blob: 10c00aaf797eb36b648856bf3a40550aa4baf95b [file] [log] [blame]
/*
* HEH: Hash-Encrypt-Hash mode
*
* Copyright (c) 2016 Google Inc.
*
* Authors:
* Alex Cope <alexcope@google.com>
* Eric Biggers <ebiggers@google.com>
*/
/*
* Hash-Encrypt-Hash (HEH) is a proposed block cipher mode of operation which
* extends the strong pseudo-random permutation (SPRP) property of block ciphers
* (e.g. AES) to arbitrary length input strings. It uses two keyed invertible
* hash functions with a layer of ECB encryption applied in-between. The
* algorithm is specified by the following Internet Draft:
*
* https://tools.ietf.org/html/draft-cope-heh-01
*
* Although HEH can be used as either a regular symmetric cipher or as an AEAD,
* currently this module only provides it as a symmetric cipher. Additionally,
* only 16-byte nonces are supported.
*/
#include <crypto/gf128mul.h>
#include <crypto/internal/hash.h>
#include <crypto/internal/skcipher.h>
#include <crypto/scatterwalk.h>
#include <crypto/skcipher.h>
#include "internal.h"
/*
* The block size is the size of GF(2^128) elements and also the required block
* size of the underlying block cipher.
*/
#define HEH_BLOCK_SIZE 16
struct heh_instance_ctx {
struct crypto_shash_spawn cmac;
struct crypto_shash_spawn poly_hash;
struct crypto_skcipher_spawn ecb;
};
struct heh_tfm_ctx {
struct crypto_shash *cmac;
struct crypto_shash *poly_hash; /* keyed with tau_key */
struct crypto_ablkcipher *ecb;
};
struct heh_cmac_data {
u8 nonce[HEH_BLOCK_SIZE];
__le32 nonce_length;
__le32 aad_length;
__le32 message_length;
__le32 padding;
};
struct heh_req_ctx { /* aligned to alignmask */
be128 beta1_key;
be128 beta2_key;
union {
struct {
struct heh_cmac_data data;
struct shash_desc desc;
/* + crypto_shash_descsize(cmac) */
} cmac;
struct {
struct shash_desc desc;
/* + crypto_shash_descsize(poly_hash) */
} poly_hash;
struct {
u8 keystream[HEH_BLOCK_SIZE];
u8 tmp[HEH_BLOCK_SIZE];
struct scatterlist tmp_sgl[2];
struct ablkcipher_request req;
/* + crypto_ablkcipher_reqsize(ecb) */
} ecb;
} u;
};
/*
* Get the offset in bytes to the last full block, or equivalently the length of
* all full blocks excluding the last
*/
static inline unsigned int get_tail_offset(unsigned int len)
{
len -= len % HEH_BLOCK_SIZE;
return len - HEH_BLOCK_SIZE;
}
static inline struct heh_req_ctx *heh_req_ctx(struct ablkcipher_request *req)
{
unsigned int alignmask = crypto_ablkcipher_alignmask(
crypto_ablkcipher_reqtfm(req));
return (void *)PTR_ALIGN((u8 *)ablkcipher_request_ctx(req),
alignmask + 1);
}
static inline void async_done(struct crypto_async_request *areq, int err,
int (*next_step)(struct ablkcipher_request *,
u32))
{
struct ablkcipher_request *req = areq->data;
if (err)
goto out;
err = next_step(req, req->base.flags & ~CRYPTO_TFM_REQ_MAY_SLEEP);
if (err == -EINPROGRESS ||
(err == -EBUSY && (req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)))
return;
out:
ablkcipher_request_complete(req, err);
}
/*
* Generate the per-message "beta" keys used by the hashing layers of HEH. The
* first beta key is the CMAC of the nonce, the additional authenticated data
* (AAD), and the lengths in bytes of the nonce, AAD, and message. The nonce
* and AAD are each zero-padded to the next 16-byte block boundary, and the
* lengths are serialized as 4-byte little endian integers and zero-padded to
* the next 16-byte block boundary.
* The second beta key is the first one interpreted as an element in GF(2^128)
* and multiplied by x.
*
* Note that because the nonce and AAD may, in general, be variable-length, the
* key generation must be done by a pseudo-random function (PRF) on
* variable-length inputs. CBC-MAC does not satisfy this, as it is only a PRF
* on fixed-length inputs. CMAC remedies this flaw. Including the lengths of
* the nonce, AAD, and message is also critical to avoid collisions.
*
* That being said, this implementation does not yet operate as an AEAD and
* therefore there is never any AAD, nor are variable-length nonces supported.
