blob: 077e88fa4e484483900e1cc947549ed4bcc0ad8d [file] [log] [blame]
/*
* s2mu106_charger.c - S2MU106 Charger Driver
*
* Copyright (C) 2016 Samsung Electronics Co.Ltd
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <linux/mfd/samsung/s2mu106.h>
#include <linux/muic/s2mu106-muic.h>
#include <linux/ccic/usbpd-s2mu106.h>
#include "include/charger/s2mu106_charger.h"
#include "include/s2mu106_pmeter.h"
#include <linux/version.h>
#include <linux/sec_batt.h>
#if defined(CONFIG_LEDS_S2MU106_FLASH)
#include <linux/leds-s2mu106.h>
#endif
#ifdef CONFIG_USB_HOST_NOTIFY
#include <linux/usb_notify.h>
#endif
#define ENABLE 1
#define DISABLE 0
#define IVR_WORK_DELAY 50
static char *s2mu106_supplied_to[] = {
"battery",
};
static enum power_supply_property s2mu106_charger_props[] = {
};
static enum power_supply_property s2mu106_otg_props[] = {
POWER_SUPPLY_PROP_ONLINE,
};
static int s2mu106_get_charging_health(struct s2mu106_charger_data *charger);
static void s2mu106_set_input_current_limit(struct s2mu106_charger_data *charger, int charging_current);
static int s2mu106_get_input_current_limit(struct s2mu106_charger_data *charger);
static void s2mu106_test_read(struct i2c_client *i2c)
{
u8 data;
char str[1016] = {0,};
int i;
for (i = 0x0A; i <= 0x24; i++) {
s2mu106_read_reg(i2c, i, &data);
sprintf(str+strlen(str), "0x%02x:0x%02x, ", i, data);
}
s2mu106_read_reg(i2c, 0x33, &data);
sprintf(str+strlen(str), "0x33:0x%02x, ", data);
s2mu106_read_reg(i2c, 0x7A, &data);
sprintf(str+strlen(str), "0x7A:0x%02x, ", data);
s2mu106_read_reg(i2c, 0xF1, &data);
pr_err("%s: %s0xF1:0x%02x\n", __func__, str, data);
}
static int wcin_is_valid(u8 reg)
{
int ret;
ret = (reg & WCIN_STATUS_MASK) >> WCIN_STATUS_SHIFT;
switch (ret) {
case 0x03:
case 0x05:
return 1;
default:
break;
}
return 0;
}
#define REG_MODE_BUCK_OFF_FOR_FLASH (1<<4) // for camera flash + TA.
#define REG_MODE_BST (1<<5)
#define REG_MODE_TX (1<<3)
#define REG_MODE_OTG (1<<2)
#define REG_MODE_OTG_TX (3<<2)
#define REG_MODE_CHG (1<<1)
#define REG_MODE_BUCK (1<<0)
static void regmode_vote(struct s2mu106_charger_data *charger, int voter, int val)
{
static int vote_status = -1;
u8 set_val, reg;
mutex_lock(&charger->regmode_mutex);
pr_info("%s: voter: 0x%x, val: 0x%x\n", __func__, voter, val);
if (vote_status == -1) {
s2mu106_read_reg(charger->i2c, S2MU106_CHG_CTRL0, &reg);
pr_info("%s S2MU106_CHG_CTRL0: 0x%x\n", __func__, reg);
vote_status = reg & 0xf;
}
vote_status = (voter & val) | (vote_status & (~voter));
set_val = (u8)(vote_status & 0xff);
s2mu106_read_reg(charger->i2c, S2MU106_CHG_STATUS0, &reg);
pr_info("%s: vote_status: 0x%x, set_val: 0x%x, cable_type(%d), STATUS0(0x%x)\n",
__func__, vote_status, set_val, charger->cable_type, reg);
if ((vote_status & REG_MODE_BUCK_OFF_FOR_FLASH) || (vote_status & REG_MODE_BST)) {
set_val = val;
} else if (vote_status & REG_MODE_BUCK) {
if (vote_status & REG_MODE_OTG_TX) {
if (((vote_status & REG_MODE_OTG) &&
(!is_wireless_type(charger->cable_type) || (is_wireless_type(charger->cable_type) && !wcin_is_valid(reg))))
|| ((vote_status & REG_MODE_TX) && !is_wired_type(charger->cable_type))) {
set_val &= ~REG_MODE_BUCK;
set_val |= REG_MODE_CHG;
}
}
} else if (vote_status & REG_MODE_OTG_TX) {
set_val &= ~REG_MODE_BUCK;
set_val |= REG_MODE_CHG;
}
s2mu106_read_reg(charger->i2c, S2MU106_CHG_CTRL0, &reg);
