |
| |
| /* HEH only supports block ciphers with 16 byte block size */ |
| err = -EINVAL; |
| if (ecb->cra_blocksize != HEH_BLOCK_SIZE) |
| goto err_drop_ecb; |
| |
| /* The underlying "ECB" algorithm must not require an IV */ |
| err = -EINVAL; |
| if ((ecb->cra_flags & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_BLKCIPHER) { |
| if (ecb->cra_blkcipher.ivsize != 0) |
| goto err_drop_ecb; |
| } else { |
| if (ecb->cra_ablkcipher.ivsize != 0) |
| goto err_drop_ecb; |
| } |
| |
| /* Set the instance names */ |
| err = -ENAMETOOLONG; |
| if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, |
| "heh_base(%s,%s,%s)", cmac->base.cra_driver_name, |
| poly_hash->base.cra_driver_name, |
| ecb->cra_driver_name) >= CRYPTO_MAX_ALG_NAME) |
| goto err_drop_ecb; |
| |
| err = -ENAMETOOLONG; |
| if (snprintf(inst->alg.cra_name, CRYPTO_MAX_ALG_NAME, |
| "%s", full_name) >= CRYPTO_MAX_ALG_NAME) |
| goto err_drop_ecb; |
| |
| /* Finish initializing the instance */ |
| |
| inst->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | |
| (ecb->cra_flags & CRYPTO_ALG_ASYNC); |
| inst->alg.cra_blocksize = HEH_BLOCK_SIZE; |
| inst->alg.cra_ctxsize = sizeof(struct heh_tfm_ctx); |
| inst->alg.cra_alignmask = ecb->cra_alignmask | (__alignof__(be128) - 1); |
| inst->alg.cra_priority = ecb->cra_priority; |
| inst->alg.cra_type = &crypto_ablkcipher_type; |
| inst->alg.cra_init = heh_init_tfm; |
| inst->alg.cra_exit = heh_exit_tfm; |
| |
| inst->alg.cra_ablkcipher.setkey = heh_setkey; |
| inst->alg.cra_ablkcipher.encrypt = heh_encrypt; |
| inst->alg.cra_ablkcipher.decrypt = heh_decrypt; |
| if ((ecb->cra_flags & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_BLKCIPHER) { |
| inst->alg.cra_ablkcipher.min_keysize = ecb->cra_blkcipher.min_keysize; |
| inst->alg.cra_ablkcipher.max_keysize = ecb->cra_blkcipher.max_keysize; |
| } else { |
| inst->alg.cra_ablkcipher.min_keysize = ecb->cra_ablkcipher.min_keysize; |
| inst->alg.cra_ablkcipher.max_keysize = ecb->cra_ablkcipher.max_keysize; |
| } |
| inst->alg.cra_ablkcipher.ivsize = HEH_BLOCK_SIZE; |
| |
| /* Register the instance */ |
| err = crypto_register_instance(tmpl, inst); |
| if (err) |
| goto err_drop_ecb; |
| return 0; |
| |
| err_drop_ecb: |
| crypto_drop_skcipher(&ctx->ecb); |
| err_drop_poly_hash: |
| crypto_drop_shash(&ctx->poly_hash); |
| err_drop_cmac: |
| crypto_drop_shash(&ctx->cmac); |
| err_free_inst: |
| kfree(inst); |
| return err; |
| } |
| |
| static int heh_create(struct crypto_template *tmpl, struct rtattr **tb) |
| { |
| const char *cipher_name; |
| char full_name[CRYPTO_MAX_ALG_NAME]; |
| char cmac_name[CRYPTO_MAX_ALG_NAME]; |
| char ecb_name[CRYPTO_MAX_ALG_NAME]; |
| |
| /* Get the name of the requested block cipher (e.g. aes) */ |
| cipher_name = crypto_attr_alg_name(tb[1]); |
| if (IS_ERR(cipher_name)) |
| return PTR_ERR(cipher_name); |
| |
| if (snprintf(full_name, CRYPTO_MAX_ALG_NAME, "heh(%s)", cipher_name) >= |
| CRYPTO_MAX_ALG_NAME) |
| return -ENAMETOOLONG; |
| |
| if (snprintf(cmac_name, CRYPTO_MAX_ALG_NAME, "cmac(%s)", cipher_name) >= |
| CRYPTO_MAX_ALG_NAME) |
| return -ENAMETOOLONG; |
| |
| if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)", cipher_name) >= |
| CRYPTO_MAX_ALG_NAME) |
| return -ENAMETOOLONG; |
| |
| return heh_create_common(tmpl, tb, full_name, cmac_name, "poly_hash", |
| ecb_name); |
| } |
| |
| static struct crypto_template heh_tmpl = { |
| .name = "heh", |
| .create = heh_create, |
| .free = heh_free_instance, |
| .module = THIS_MODULE, |
| }; |
| |
| static int heh_base_create(struct crypto_template *tmpl, struct rtattr **tb) |
| { |
| char full_name[CRYPTO_MAX_ALG_NAME]; |
| const char *cmac_name; |
| const char *poly_hash_name; |
| const char *ecb_name; |
| |
| cmac_name = crypto_attr_alg_name(tb[1]); |
| if (IS_ERR(cmac_name)) |
| return PTR_ERR(cmac_name); |
| |
| poly_hash_name = crypto_attr_alg_name(tb[2]); |
| if (IS_ERR(poly_hash_name)) |
| return PTR_ERR(poly_hash_name); |
| |
| ecb_name = crypto_attr_alg_name(tb[3]); |
| if (IS_ERR(ecb_name)) |
| return PTR_ERR(ecb_name); |
| |
| if (snprintf(full_name, CRYPTO_MAX_ALG_NAME, "heh_base(%s,%s,%s)", |
| cmac_name, poly_hash_name, ecb_name) >= |
| CRYPTO_MAX_ALG_NAME) |
| return -ENAMETOOLONG; |
| |
| return heh_create_common(tmpl, tb, full_name, cmac_name, poly_hash_name, |
| ecb_name); |
| } |
| |
| /* |
| * If HEH is instantiated as "heh_base" instead of "heh", then specific |
| * implementations of cmac, poly_hash, and ecb can be specified instead of just |
| * the cipher. |
| */ |
| static struct crypto_template heh_base_tmpl = { |
| .name = "heh_base", |
| .create = heh_base_create, |
| .free = heh_free_instance, |
| .module = THIS_MODULE, |
| }; |
| |
| static int __init heh_module_init(void) |
| { |
| int err; |
| |
| err = crypto_register_template(&heh_tmpl); |
| if (err) |
| return err; |
| |
| err = crypto_register_template(&heh_base_tmpl); |
| if (err) |
| goto out_undo_heh; |
| |
| err = crypto_register_shash(&poly_hash_alg); |
| if (err) |
| goto out_undo_heh_base; |
| |
| return 0; |
| |
| out_undo_heh_base: |
| crypto_unregister_template(&heh_base_tmpl); |
| out_undo_heh: |
| crypto_unregister_template(&heh_tmpl); |
| return err; |
| } |
| |
| static void __exit heh_module_exit(void) |
| { |
| crypto_unregister_template(&heh_tmpl); |
| crypto_unregister_template(&heh_base_tmpl); |
| crypto_unregister_shash(&poly_hash_alg); |
| } |
| |
| module_init(heh_module_init); |
| module_exit(heh_module_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("Hash-Encrypt-Hash block cipher mode"); |
| MODULE_ALIAS_CRYPTO("heh"); |
| MODULE_ALIAS_CRYPTO("heh_base"); |