*/
static int generate_betas(struct ablkcipher_request *req,
be128 *beta1_key, be128 *beta2_key)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
struct heh_tfm_ctx *ctx = crypto_ablkcipher_ctx(tfm);
struct heh_req_ctx *rctx = heh_req_ctx(req);
struct heh_cmac_data *data = &rctx->u.cmac.data;
struct shash_desc *desc = &rctx->u.cmac.desc;
int err;
BUILD_BUG_ON(sizeof(*data) != 2 * HEH_BLOCK_SIZE);
memcpy(data->nonce, req->info, HEH_BLOCK_SIZE);
data->nonce_length = cpu_to_le32(HEH_BLOCK_SIZE);
data->aad_length = cpu_to_le32(0);
data->message_length = cpu_to_le32(req->nbytes);
data->padding = cpu_to_le32(0);
desc->tfm = ctx->cmac;
desc->flags = req->base.flags;
err = crypto_shash_digest(desc, (const u8 *)data, sizeof(*data),
(u8 *)beta1_key);
if (err)
return err;
gf128mul_x_ble(beta2_key, beta1_key);
return 0;
}
/*****************************************************************************/
/*
* This is the generic version of poly_hash. It does the GF(2^128)
* multiplication by 'tau_key' using a precomputed table, without using any
* special CPU instructions. On some platforms, an accelerated version (with
* higher cra_priority) may be used instead.
*/
struct poly_hash_tfm_ctx {
struct gf128mul_4k *tau_key;
};
struct poly_hash_desc_ctx {
be128 digest;
unsigned int count;
};
static int poly_hash_setkey(struct crypto_shash *tfm,
const u8 *key, unsigned int keylen)
{
struct poly_hash_tfm_ctx *tctx = crypto_shash_ctx(tfm);
be128 key128;
if (keylen != HEH_BLOCK_SIZE) {
crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
if (tctx->tau_key)
gf128mul_free_4k(tctx->tau_key);
memcpy(&key128, key, HEH_BLOCK_SIZE);
tctx->tau_key = gf128mul_init_4k_ble(&key128);
if (!tctx->tau_key)
return -ENOMEM;
return 0;
}
static int poly_hash_init(struct shash_desc *desc)
{
struct poly_hash_desc_ctx *ctx = shash_desc_ctx(desc);
ctx->digest = (be128) { 0 };
ctx->count = 0;
return 0;
}
static int poly_hash_update(struct shash_desc *desc, const u8 *src,
unsigned int len)
{
struct poly_hash_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
struct poly_hash_desc_ctx *ctx = shash_desc_ctx(desc);
unsigned int partial = ctx->count % HEH_BLOCK_SIZE;
u8 *dst = (u8 *)&ctx->digest + partial;
ctx->count += len;
/* Finishing at least one block? */
if (partial + len >= HEH_BLOCK_SIZE) {
if (partial) {
/* Finish the pending block. */
unsigned int n = HEH_BLOCK_SIZE - partial;
len -= n;
do {
*dst++ ^= *src++;
} while (--n);
gf128mul_4k_ble(&ctx->digest, tctx->tau_key);
}
/* Process zero or more full blocks. */
while (len >= HEH_BLOCK_SIZE) {
be128 coeff;
memcpy(&coeff, src, HEH_BLOCK_SIZE);
be128_xor(&ctx->digest, &ctx->digest, &coeff);
src += HEH_BLOCK_SIZE;
len -= HEH_BLOCK_SIZE;
gf128mul_4k_ble(&ctx->digest, tctx->tau_key);
}
dst = (u8 *)&ctx->digest;
}
/* Continue adding the next block to 'digest'. */
while (len--)
*dst++ ^= *src++;
return 0;
}
static int poly_hash_final(struct shash_desc *desc, u8 *out)
{
struct poly_hash_desc_ctx *ctx = shash_desc_ctx(desc);
/* Finish the last block if needed. */
if (ctx->count % HEH_BLOCK_SIZE) {
struct poly_hash_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
gf128mul_4k_ble(&ctx->digest, tctx->tau_key);
}
memcpy(out, &ctx->digest, HEH_BLOCK_SIZE);
return 0;
}
static void poly_hash_exit(struct crypto_tfm *tfm)
{
struct poly_hash_tfm_ctx *tctx = crypto_tfm_ctx(tfm);
gf128mul_free_4k(tctx->tau_key);
}
static struct shash_alg poly_hash_alg = {
.digestsize = HEH_BLOCK_SIZE,
.init = poly_hash_init,
.update = poly_hash_update,
.final = poly_hash_final,
.setkey = poly_hash_setkey,
.descsize = sizeof(struct poly_hash_desc_ctx),
.base = {
.cra_name = "poly_hash",
.cra_driver_name = "poly_hash-generic",
.cra_priority = 100,
.cra_ctxsize = sizeof(struct poly_hash_tfm_ctx),
.cra_exit = poly_hash_exit,
.cra_module = THIS_MODULE,
},
};
/*****************************************************************************/
/*
* Split the message into 16 byte blocks, padding out the last block, and use
* the blocks as coefficients in the evaluation of a polynomial over GF(2^128)
* at the secret point 'tau_key'. For ease of implementing the higher-level
* heh_hash_inv() function, the constant and degree-1 coefficients are swapped
* if there is a partial block.