pr_info("%s: prev: 0x%x, new: 0x%x\n", __func__, reg, set_val);
if ((set_val & REG_MODE_OTG_TX) && (set_val & REG_MODE_BUCK)) {
if (set_val & REG_MODE_OTG) {
#if defined(CONFIG_WIRELESS_CHARGER_MFC_S2MIW04)
union power_supply_propval value = {0,};
#endif
pr_info("%s: OTG_BUCK\n", __func__);
if ((reg & REG_MODE_OTG) && !(reg & REG_MODE_BUCK)) {
msleep(200);
disable_irq_nosync(charger->irq_otg);
s2mu106_update_reg(charger->i2c, 0x30, 0x0C, 0x0C); // OTG PATH ON
}
s2mu106_update_reg(charger->i2c, 0x39, 0x33, 0x33); // prevent OTG OCP reset
s2mu106_update_reg(charger->i2c,
S2MU106_CHG_CTRL0, set_val, REG_MODE_MASK);
if ((reg & REG_MODE_OTG) && !(reg & REG_MODE_BUCK)) {
msleep(150);
s2mu106_update_reg(charger->i2c, 0x30, 0x04, 0x0C); // OTG PATH OFF
enable_irq(charger->irq_otg);
}
#if defined(CONFIG_WIRELESS_CHARGER_MFC_S2MIW04)
/* wireless(otg) -> wirless + otg */
value.intval = 1;
psy_do_property(charger->pdata->wireless_charger_name, set,
POWER_SUPPLY_EXT_PROP_WIRELESS_TXMODE_DISCON, value);
#endif
} else if (set_val & REG_MODE_TX) {
pr_info("%s: TX_BUCK\n", __func__);
if ((reg & REG_MODE_TX) && !(reg & REG_MODE_BUCK)) {
msleep(200);
disable_irq_nosync(charger->irq_tx);
s2mu106_update_reg(charger->i2c, 0x30, 0x03, 0x03); // WCIN PATH ON
}
s2mu106_update_reg(charger->i2c, 0x39, 0xCC, 0xCC); // prevent TX OCP reset
s2mu106_update_reg(charger->i2c,
S2MU106_CHG_CTRL0, set_val, REG_MODE_MASK);
if ((reg & REG_MODE_TX) && !(reg & REG_MODE_BUCK)) {
msleep(150);
s2mu106_update_reg(charger->i2c, 0x30, 0x01, 0x03); // WCIN PATH OFF
enable_irq(charger->irq_tx);
}
} else {
pr_info("%s: Abnormal\n", __func__);
}
s2mu106_update_reg(charger->i2c, 0x3A, 0, 0x03); // SET_SYNC
} else if ((reg & REG_MODE_OTG_TX) && (reg & REG_MODE_BUCK)
&& (set_val & REG_MODE_OTG_TX) && !(set_val & REG_MODE_BUCK)) {
if (set_val & REG_MODE_OTG) {
pr_info("%s: OTG_BUCK -> OTG \n", __func__);
s2mu106_update_reg(charger->i2c, 0x30, 0x0C, 0x0C); // OTG PATH ON
s2mu106_update_reg(charger->i2c,
S2MU106_CHG_CTRL0, set_val, REG_MODE_MASK);
s2mu106_update_reg(charger->i2c, 0x39, 0x11, 0x33); // prevent OTG OCP default
s2mu106_update_reg(charger->i2c, 0x3A, 0x01, 0x03); // SET_Auto Async
msleep(20);
s2mu106_update_reg(charger->i2c, 0x30, 0x04, 0x0C); // OTG PATH OFF
} else if (set_val & REG_MODE_TX) {
pr_info("%s: TX_BUCK -> TX\n", __func__);
s2mu106_update_reg(charger->i2c, 0x30, 0x03, 0x03); // WCIN PATH ON
s2mu106_update_reg(charger->i2c,
S2MU106_CHG_CTRL0, set_val, REG_MODE_MASK);
s2mu106_update_reg(charger->i2c, 0x39, 0x44, 0xCC); // prevent TX OCP default
s2mu106_update_reg(charger->i2c, 0x3A, 0x01, 0x03); // SET_Auto Async
msleep(20);
s2mu106_update_reg(charger->i2c, 0x30, 0x01, 0x03); // WCIN PATH OFF
} else {
pr_info("%s: OTG_TX_BUCK -> OTG or TX Abnormal\n", __func__);
}
} else if (set_val & REG_MODE_BST) {
s2mu106_update_reg(charger->i2c, S2MU106_CHG_CTRL0, BST_MODE, REG_MODE_MASK);
} else if (set_val & REG_MODE_BUCK_OFF_FOR_FLASH) {
/* async mode */
s2mu106_update_reg(charger->i2c, 0x3A, 0x03, 0x03);
usleep_range(1000, 1100);
s2mu106_update_reg(charger->i2c,
S2MU106_CHG_CTRL0, CHARGER_OFF_MODE, REG_MODE_MASK);
/* auto async mode */
s2mu106_update_reg(charger->i2c, 0x3A, 0x01, 0x03);
} else {
/*
* Regmode (CHG, BUCK, BUCK OFF)
* Do not set Auto Async mode before BUCK OFF mode
