| /* |
| * This file contains the routines for handling the MMU on those |
| * PowerPC implementations where the MMU substantially follows the |
| * architecture specification. This includes the 6xx, 7xx, 7xxx, |
| * 8260, and POWER3 implementations but excludes the 8xx and 4xx. |
| * -- paulus |
| * |
| * Derived from arch/ppc/mm/init.c: |
| * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) |
| * |
| * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) |
| * and Cort Dougan (PReP) (cort@cs.nmt.edu) |
| * Copyright (C) 1996 Paul Mackerras |
| * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk). |
| * |
| * Derived from "arch/i386/mm/init.c" |
| * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/init.h> |
| #include <linux/highmem.h> |
| |
| #include <asm/prom.h> |
| #include <asm/mmu.h> |
| #include <asm/machdep.h> |
| #include <asm/lmb.h> |
| |
| #include "mmu_decl.h" |
| |
| PTE *Hash, *Hash_end; |
| unsigned long Hash_size, Hash_mask; |
| unsigned long _SDR1; |
| |
| union ubat { /* BAT register values to be loaded */ |
| BAT bat; |
| u32 word[2]; |
| } BATS[8][2]; /* 8 pairs of IBAT, DBAT */ |
| |
| struct batrange { /* stores address ranges mapped by BATs */ |
| unsigned long start; |
| unsigned long limit; |
| unsigned long phys; |
| } bat_addrs[8]; |
| |
| /* |
| * Return PA for this VA if it is mapped by a BAT, or 0 |
| */ |
| unsigned long v_mapped_by_bats(unsigned long va) |
| { |
| int b; |
| for (b = 0; b < 4; ++b) |
| if (va >= bat_addrs[b].start && va < bat_addrs[b].limit) |
| return bat_addrs[b].phys + (va - bat_addrs[b].start); |
| return 0; |
| } |
| |
| /* |
| * Return VA for a given PA or 0 if not mapped |
| */ |
| unsigned long p_mapped_by_bats(unsigned long pa) |
| { |
| int b; |
| for (b = 0; b < 4; ++b) |
| if (pa >= bat_addrs[b].phys |
| && pa < (bat_addrs[b].limit-bat_addrs[b].start) |
| +bat_addrs[b].phys) |
| return bat_addrs[b].start+(pa-bat_addrs[b].phys); |
| return 0; |
| } |
| |
| unsigned long __init mmu_mapin_ram(void) |
| { |
| #ifdef CONFIG_POWER4 |
| return 0; |
| #else |
| unsigned long tot, bl, done; |
| unsigned long max_size = (256<<20); |
| unsigned long align; |
| |
| if (__map_without_bats) |
| return 0; |
| |
| /* Set up BAT2 and if necessary BAT3 to cover RAM. */ |
| |
| /* Make sure we don't map a block larger than the |
| smallest alignment of the physical address. */ |
| /* alignment of PPC_MEMSTART */ |
| align = ~(PPC_MEMSTART-1) & PPC_MEMSTART; |
| /* set BAT block size to MIN(max_size, align) */ |
| if (align && align < max_size) |
| max_size = align; |
| |
| tot = total_lowmem; |
| for (bl = 128<<10; bl < max_size; bl <<= 1) { |
| if (bl * 2 > tot) |
| break; |
| } |
| |
| setbat(2, KERNELBASE, PPC_MEMSTART, bl, _PAGE_RAM); |
| done = (unsigned long)bat_addrs[2].limit - KERNELBASE + 1; |
| if ((done < tot) && !bat_addrs[3].limit) { |
| /* use BAT3 to cover a bit more */ |
| tot -= done; |