*
* Mathematically, compute:
* if (no partial block)
* k^{N-1} * m_0 + ... + k * m_{N-2} + m_{N-1}
* else if (partial block)
* k^N * m_0 + ... + k^2 * m_{N-2} + k * m_N + m_{N-1}
*
* where:
* t is tau_key
* N is the number of full blocks in the message
* m_i is the i-th full block in the message for i = 0 to N-1 inclusive
* m_N is the partial block of the message zero-padded up to 16 bytes
*
* Note that most of this is now separated out into its own keyed hash
* algorithm, to allow optimized implementations. However, we still handle the
* swapping of the last two coefficients here in the HEH template because this
* simplifies the poly_hash algorithms: they don't have to buffer an extra
* block, don't have to duplicate as much code, and are more similar to GHASH.
*/
static int poly_hash(struct ablkcipher_request *req, struct scatterlist *sgl,
be128 *hash)
{
struct heh_req_ctx *rctx = heh_req_ctx(req);
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
struct heh_tfm_ctx *ctx = crypto_ablkcipher_ctx(tfm);
struct shash_desc *desc = &rctx->u.poly_hash.desc;
unsigned int tail_offset = get_tail_offset(req->nbytes);
unsigned int tail_len = req->nbytes - tail_offset;
be128 tail[2];
unsigned int i, n;
struct sg_mapping_iter miter;
int err;
desc->tfm = ctx->poly_hash;
desc->flags = req->base.flags;
/* Handle all full blocks except the last */
err = crypto_shash_init(desc);
sg_miter_start(&miter, sgl, sg_nents(sgl),
SG_MITER_FROM_SG | SG_MITER_ATOMIC);
for (i = 0; i < tail_offset && !err; i += n) {
sg_miter_next(&miter);
n = min_t(unsigned int, miter.length, tail_offset - i);
err = crypto_shash_update(desc, miter.addr, n);
}
sg_miter_stop(&miter);
if (err)
return err;
/* Handle the last full block and the partial block */
scatterwalk_map_and_copy(tail, sgl, tail_offset, tail_len, 0);
if (tail_len != HEH_BLOCK_SIZE) {
/* handle the partial block */
memset((u8 *)tail + tail_len, 0, sizeof(tail) - tail_len);
err = crypto_shash_update(desc, (u8 *)&tail[1], HEH_BLOCK_SIZE);
if (err)
return err;
}
err = crypto_shash_final(desc, (u8 *)hash);
if (err)
return err;
be128_xor(hash, hash, &tail[0]);
return 0;
}
/*
* Transform all full blocks except the last.
* This is used by both the hash and inverse hash phases.
*/
static int heh_tfm_blocks(struct ablkcipher_request *req,
struct scatterlist *src_sgl,
struct scatterlist *dst_sgl, unsigned int len,
const be128 *hash, const be128 *beta_key)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
struct blkcipher_desc desc = { .flags = req->base.flags };
struct blkcipher_walk walk;
be128 e = *beta_key;
int err;
unsigned int nbytes;
blkcipher_walk_init(&walk, dst_sgl, src_sgl, len);
err = blkcipher_ablkcipher_walk_virt(&desc, &walk, tfm);
while ((nbytes = walk.nbytes)) {
const be128 *src = (be128 *)walk.src.virt.addr;
be128 *dst = (be128 *)walk.dst.virt.addr;
do {
gf128mul_x_ble(&e, &e);
be128_xor(dst, src, hash);
be128_xor(dst, dst, &e);
src++;
dst++;
} while ((nbytes -= HEH_BLOCK_SIZE) >= HEH_BLOCK_SIZE);
err = blkcipher_walk_done(&desc, &walk, nbytes);
}
return err;
}
/*
* The hash phase of HEH. Given a message, compute:
*
* (m_0 + H, ..., m_{N-2} + H, H, m_N) + (xb, x^2b, ..., x^{N-1}b, b, 0)
*
* where:
* N is the number of full blocks in the message
* m_i is the i-th full block in the message for i = 0 to N-1 inclusive
* m_N is the unpadded partial block, possibly empty
* H is the poly_hash() of the message, keyed by tau_key
* b is beta_key
* x is the element x in our representation of GF(2^128)
*
* Note that the partial block remains unchanged, but it does affect the result
* of poly_hash() and therefore the transformation of all the full blocks.