*/
if ((set_val & REG_MODE_CHG) || (set_val & REG_MODE_BUCK))
s2mu106_update_reg(charger->i2c, 0x3A, 0x01, 0x03); // SET_Auto Async
s2mu106_update_reg(charger->i2c,
S2MU106_CHG_CTRL0, set_val, REG_MODE_MASK);
s2mu106_update_reg(charger->i2c, 0x39, 0x55, 0xFF); // prevent OTG OCP default
}
mutex_unlock(&charger->regmode_mutex);
}
static int s2mu106_charger_otg_control(
struct s2mu106_charger_data *charger, bool enable)
{
u8 chg_sts2, chg_ctrl0, otg_fault;
pr_info("%s: called charger otg control : %s\n", __func__,
enable ? "ON" : "OFF");
#if 0
if (charger->is_charging) {
pr_info("%s: Charger is enabled and OTG noti received!!!\n", __func__);
pr_info("%s: is_charging: %d, otg_on: %d",
__func__, charger->is_charging, charger->otg_on);
s2mu106_test_read(charger->i2c);
return 0;
}
#endif
if (charger->otg_on == enable)
return 0;
s2mu106_read_reg(charger->i2c, 0x94, &otg_fault);
pr_info("%s OTG FAULT : 0x%x\n", __func__, otg_fault);
mutex_lock(&charger->charger_mutex);
if (!enable) {
regmode_vote(charger, REG_MODE_OTG, 0);
/* OTG Fault debounce time set 100us */
s2mu106_update_reg(charger->i2c, 0x94, 0x08, 0x0C);
} else {
/* 1. OCP 1.2A setting */
s2mu106_update_reg(charger->i2c,
S2MU106_CHG_CTRL3,
S2MU106_SET_OTG_OCP_1200mA << SET_OTG_OCP_SHIFT,
SET_OTG_OCP_MASK);
/* 2. OTG or TX switches are always ON */
s2mu106_update_reg(charger->i2c, S2MU106_CHG_CTRL3, 0x20, 0x30);
/* 3. Input s/w current sense off */
s2mu106_update_reg(charger->i2c, 0x3B, 0x0, 0x0C);
/* 4. 30ms delay */
msleep(30);
/* 5. QBAT On even if BAT OCP occure */
s2mu106_update_reg(charger->i2c, S2MU106_CHG_CTRL9, 0x0, 0x10);
msleep(10);
/* 6. OTG Enable */
regmode_vote(charger, REG_MODE_OTG, REG_MODE_OTG);
msleep(20);
/* OTG Fault debounce time set 15ms */
s2mu106_update_reg(charger->i2c, 0x94, 0x0C, 0x0C);
/* 7. OTG or TX switches are default */
s2mu106_update_reg(charger->i2c, S2MU106_CHG_CTRL3, 0x10, 0x30);
/* 8. Input s/w current sense on */
s2mu106_update_reg(charger->i2c, 0x3B, 0x04, 0x0C);
charger->cable_type = SEC_BATTERY_CABLE_OTG;
}
charger->otg_on = enable;
mutex_unlock(&charger->charger_mutex);
s2mu106_read_reg(charger->i2c, S2MU106_CHG_STATUS2, &chg_sts2);
s2mu106_read_reg(charger->i2c, S2MU106_CHG_CTRL0, &chg_ctrl0);
pr_info("%s S2MU106_CHG_STATUS2: 0x%x\n", __func__, chg_sts2);
pr_info("%s S2MU106_CHG_CTRL0: 0x%x\n", __func__, chg_ctrl0);
power_supply_changed(charger->psy_otg);
return enable;
}
static void s2mu106_enable_charger_switch(
struct s2mu106_charger_data *charger, int onoff)
{
if (factory_mode) {
pr_info("%s: Factory Mode Skip CHG_EN Control\n", __func__);
return;
}
if (charger->otg_on) {
pr_info("[DEBUG] %s: skipped set(%d) : OTG is on\n", __func__, onoff);
return;
}
if (onoff > 0) {
pr_info("[DEBUG]%s: turn on charger\n", __func__);
regmode_vote(charger, REG_MODE_CHG|REG_MODE_BUCK, REG_MODE_CHG|REG_MODE_BUCK);
/* timer fault set 16hr(max) */
s2mu106_update_reg(charger->i2c, S2MU106_CHG_CTRL13,
S2MU106_FC_CHG_TIMER_16hr << SET_TIME_FC_CHG_SHIFT,
SET_TIME_FC_CHG_MASK);
} else {
pr_info("[DEBUG] %s: turn off charger\n", __func__);
regmode_vote(charger, REG_MODE_CHG|REG_MODE_BUCK, REG_MODE_BUCK);
}
}
static void s2mu106_set_buck(
struct s2mu106_charger_data *charger, int enable) {
int prev_current;
if (factory_mode) {
