blob: daee611f0140c211d26736991391f8d5f206f1e7 [file] [log] [blame]
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/bootmem.h>
#include <linux/bitops.h>
#include <linux/module.h>
#include <linux/kgdb.h>
#include <linux/topology.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <asm/processor.h>
#include <asm/i387.h>
#include <asm/msr.h>
#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/mtrr.h>
#include <asm/mce.h>
#include <asm/pat.h>
#include <asm/numa.h>
#ifdef CONFIG_X86_LOCAL_APIC
#include <asm/mpspec.h>
#include <asm/apic.h>
#include <mach_apic.h>
#endif
#include <asm/pda.h>
#include <asm/pgtable.h>
#include <asm/processor.h>
#include <asm/desc.h>
#include <asm/atomic.h>
#include <asm/proto.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/genapic.h>
#include "cpu.h"
/* We need valid kernel segments for data and code in long mode too
* IRET will check the segment types kkeil 2000/10/28
* Also sysret mandates a special GDT layout
*/
/* The TLS descriptors are currently at a different place compared to i386.
Hopefully nobody expects them at a fixed place (Wine?) */
DEFINE_PER_CPU(struct gdt_page, gdt_page) = { .gdt = {
[GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
[GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
[GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
[GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
[GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
[GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
} };
EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
__u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
/* Current gdt points %fs at the "master" per-cpu area: after this,
* it's on the real one. */
void switch_to_new_gdt(void)
{
struct desc_ptr gdt_descr;
gdt_descr.address = (long)get_cpu_gdt_table(smp_processor_id());
gdt_descr.size = GDT_SIZE - 1;
load_gdt(&gdt_descr);
}
struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
static void __cpuinit default_init(struct cpuinfo_x86 *c)
{
display_cacheinfo(c);
}
static struct cpu_dev __cpuinitdata default_cpu = {
.c_init = default_init,
.c_vendor = "Unknown",
};
static struct cpu_dev *this_cpu __cpuinitdata = &default_cpu;
int __cpuinit get_model_name(struct cpuinfo_x86 *c)
{
unsigned int *v;
if (c->extended_cpuid_level < 0x80000004)
return 0;
v = (unsigned int *) c->x86_model_id;
cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
c->x86_model_id[48] = 0;
return 1;
}
void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
{
unsigned int n, dummy, ebx, ecx, edx;
n = c->extended_cpuid_level;
if (n >= 0x80000005) {
cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), "
"D cache %dK (%d bytes/line)\n",
edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
c->x86_cache_size = (ecx>>24) + (edx>>24);
/* On K8 L1 TLB is inclusive, so don't count it */
c->x86_tlbsize = 0;
}
if (n >= 0x80000006) {
cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
ecx = cpuid_ecx(0x80000006);
c->x86_cache_size = ecx >> 16;
c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
c->x86_cache_size, ecx & 0xFF);
}
}
void __cpuinit detect_ht(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_SMP
u32 eax, ebx, ecx, edx;
int index_msb, core_bits;
cpuid(1, &eax, &ebx, &ecx, &edx);
if (!cpu_has(c, X86_FEATURE_HT))
return;
if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
goto out;
smp_num_siblings = (ebx & 0xff0000) >> 16;
if (smp_num_siblings == 1) {
printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
} else if (smp_num_siblings > 1) {
if (smp_num_siblings > NR_CPUS) {
printk(KERN_WARNING "CPU: Unsupported number of "
"siblings %d", smp_num_siblings);
smp_num_siblings = 1;
return;
}
index_msb = get_count_order(smp_num_siblings);
c->phys_proc_id = phys_pkg_id(index_msb);
smp_num_siblings = smp_num_siblings / c->x86_max_cores;
index_msb = get_count_order(smp_num_siblings);
core_bits = get_count_order(c->x86_max_cores);
c->cpu_core_id = phys_pkg_id(index_msb) &
((1 << core_bits) - 1);
}
out:
if ((c->x86_max_cores * smp_num_siblings) > 1) {
printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