*/
static int heh_hash(struct ablkcipher_request *req, const be128 *beta_key)
{
be128 hash;
unsigned int tail_offset = get_tail_offset(req->nbytes);
unsigned int partial_len = req->nbytes % HEH_BLOCK_SIZE;
int err;
/* poly_hash() the full message including the partial block */
err = poly_hash(req, req->src, &hash);
if (err)
return err;
/* Transform all full blocks except the last */
err = heh_tfm_blocks(req, req->src, req->dst, tail_offset, &hash,
beta_key);
if (err)
return err;
/* Set the last full block to hash XOR beta_key */
be128_xor(&hash, &hash, beta_key);
scatterwalk_map_and_copy(&hash, req->dst, tail_offset, HEH_BLOCK_SIZE,
1);
/* Copy the partial block if needed */
if (partial_len != 0 && req->src != req->dst) {
unsigned int offs = tail_offset + HEH_BLOCK_SIZE;
scatterwalk_map_and_copy(&hash, req->src, offs, partial_len, 0);
scatterwalk_map_and_copy(&hash, req->dst, offs, partial_len, 1);
}
return 0;
}
/*
* The inverse hash phase of HEH. This undoes the result of heh_hash().
*/
static int heh_hash_inv(struct ablkcipher_request *req, const be128 *beta_key)
{
be128 hash;
be128 tmp;
struct scatterlist tmp_sgl[2];
struct scatterlist *tail_sgl;
unsigned int tail_offset = get_tail_offset(req->nbytes);
struct scatterlist *sgl = req->dst;
int err;
/*
* The last full block was computed as hash XOR beta_key, so XOR it with
* beta_key to recover hash.
*/
tail_sgl = scatterwalk_ffwd(tmp_sgl, sgl, tail_offset);
scatterwalk_map_and_copy(&hash, tail_sgl, 0, HEH_BLOCK_SIZE, 0);
be128_xor(&hash, &hash, beta_key);
/* Transform all full blocks except the last */
err = heh_tfm_blocks(req, sgl, sgl, tail_offset, &hash, beta_key);
if (err)
return err;
/*
* Recover the last full block. We know 'hash', i.e. the poly_hash() of
* the the original message. The last full block was the constant term
* of the polynomial. To recover the last full block, temporarily zero
* it, compute the poly_hash(), and take the difference from 'hash'.
*/
memset(&tmp, 0, sizeof(tmp));
scatterwalk_map_and_copy(&tmp, tail_sgl, 0, HEH_BLOCK_SIZE, 1);
err = poly_hash(req, sgl, &tmp);
if (err)
return err;
be128_xor(&tmp, &tmp, &hash);
scatterwalk_map_and_copy(&tmp, tail_sgl, 0, HEH_BLOCK_SIZE, 1);
return 0;
}
static int heh_hash_inv_step(struct ablkcipher_request *req, u32 flags)
{
struct heh_req_ctx *rctx = heh_req_ctx(req);
return heh_hash_inv(req, &rctx->beta2_key);
}
static int heh_ecb_step_3(struct ablkcipher_request *req, u32 flags)
{
struct heh_req_ctx *rctx = heh_req_ctx(req);
u8 partial_block[HEH_BLOCK_SIZE] __aligned(__alignof__(u32));
unsigned int tail_offset = get_tail_offset(req->nbytes);
unsigned int partial_offset = tail_offset + HEH_BLOCK_SIZE;
unsigned int partial_len = req->nbytes - partial_offset;
/*
* Extract the pad in req->dst at tail_offset, and xor the partial block
* with it to create encrypted partial block
*/
scatterwalk_map_and_copy(rctx->u.ecb.keystream, req->dst, tail_offset,
HEH_BLOCK_SIZE, 0);
scatterwalk_map_and_copy(partial_block, req->dst, partial_offset,
partial_len, 0);
crypto_xor(partial_block, rctx->u.ecb.keystream, partial_len);
/*
* Store the encrypted final block and partial block back in dst_sg
*/
scatterwalk_map_and_copy(&rctx->u.ecb.tmp, req->dst, tail_offset,
HEH_BLOCK_SIZE, 1);
scatterwalk_map_and_copy(partial_block, req->dst, partial_offset,
partial_len, 1);
return heh_hash_inv_step(req, flags);
}
static void heh_ecb_step_2_done(struct crypto_async_request *areq, int err)
{
return async_done(areq, err, heh_ecb_step_3);
}
static int heh_ecb_step_2(struct ablkcipher_request *req, u32 flags)
{
struct heh_req_ctx *rctx = heh_req_ctx(req);
unsigned int partial_len = req->nbytes % HEH_BLOCK_SIZE;
struct scatterlist *tmp_sgl;
int err;
unsigned int tail_offset = get_tail_offset(req->nbytes);
if (partial_len == 0)
return heh_hash_inv_step(req, flags);
/*
* Extract the final full block, store it in tmp, and then xor that with
* the value saved in u.ecb.keystream
*/
scatterwalk_map_and_copy(rctx->u.ecb.tmp, req->dst, tail_offset,
HEH_BLOCK_SIZE, 0);
crypto_xor(rctx->u.ecb.keystream, rctx->u.ecb.tmp, HEH_BLOCK_SIZE);
/*
* Encrypt the value in rctx->u.ecb.keystream to create the pad for the
* partial block.