| for (bl = 128<<10; bl < max_size; bl <<= 1) |
| if (bl * 2 > tot) |
| break; |
| setbat(3, KERNELBASE+done, PPC_MEMSTART+done, bl, _PAGE_RAM); |
| done = (unsigned long)bat_addrs[3].limit - KERNELBASE + 1; |
| } |
| |
| return done; |
| #endif |
| } |
| |
| /* |
| * Set up one of the I/D BAT (block address translation) register pairs. |
| * The parameters are not checked; in particular size must be a power |
| * of 2 between 128k and 256M. |
| */ |
| void __init setbat(int index, unsigned long virt, unsigned long phys, |
| unsigned int size, int flags) |
| { |
| unsigned int bl; |
| int wimgxpp; |
| union ubat *bat = BATS[index]; |
| |
| if (((flags & _PAGE_NO_CACHE) == 0) && |
| cpu_has_feature(CPU_FTR_NEED_COHERENT)) |
| flags |= _PAGE_COHERENT; |
| |
| bl = (size >> 17) - 1; |
| if (PVR_VER(mfspr(SPRN_PVR)) != 1) { |
| /* 603, 604, etc. */ |
| /* Do DBAT first */ |
| wimgxpp = flags & (_PAGE_WRITETHRU | _PAGE_NO_CACHE |
| | _PAGE_COHERENT | _PAGE_GUARDED); |
| wimgxpp |= (flags & _PAGE_RW)? BPP_RW: BPP_RX; |
| bat[1].word[0] = virt | (bl << 2) | 2; /* Vs=1, Vp=0 */ |
| bat[1].word[1] = phys | wimgxpp; |
| #ifndef CONFIG_KGDB /* want user access for breakpoints */ |
| if (flags & _PAGE_USER) |
| #endif |
| bat[1].bat.batu.vp = 1; |
| if (flags & _PAGE_GUARDED) { |
| /* G bit must be zero in IBATs */ |
| bat[0].word[0] = bat[0].word[1] = 0; |
| } else { |
| /* make IBAT same as DBAT */ |
| bat[0] = bat[1]; |
| } |
| } else { |
| /* 601 cpu */ |
| if (bl > BL_8M) |
| bl = BL_8M; |
| wimgxpp = flags & (_PAGE_WRITETHRU | _PAGE_NO_CACHE |
| | _PAGE_COHERENT); |
| wimgxpp |= (flags & _PAGE_RW)? |
| ((flags & _PAGE_USER)? PP_RWRW: PP_RWXX): PP_RXRX; |
| bat->word[0] = virt | wimgxpp | 4; /* Ks=0, Ku=1 */ |
| bat->word[1] = phys | bl | 0x40; /* V=1 */ |
| } |
| |
| bat_addrs[index].start = virt; |
| bat_addrs[index].limit = virt + ((bl + 1) << 17) - 1; |
| bat_addrs[index].phys = phys; |
| } |
| |
| /* |
| * Preload a translation in the hash table |
| */ |
| void hash_preload(struct mm_struct *mm, unsigned long ea, |
| unsigned long access, unsigned long trap) |
| { |
| pmd_t *pmd; |
| |
| if (Hash == 0) |
| return; |
| pmd = pmd_offset(pgd_offset(mm, ea), ea); |
| if (!pmd_none(*pmd)) |
| add_hash_page(mm->context.id, ea, pmd_val(*pmd)); |
| } |
| |
| /* |
| * Initialize the hash table and patch the instructions in hashtable.S. |
| */ |
| void __init MMU_init_hw(void) |
| { |
| unsigned int hmask, mb, mb2; |
| unsigned int n_hpteg, lg_n_hpteg; |
| |
| extern unsigned int hash_page_patch_A[]; |
| extern unsigned int hash_page_patch_B[], hash_page_patch_C[]; |
| extern unsigned int hash_page[]; |
| extern unsigned int flush_hash_patch_A[], flush_hash_patch_B[]; |
| |
| if (!cpu_has_feature(CPU_FTR_HPTE_TABLE)) { |
| /* |
| * Put a blr (procedure return) instruction at the |
| * start of hash_page, since we can still get DSI |
| * exceptions on a 603. |