c->phys_proc_id);
printk(KERN_INFO "CPU: Processor Core ID: %d\n",
c->cpu_core_id);
}
#endif
}
static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
{
char *v = c->x86_vendor_id;
int i;
static int printed;
for (i = 0; i < X86_VENDOR_NUM; i++) {
if (cpu_devs[i]) {
if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
(cpu_devs[i]->c_ident[1] &&
!strcmp(v, cpu_devs[i]->c_ident[1]))) {
c->x86_vendor = i;
this_cpu = cpu_devs[i];
return;
}
}
}
if (!printed) {
printed++;
printk(KERN_ERR "CPU: Vendor unknown, using generic init.\n");
printk(KERN_ERR "CPU: Your system may be unstable.\n");
}
c->x86_vendor = X86_VENDOR_UNKNOWN;
}
static void __init early_cpu_support_print(void)
{
int i,j;
struct cpu_dev *cpu_devx;
printk("KERNEL supported cpus:\n");
for (i = 0; i < X86_VENDOR_NUM; i++) {
cpu_devx = cpu_devs[i];
if (!cpu_devx)
continue;
for (j = 0; j < 2; j++) {
if (!cpu_devx->c_ident[j])
continue;
printk(" %s %s\n", cpu_devx->c_vendor,
cpu_devx->c_ident[j]);
}
}
}
static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c);
void __init early_cpu_init(void)
{
struct cpu_vendor_dev *cvdev;
for (cvdev = __x86cpuvendor_start ;
cvdev < __x86cpuvendor_end ;
cvdev++)
cpu_devs[cvdev->vendor] = cvdev->cpu_dev;
early_cpu_support_print();
early_identify_cpu(&boot_cpu_data);
}
/* Do some early cpuid on the boot CPU to get some parameter that are
needed before check_bugs. Everything advanced is in identify_cpu
below. */
static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
{
u32 tfms, xlvl;
c->loops_per_jiffy = loops_per_jiffy;
c->x86_cache_size = -1;
c->x86_vendor = X86_VENDOR_UNKNOWN;
c->x86_model = c->x86_mask = 0; /* So far unknown... */
c->x86_vendor_id[0] = '\0'; /* Unset */
c->x86_model_id[0] = '\0'; /* Unset */
c->x86_clflush_size = 64;
c->x86_cache_alignment = c->x86_clflush_size;
c->x86_max_cores = 1;
c->x86_coreid_bits = 0;
c->extended_cpuid_level = 0;
memset(&c->x86_capability, 0, sizeof c->x86_capability);
/* Get vendor name */
cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
(unsigned int *)&c->x86_vendor_id[0],
(unsigned int *)&c->x86_vendor_id[8],
(unsigned int *)&c->x86_vendor_id[4]);
get_cpu_vendor(c);
/* Initialize the standard set of capabilities */
/* Note that the vendor-specific code below might override */
/* Intel-defined flags: level 0x00000001 */
if (c->cpuid_level >= 0x00000001) {
__u32 misc;
cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
&c->x86_capability[0]);
c->x86 = (tfms >> 8) & 0xf;
c->x86_model = (tfms >> 4) & 0xf;
c->x86_mask = tfms & 0xf;
if (c->x86 == 0xf)
c->x86 += (tfms >> 20) & 0xff;
if (c->x86 >= 0x6)
c->x86_model += ((tfms >> 16) & 0xF) << 4;
if (test_cpu_cap(c, X86_FEATURE_CLFLSH))
c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
} else {
/* Have CPUID level 0 only - unheard of */
c->x86 = 4;
}
c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xff;
#ifdef CONFIG_SMP
c->phys_proc_id = c->initial_apicid;
#endif
/* AMD-defined flags: level 0x80000001 */
xlvl = cpuid_eax(0x80000000);
c->extended_cpuid_level = xlvl;
if ((xlvl & 0xffff0000) == 0x80000000) {
if (xlvl >= 0x80000001) {
c->x86_capability[1] = cpuid_edx(0x80000001);
c->x86_capability[6] = cpuid_ecx(0x80000001);
}
if (xlvl >= 0x80000004)
get_model_name(c); /* Default name */
}
/* Transmeta-defined flags: level 0x80860001 */
xlvl = cpuid_eax(0x80860000);
if ((xlvl & 0xffff0000) == 0x80860000) {
/* Don't set x86_cpuid_level here for now to not confuse. */
if (xlvl >= 0x80860001)
c->x86_capability[2] = cpuid_edx(0x80860001);
}
if (c->extended_cpuid_level >= 0x80000007)
c->x86_power = cpuid_edx(0x80000007);
if (c->extended_cpuid_level >= 0x80000008) {
u32 eax = cpuid_eax(0x80000008);
c->x86_virt_bits = (eax >> 8) & 0xff;
c->x86_phys_bits = eax & 0xff;
}
/* Assume all 64-bit CPUs support 32-bit syscall */
set_cpu_cap(c, X86_FEATURE_SYSCALL32);
if (c->x86_vendor != X86_VENDOR_UNKNOWN &&
cpu_devs[c->x86_vendor]->c_early_init)
cpu_devs[c->x86_vendor]->c_early_init(c);
validate_pat_support(c);
}
/*
* This does the hard work of actually picking apart the CPU stuff...