* We cannot encrypt stack buffers, so re-use the dst_sg to do this
* encryption to avoid a malloc. The value at tail_offset is stored in
* tmp, and will be restored later.
*/
scatterwalk_map_and_copy(rctx->u.ecb.keystream, req->dst, tail_offset,
HEH_BLOCK_SIZE, 1);
tmp_sgl = scatterwalk_ffwd(rctx->u.ecb.tmp_sgl, req->dst, tail_offset);
ablkcipher_request_set_callback(&rctx->u.ecb.req, flags,
heh_ecb_step_2_done, req);
ablkcipher_request_set_crypt(&rctx->u.ecb.req, tmp_sgl, tmp_sgl,
HEH_BLOCK_SIZE, NULL);
err = crypto_ablkcipher_encrypt(&rctx->u.ecb.req);
if (err)
return err;
return heh_ecb_step_3(req, flags);
}
static void heh_ecb_full_done(struct crypto_async_request *areq, int err)
{
return async_done(areq, err, heh_ecb_step_2);
}
/*
* The encrypt phase of HEH. This uses ECB encryption, with special handling
* for the partial block at the end if any. The source data is already in
* req->dst, so the encryption happens in-place.
*
* After the encrypt phase we continue on to the inverse hash phase. The
* functions calls are chained to support asynchronous ECB algorithms.
*/
static int heh_ecb(struct ablkcipher_request *req, bool decrypt)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
struct heh_tfm_ctx *ctx = crypto_ablkcipher_ctx(tfm);
struct heh_req_ctx *rctx = heh_req_ctx(req);
struct ablkcipher_request *ecb_req = &rctx->u.ecb.req;
unsigned int tail_offset = get_tail_offset(req->nbytes);
unsigned int full_len = tail_offset + HEH_BLOCK_SIZE;
int err;
/*
* Save the last full block before it is encrypted/decrypted. This will
* be used later to encrypt/decrypt the partial block
*/
scatterwalk_map_and_copy(rctx->u.ecb.keystream, req->dst, tail_offset,
HEH_BLOCK_SIZE, 0);
/* Encrypt/decrypt all full blocks */
ablkcipher_request_set_tfm(ecb_req, ctx->ecb);
ablkcipher_request_set_callback(ecb_req, req->base.flags,
heh_ecb_full_done, req);
ablkcipher_request_set_crypt(ecb_req, req->dst, req->dst, full_len,
NULL);
if (decrypt)
err = crypto_ablkcipher_decrypt(ecb_req);
else
err = crypto_ablkcipher_encrypt(ecb_req);
if (err)
return err;
return heh_ecb_step_2(req, req->base.flags);
}
static int heh_crypt(struct ablkcipher_request *req, bool decrypt)
{
struct heh_req_ctx *rctx = heh_req_ctx(req);
int err;
/* Inputs must be at least one full block */
if (req->nbytes < HEH_BLOCK_SIZE)
return -EINVAL;
err = generate_betas(req, &rctx->beta1_key, &rctx->beta2_key);
if (err)
return err;
if (decrypt)
swap(rctx->beta1_key, rctx->beta2_key);
err = heh_hash(req, &rctx->beta1_key);
if (err)
return err;
return heh_ecb(req, decrypt);
}
static int heh_encrypt(struct ablkcipher_request *req)
{
return heh_crypt(req, false);
}
static int heh_decrypt(struct ablkcipher_request *req)
{
return heh_crypt(req, true);
}
static int heh_setkey(struct crypto_ablkcipher *parent, const u8 *key,
unsigned int keylen)
{
struct heh_tfm_ctx *ctx = crypto_ablkcipher_ctx(parent);
struct crypto_shash *cmac = ctx->cmac;
struct crypto_ablkcipher *ecb = ctx->ecb;
SHASH_DESC_ON_STACK(desc, cmac);
u8 *derived_keys;
u8 digest[HEH_BLOCK_SIZE];
unsigned int i;
int err;
/* set prf_key = key */
crypto_shash_clear_flags(cmac, CRYPTO_TFM_REQ_MASK);
crypto_shash_set_flags(cmac, crypto_ablkcipher_get_flags(parent) &
CRYPTO_TFM_REQ_MASK);
err = crypto_shash_setkey(cmac, key, keylen);
crypto_ablkcipher_set_flags(parent, crypto_shash_get_flags(cmac) &
CRYPTO_TFM_RES_MASK);
if (err)
return err;
/*
* Generate tau_key and ecb_key as follows:
* tau_key = cmac(prf_key, 0x00...01)
* ecb_key = cmac(prf_key, 0x00...02) || cmac(prf_key, 0x00...03) || ...