| */ |
| hash_page[0] = 0x4e800020; |
| flush_icache_range((unsigned long) &hash_page[0], |
| (unsigned long) &hash_page[1]); |
| return; |
| } |
| |
| if ( ppc_md.progress ) ppc_md.progress("hash:enter", 0x105); |
| |
| #define LG_HPTEG_SIZE 6 /* 64 bytes per HPTEG */ |
| #define SDR1_LOW_BITS ((n_hpteg - 1) >> 10) |
| #define MIN_N_HPTEG 1024 /* min 64kB hash table */ |
| |
| /* |
| * Allow 1 HPTE (1/8 HPTEG) for each page of memory. |
| * This is less than the recommended amount, but then |
| * Linux ain't AIX. |
| */ |
| n_hpteg = total_memory / (PAGE_SIZE * 8); |
| if (n_hpteg < MIN_N_HPTEG) |
| n_hpteg = MIN_N_HPTEG; |
| lg_n_hpteg = __ilog2(n_hpteg); |
| if (n_hpteg & (n_hpteg - 1)) { |
| ++lg_n_hpteg; /* round up if not power of 2 */ |
| n_hpteg = 1 << lg_n_hpteg; |
| } |
| Hash_size = n_hpteg << LG_HPTEG_SIZE; |
| |
| /* |
| * Find some memory for the hash table. |
| */ |
| if ( ppc_md.progress ) ppc_md.progress("hash:find piece", 0x322); |
| Hash = __va(lmb_alloc_base(Hash_size, Hash_size, |
| __initial_memory_limit)); |
| cacheable_memzero(Hash, Hash_size); |
| _SDR1 = __pa(Hash) | SDR1_LOW_BITS; |
| |
| Hash_end = (PTE *) ((unsigned long)Hash + Hash_size); |
| |
| printk("Total memory = %ldMB; using %ldkB for hash table (at %p)\n", |
| total_memory >> 20, Hash_size >> 10, Hash); |
| |
| |
| /* |
| * Patch up the instructions in hashtable.S:create_hpte |
| */ |
| if ( ppc_md.progress ) ppc_md.progress("hash:patch", 0x345); |
| Hash_mask = n_hpteg - 1; |
| hmask = Hash_mask >> (16 - LG_HPTEG_SIZE); |
| mb2 = mb = 32 - LG_HPTEG_SIZE - lg_n_hpteg; |
| if (lg_n_hpteg > 16) |
| mb2 = 16 - LG_HPTEG_SIZE; |
| |
| hash_page_patch_A[0] = (hash_page_patch_A[0] & ~0xffff) |
| | ((unsigned int)(Hash) >> 16); |
| hash_page_patch_A[1] = (hash_page_patch_A[1] & ~0x7c0) | (mb << 6); |
| hash_page_patch_A[2] = (hash_page_patch_A[2] & ~0x7c0) | (mb2 << 6); |
| hash_page_patch_B[0] = (hash_page_patch_B[0] & ~0xffff) | hmask; |
| hash_page_patch_C[0] = (hash_page_patch_C[0] & ~0xffff) | hmask; |
| |
| /* |
| * Ensure that the locations we've patched have been written |
| * out from the data cache and invalidated in the instruction |
| * cache, on those machines with split caches. |
| */ |
| flush_icache_range((unsigned long) &hash_page_patch_A[0], |
| (unsigned long) &hash_page_patch_C[1]); |
| |
| /* |
| * Patch up the instructions in hashtable.S:flush_hash_page |
| */ |
| flush_hash_patch_A[0] = (flush_hash_patch_A[0] & ~0xffff) |
| | ((unsigned int)(Hash) >> 16); |
| flush_hash_patch_A[1] = (flush_hash_patch_A[1] & ~0x7c0) | (mb << 6); |
| flush_hash_patch_A[2] = (flush_hash_patch_A[2] & ~0x7c0) | (mb2 << 6); |
| flush_hash_patch_B[0] = (flush_hash_patch_B[0] & ~0xffff) | hmask; |
| flush_icache_range((unsigned long) &flush_hash_patch_A[0], |
| (unsigned long) &flush_hash_patch_B[1]); |
| |
| if ( ppc_md.progress ) ppc_md.progress("hash:done", 0x205); |
| } |