*/
static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
{
int i;
early_identify_cpu(c);
init_scattered_cpuid_features(c);
c->apicid = phys_pkg_id(0);
/*
* Vendor-specific initialization. In this section we
* canonicalize the feature flags, meaning if there are
* features a certain CPU supports which CPUID doesn't
* tell us, CPUID claiming incorrect flags, or other bugs,
* we handle them here.
*
* At the end of this section, c->x86_capability better
* indicate the features this CPU genuinely supports!
*/
if (this_cpu->c_init)
this_cpu->c_init(c);
detect_ht(c);
/*
* On SMP, boot_cpu_data holds the common feature set between
* all CPUs; so make sure that we indicate which features are
* common between the CPUs. The first time this routine gets
* executed, c == &boot_cpu_data.
*/
if (c != &boot_cpu_data) {
/* AND the already accumulated flags with these */
for (i = 0; i < NCAPINTS; i++)
boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
}
/* Clear all flags overriden by options */
for (i = 0; i < NCAPINTS; i++)
c->x86_capability[i] &= ~cleared_cpu_caps[i];
#ifdef CONFIG_X86_MCE
mcheck_init(c);
#endif
select_idle_routine(c);
#ifdef CONFIG_NUMA
numa_add_cpu(smp_processor_id());
#endif
}
void __cpuinit identify_boot_cpu(void)
{
identify_cpu(&boot_cpu_data);
}
void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
{
BUG_ON(c == &boot_cpu_data);
identify_cpu(c);
mtrr_ap_init();
}
static __init int setup_noclflush(char *arg)
{
setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
return 1;
}
__setup("noclflush", setup_noclflush);
void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
{
if (c->x86_model_id[0])
printk(KERN_CONT "%s", c->x86_model_id);
if (c->x86_mask || c->cpuid_level >= 0)
printk(KERN_CONT " stepping %02x\n", c->x86_mask);
else
printk(KERN_CONT "\n");
}
static __init int setup_disablecpuid(char *arg)
{
int bit;
if (get_option(&arg, &bit) && bit < NCAPINTS*32)
setup_clear_cpu_cap(bit);
else
return 0;
return 1;
}
__setup("clearcpuid=", setup_disablecpuid);
cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE;
struct x8664_pda **_cpu_pda __read_mostly;
EXPORT_SYMBOL(_cpu_pda);
struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
char boot_cpu_stack[IRQSTACKSIZE] __page_aligned_bss;
unsigned long __supported_pte_mask __read_mostly = ~0UL;
EXPORT_SYMBOL_GPL(__supported_pte_mask);
static int do_not_nx __cpuinitdata;
/* noexec=on|off
Control non executable mappings for 64bit processes.
on Enable(default)
off Disable
*/
static int __init nonx_setup(char *str)
{
if (!str)
return -EINVAL;
if (!strncmp(str, "on", 2)) {
__supported_pte_mask |= _PAGE_NX;
do_not_nx = 0;
} else if (!strncmp(str, "off", 3)) {
do_not_nx = 1;
__supported_pte_mask &= ~_PAGE_NX;
}
return 0;
}
early_param("noexec", nonx_setup);
int force_personality32;
/* noexec32=on|off
Control non executable heap for 32bit processes.
To control the stack too use noexec=off
on PROT_READ does not imply PROT_EXEC for 32bit processes (default)
off PROT_READ implies PROT_EXEC
*/
static int __init nonx32_setup(char *str)
{
if (!strcmp(str, "on"))
force_personality32 &= ~READ_IMPLIES_EXEC;
else if (!strcmp(str, "off"))
force_personality32 |= READ_IMPLIES_EXEC;
return 1;
}
__setup("noexec32=", nonx32_setup);
void pda_init(int cpu)
{
struct x8664_pda *pda = cpu_pda(cpu);
/* Setup up data that may be needed in __get_free_pages early */
loadsegment(fs, 0);
loadsegment(gs, 0);
/* Memory clobbers used to order PDA accessed */
mb();
wrmsrl(MSR_GS_BASE, pda);
mb();
pda->cpunumber = cpu;
pda->irqcount = -1;
pda->kernelstack = (unsigned long)stack_thread_info() -
PDA_STACKOFFSET + THREAD_SIZE;
pda->active_mm = &init_mm;
pda->mmu_state = 0;
if (cpu == 0) {
/* others are initialized in smpboot.c */
pda->pcurrent = &init_task;
pda->irqstackptr = boot_cpu_stack;
} else {
pda->irqstackptr = (char *)
__get_free_pages(GFP_ATOMIC, IRQSTACK_ORDER);
if (!pda->irqstackptr)
panic("cannot allocate irqstack for cpu %d", cpu);
if (pda->nodenumber == 0 && cpu_to_node(cpu) != NUMA_NO_NODE)
pda->nodenumber = cpu_to_node(cpu);
}
pda->irqstackptr += IRQSTACKSIZE-64;
}
char boot_exception_stacks[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ +
DEBUG_STKSZ]
__attribute__((section(".bss.page_aligned")));
extern asmlinkage void ignore_sysret(void);
/* May not be marked __init: used by software suspend */
void syscall_init(void)
{
/*
* LSTAR and STAR live in a bit strange symbiosis.