* truncated to keylen bytes
*/
derived_keys = kzalloc(round_up(HEH_BLOCK_SIZE + keylen,
HEH_BLOCK_SIZE), GFP_KERNEL);
if (!derived_keys)
return -ENOMEM;
desc->tfm = cmac;
desc->flags = (crypto_shash_get_flags(cmac) & CRYPTO_TFM_REQ_MASK);
for (i = 0; i < keylen + HEH_BLOCK_SIZE; i += HEH_BLOCK_SIZE) {
derived_keys[i + HEH_BLOCK_SIZE - 1] =
0x01 + i / HEH_BLOCK_SIZE;
err = crypto_shash_digest(desc, derived_keys + i,
HEH_BLOCK_SIZE, digest);
if (err)
goto out;
memcpy(derived_keys + i, digest, HEH_BLOCK_SIZE);
}
err = crypto_shash_setkey(ctx->poly_hash, derived_keys, HEH_BLOCK_SIZE);
if (err)
goto out;
crypto_ablkcipher_clear_flags(ecb, CRYPTO_TFM_REQ_MASK);
crypto_ablkcipher_set_flags(ecb, crypto_ablkcipher_get_flags(parent) &
CRYPTO_TFM_REQ_MASK);
err = crypto_ablkcipher_setkey(ecb, derived_keys + HEH_BLOCK_SIZE,
keylen);
crypto_ablkcipher_set_flags(parent, crypto_ablkcipher_get_flags(ecb) &
CRYPTO_TFM_RES_MASK);
out:
kzfree(derived_keys);
return err;
}
static int heh_init_tfm(struct crypto_tfm *tfm)
{
struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
struct heh_instance_ctx *ictx = crypto_instance_ctx(inst);
struct heh_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
struct crypto_shash *cmac;
struct crypto_shash *poly_hash;
struct crypto_ablkcipher *ecb;
unsigned int reqsize;
int err;
cmac = crypto_spawn_shash(&ictx->cmac);
if (IS_ERR(cmac))
return PTR_ERR(cmac);
poly_hash = crypto_spawn_shash(&ictx->poly_hash);
err = PTR_ERR(poly_hash);
if (IS_ERR(poly_hash))
goto err_free_cmac;
ecb = crypto_spawn_skcipher(&ictx->ecb);
err = PTR_ERR(ecb);
if (IS_ERR(ecb))
goto err_free_poly_hash;
ctx->cmac = cmac;
ctx->poly_hash = poly_hash;
ctx->ecb = ecb;
reqsize = crypto_tfm_alg_alignmask(tfm) &
~(crypto_tfm_ctx_alignment() - 1);
reqsize += max3(offsetof(struct heh_req_ctx, u.cmac.desc) +
sizeof(struct shash_desc) +
crypto_shash_descsize(cmac),
offsetof(struct heh_req_ctx, u.poly_hash.desc) +
sizeof(struct shash_desc) +
crypto_shash_descsize(poly_hash),
offsetof(struct heh_req_ctx, u.ecb.req) +
sizeof(struct ablkcipher_request) +
crypto_ablkcipher_reqsize(ecb));
tfm->crt_ablkcipher.reqsize = reqsize;
return 0;
err_free_poly_hash:
crypto_free_shash(poly_hash);
err_free_cmac:
crypto_free_shash(cmac);
return err;
}
static void heh_exit_tfm(struct crypto_tfm *tfm)
{
struct heh_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
crypto_free_shash(ctx->cmac);
crypto_free_shash(ctx->poly_hash);
crypto_free_ablkcipher(ctx->ecb);
}
static void heh_free_instance(struct crypto_instance *inst)
{
struct heh_instance_ctx *ctx = crypto_instance_ctx(inst);
crypto_drop_shash(&ctx->cmac);
crypto_drop_shash(&ctx->poly_hash);
crypto_drop_skcipher(&ctx->ecb);
kfree(inst);
}
/*
* Create an instance of HEH as a ablkcipher.
*
* This relies on underlying CMAC and ECB algorithms, usually cmac(aes) and
* ecb(aes). For performance reasons we support asynchronous ECB algorithms.
* However, we do not yet support asynchronous CMAC algorithms because CMAC is
* only used on a small fixed amount of data per request, independent of the
* request length. This would change if AEAD or variable-length nonce support
* were to be exposed.
*/
static int heh_create_common(struct crypto_template *tmpl, struct rtattr **tb,
const char *full_name, const char *cmac_name,
const char *poly_hash_name, const char *ecb_name)
{
struct crypto_attr_type *algt;
struct crypto_instance *inst;
struct heh_instance_ctx *ctx;
struct shash_alg *cmac;
struct shash_alg *poly_hash;
struct crypto_alg *ecb;
int err;
algt = crypto_get_attr_type(tb);
if (IS_ERR(algt))
return PTR_ERR(algt);
/* User must be asking for something compatible with ablkcipher */
if ((algt->type ^ CRYPTO_ALG_TYPE_ABLKCIPHER) & algt->mask)
return -EINVAL;
/* Allocate the ablkcipher instance */
inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
if (!inst)
return -ENOMEM;
ctx = crypto_instance_ctx(inst);
/* Set up the cmac spawn */
ctx->cmac.base.inst = inst;
err = crypto_grab_shash(&ctx->cmac, cmac_name, 0, 0);
if (err)
goto err_free_inst;
cmac = crypto_spawn_shash_alg(&ctx->cmac);
err = -EINVAL;
if (cmac->digestsize != HEH_BLOCK_SIZE)
goto err_drop_cmac;
/* Set up the poly_hash spawn */
ctx->poly_hash.base.inst = inst;
err = crypto_grab_shash(&ctx->poly_hash, poly_hash_name, 0, 0);
if (err)
goto err_drop_cmac;
poly_hash = crypto_spawn_shash_alg(&ctx->poly_hash);
err = -EINVAL;
if (poly_hash->digestsize != HEH_BLOCK_SIZE)
goto err_drop_poly_hash;
/* Set up the ecb spawn */
ctx->ecb.base.inst = inst;
err = crypto_grab_skcipher(&ctx->ecb, ecb_name, 0,
crypto_requires_sync(algt->type,
algt->mask));
if (err)
goto err_drop_poly_hash;
ecb = crypto_skcipher_spawn_alg(&ctx->ecb);
/* HEH only supports block ciphers with 16 byte block size */
err = -EINVAL;
if (ecb->cra_blocksize != HEH_BLOCK_SIZE)
goto err_drop_ecb;
/* The underlying "ECB" algorithm must not require an IV */
err = -EINVAL;
if ((ecb->cra_flags & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_BLKCIPHER) {
if (ecb->cra_blkcipher.ivsize != 0)
goto err_drop_ecb;
} else {
if (ecb->cra_ablkcipher.ivsize != 0)
goto err_drop_ecb;
}
/* Set the instance names */
err = -ENAMETOOLONG;
if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
"heh_base(%s,%s,%s)", cmac->base.cra_driver_name,
poly_hash->base.cra_driver_name,
ecb->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
goto err_drop_ecb;
err = -ENAMETOOLONG;
if (snprintf(inst->alg.cra_name, CRYPTO_MAX_ALG_NAME,
"%s", full_name) >= CRYPTO_MAX_ALG_NAME)
goto err_drop_ecb;
/* Finish initializing the instance */
inst->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
(ecb->cra_flags & CRYPTO_ALG_ASYNC);
inst->alg.cra_blocksize = HEH_BLOCK_SIZE;
inst->alg.cra_ctxsize = sizeof(struct heh_tfm_ctx);
inst->alg.cra_alignmask = ecb->cra_alignmask | (__alignof__(be128) - 1);
inst->alg.cra_priority = ecb->cra_priority;
inst->alg.cra_type = &crypto_ablkcipher_type;
inst->alg.cra_init = heh_init_tfm;
inst->alg.cra_exit = heh_exit_tfm;
inst->alg.cra_ablkcipher.setkey = heh_setkey;
inst->alg.cra_ablkcipher.encrypt = heh_encrypt;
inst->alg.cra_ablkcipher.decrypt = heh_decrypt;
if ((ecb->cra_flags & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_BLKCIPHER) {