* They both write to the same internal register. STAR allows to
* set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
*/
wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
wrmsrl(MSR_LSTAR, system_call);
wrmsrl(MSR_CSTAR, ignore_sysret);
#ifdef CONFIG_IA32_EMULATION
syscall32_cpu_init();
#endif
/* Flags to clear on syscall */
wrmsrl(MSR_SYSCALL_MASK,
X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
}
void __cpuinit check_efer(void)
{
unsigned long efer;
rdmsrl(MSR_EFER, efer);
if (!(efer & EFER_NX) || do_not_nx)
__supported_pte_mask &= ~_PAGE_NX;
}
unsigned long kernel_eflags;
/*
* Copies of the original ist values from the tss are only accessed during
* debugging, no special alignment required.
*/
DEFINE_PER_CPU(struct orig_ist, orig_ist);
/*
* cpu_init() initializes state that is per-CPU. Some data is already
* initialized (naturally) in the bootstrap process, such as the GDT
* and IDT. We reload them nevertheless, this function acts as a
* 'CPU state barrier', nothing should get across.
* A lot of state is already set up in PDA init.
*/
void __cpuinit cpu_init(void)
{
int cpu = stack_smp_processor_id();
struct tss_struct *t = &per_cpu(init_tss, cpu);
struct orig_ist *orig_ist = &per_cpu(orig_ist, cpu);
unsigned long v;
char *estacks = NULL;
struct task_struct *me;
int i;
/* CPU 0 is initialised in head64.c */
if (cpu != 0)
pda_init(cpu);
else
estacks = boot_exception_stacks;
me = current;
if (cpu_test_and_set(cpu, cpu_initialized))
panic("CPU#%d already initialized!\n", cpu);
printk(KERN_INFO "Initializing CPU#%d\n", cpu);
clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
/*
* Initialize the per-CPU GDT with the boot GDT,
* and set up the GDT descriptor:
*/
switch_to_new_gdt();
load_idt((const struct desc_ptr *)&idt_descr);
memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
syscall_init();
wrmsrl(MSR_FS_BASE, 0);
wrmsrl(MSR_KERNEL_GS_BASE, 0);
barrier();
check_efer();
/*
* set up and load the per-CPU TSS
*/
for (v = 0; v < N_EXCEPTION_STACKS; v++) {
static const unsigned int order[N_EXCEPTION_STACKS] = {
[0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STACK_ORDER,
[DEBUG_STACK - 1] = DEBUG_STACK_ORDER
};
if (cpu) {
estacks = (char *)__get_free_pages(GFP_ATOMIC, order[v]);
if (!estacks)
panic("Cannot allocate exception stack %ld %d\n",
v, cpu);
}
estacks += PAGE_SIZE << order[v];
orig_ist->ist[v] = t->x86_tss.ist[v] = (unsigned long)estacks;
}
t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
/*
* <= is required because the CPU will access up to
* 8 bits beyond the end of the IO permission bitmap.
*/
for (i = 0; i <= IO_BITMAP_LONGS; i++)
t->io_bitmap[i] = ~0UL;
atomic_inc(&init_mm.mm_count);
me->active_mm = &init_mm;
if (me->mm)
BUG();
enter_lazy_tlb(&init_mm, me);
load_sp0(t, &current->thread);
set_tss_desc(cpu, t);
load_TR_desc();
load_LDT(&init_mm.context);
#ifdef CONFIG_KGDB
/*
* If the kgdb is connected no debug regs should be altered. This
* is only applicable when KGDB and a KGDB I/O module are built
* into the kernel and you are using early debugging with
* kgdbwait. KGDB will control the kernel HW breakpoint registers.
*/
if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
arch_kgdb_ops.correct_hw_break();
else {
#endif
/*
* Clear all 6 debug registers:
*/
set_debugreg(0UL, 0);
set_debugreg(0UL, 1);
set_debugreg(0UL, 2);
set_debugreg(0UL, 3);
set_debugreg(0UL, 6);
set_debugreg(0UL, 7);
#ifdef CONFIG_KGDB
/* If the kgdb is connected no debug regs should be altered. */
}
#endif
fpu_init();
raw_local_save_flags(kernel_eflags);
if (is_uv_system())
uv_cpu_init();
}