inst->alg.cra_ablkcipher.min_keysize = ecb->cra_blkcipher.min_keysize;
inst->alg.cra_ablkcipher.max_keysize = ecb->cra_blkcipher.max_keysize;
} else {
inst->alg.cra_ablkcipher.min_keysize = ecb->cra_ablkcipher.min_keysize;
inst->alg.cra_ablkcipher.max_keysize = ecb->cra_ablkcipher.max_keysize;
}
inst->alg.cra_ablkcipher.ivsize = HEH_BLOCK_SIZE;
/* Register the instance */
err = crypto_register_instance(tmpl, inst);
if (err)
goto err_drop_ecb;
return 0;
err_drop_ecb:
crypto_drop_skcipher(&ctx->ecb);
err_drop_poly_hash:
crypto_drop_shash(&ctx->poly_hash);
err_drop_cmac:
crypto_drop_shash(&ctx->cmac);
err_free_inst:
kfree(inst);
return err;
}
static int heh_create(struct crypto_template *tmpl, struct rtattr **tb)
{
const char *cipher_name;
char full_name[CRYPTO_MAX_ALG_NAME];
char cmac_name[CRYPTO_MAX_ALG_NAME];
char ecb_name[CRYPTO_MAX_ALG_NAME];
/* Get the name of the requested block cipher (e.g. aes) */
cipher_name = crypto_attr_alg_name(tb[1]);
if (IS_ERR(cipher_name))
return PTR_ERR(cipher_name);
if (snprintf(full_name, CRYPTO_MAX_ALG_NAME, "heh(%s)", cipher_name) >=
CRYPTO_MAX_ALG_NAME)
return -ENAMETOOLONG;
if (snprintf(cmac_name, CRYPTO_MAX_ALG_NAME, "cmac(%s)", cipher_name) >=
CRYPTO_MAX_ALG_NAME)
return -ENAMETOOLONG;
if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)", cipher_name) >=
CRYPTO_MAX_ALG_NAME)
return -ENAMETOOLONG;
return heh_create_common(tmpl, tb, full_name, cmac_name, "poly_hash",
ecb_name);
}
static struct crypto_template heh_tmpl = {
.name = "heh",
.create = heh_create,
.free = heh_free_instance,
.module = THIS_MODULE,
};
static int heh_base_create(struct crypto_template *tmpl, struct rtattr **tb)
{
char full_name[CRYPTO_MAX_ALG_NAME];
const char *cmac_name;
const char *poly_hash_name;
const char *ecb_name;
cmac_name = crypto_attr_alg_name(tb[1]);
if (IS_ERR(cmac_name))
return PTR_ERR(cmac_name);
poly_hash_name = crypto_attr_alg_name(tb[2]);
if (IS_ERR(poly_hash_name))
return PTR_ERR(poly_hash_name);
ecb_name = crypto_attr_alg_name(tb[3]);
if (IS_ERR(ecb_name))
return PTR_ERR(ecb_name);
if (snprintf(full_name, CRYPTO_MAX_ALG_NAME, "heh_base(%s,%s,%s)",
cmac_name, poly_hash_name, ecb_name) >=
CRYPTO_MAX_ALG_NAME)
return -ENAMETOOLONG;
return heh_create_common(tmpl, tb, full_name, cmac_name, poly_hash_name,
ecb_name);
}
/*
* If HEH is instantiated as "heh_base" instead of "heh", then specific
* implementations of cmac, poly_hash, and ecb can be specified instead of just
* the cipher.
*/
static struct crypto_template heh_base_tmpl = {
.name = "heh_base",
.create = heh_base_create,
.free = heh_free_instance,
.module = THIS_MODULE,
};
static int __init heh_module_init(void)
{
int err;
err = crypto_register_template(&heh_tmpl);
if (err)
return err;
err = crypto_register_template(&heh_base_tmpl);
if (err)
goto out_undo_heh;
err = crypto_register_shash(&poly_hash_alg);
if (err)
goto out_undo_heh_base;
return 0;
out_undo_heh_base:
crypto_unregister_template(&heh_base_tmpl);
out_undo_heh:
crypto_unregister_template(&heh_tmpl);
return err;
}
static void __exit heh_module_exit(void)
{
crypto_unregister_template(&heh_tmpl);
crypto_unregister_template(&heh_base_tmpl);
crypto_unregister_shash(&poly_hash_alg);
}
module_init(heh_module_init);
module_exit(heh_module_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Hash-Encrypt-Hash block cipher mode");
MODULE_ALIAS_CRYPTO("heh");
MODULE_ALIAS_CRYPTO("heh_base");