pr_info("%s: Factory Mode Skip buck Control\n", __func__);
return;
}
if (enable) {
pr_info("[DEBUG]%s: set buck on\n", __func__);
s2mu106_enable_charger_switch(charger, charger->is_charging);
} else {
pr_info("[DEBUG]%s: set buck off (charger off mode)\n", __func__);
prev_current = s2mu106_get_input_current_limit(charger);
pr_info("[DEBUG]%s: check input current(%d, %d)\n",
__func__, prev_current, charger->input_current);
s2mu106_set_input_current_limit(charger, 50);
msleep(50);
/* async mode */
s2mu106_update_reg(charger->i2c, 0x3A, 0x03, 0x03);
msleep(50);
regmode_vote(charger, REG_MODE_CHG|REG_MODE_BUCK, 0);
/* auto async mode */
s2mu106_update_reg(charger->i2c, 0x3A, 0x01, 0x03);
s2mu106_set_input_current_limit(charger, prev_current);
}
}
static void s2mu106_set_regulation_vsys(
struct s2mu106_charger_data *charger, int vsys)
{
u8 data;
pr_info("[DEBUG]%s: VSYS regulation %d\n", __func__, vsys);
if (vsys <= 3700)
data = 0;
else if (vsys > 3700 && vsys <= 4400)
data = (vsys - 3700) / 100;
else
data = 0x07;
s2mu106_update_reg(charger->i2c,
S2MU106_CHG_CTRL8, data << SET_VSYS_SHIFT, SET_VSYS_MASK);
}
static void s2mu106_set_regulation_voltage(
struct s2mu106_charger_data *charger, int float_voltage)
{
u8 data;
if (factory_mode)
return;
pr_info("[DEBUG]%s: float_voltage %d\n", __func__, float_voltage);
if (float_voltage <= 3900)
data = 0;
else if (float_voltage > 3900 && float_voltage <= 4530)
data = (float_voltage - 3900) / 5;
else
data = 0x7f;
s2mu106_update_reg(charger->i2c,
S2MU106_CHG_CTRL5, data << SET_VF_VBAT_SHIFT, SET_VF_VBAT_MASK);
}
static int s2mu106_get_regulation_voltage(struct s2mu106_charger_data *charger)
{
u8 reg_data = 0;
int float_voltage;
s2mu106_read_reg(charger->i2c, S2MU106_CHG_CTRL5, &reg_data);
reg_data &= 0x7F;
float_voltage = reg_data * 5 + 3900;
pr_debug("%s: battery cv reg : 0x%x, float voltage val : %d\n",
__func__, reg_data, float_voltage);
return float_voltage;
}
static void s2mu106_set_input_current_limit(
struct s2mu106_charger_data *charger, int charging_current)
{
u8 data;
if (factory_mode)
return;
if (charging_current <= 50)
data = 0x00;
else if (charging_current <= 100)
data = 0x02;
else if (charging_current > 100 && charging_current <= 3000)
data = (charging_current - 50) / 25;
else
data = 0x62;
s2mu106_update_reg(charger->i2c, S2MU106_CHG_CTRL1,
data << INPUT_CURRENT_LIMIT_SHIFT, INPUT_CURRENT_LIMIT_MASK);
pr_info("[DEBUG]%s: current %d, 0x%x\n", __func__, charging_current, data);
#if EN_TEST_READ
s2mu106_test_read(charger->i2c);
#endif
}
static int s2mu106_get_input_current_limit(struct s2mu106_charger_data *charger)
{
u8 data;
s2mu106_read_reg(charger->i2c, S2MU106_CHG_CTRL1, &data);
if (data < 0)
return data;
data = data & INPUT_CURRENT_LIMIT_MASK;
if (data > 0x76) {
pr_err("%s: Invalid current limit in register\n", __func__);
data = 0x76;
}
return data * 25 + 50;
}
//TO DO need to set wcin current
static void s2mu106_set_fast_charging_current(
struct s2mu106_charger_data *charger, int charging_current)
{
u8 data;
if (factory_mode)
return;
if (charging_current <= 100)
data = 0x01;
else if (charging_current > 100 && charging_current <= 3200)
data = (charging_current / 50) - 1;
else
data = 0x3D;
s2mu106_update_reg(charger->i2c, S2MU106_CHG_CTRL7,
data << FAST_CHARGING_CURRENT_SHIFT, FAST_CHARGING_CURRENT_MASK);
pr_info("[DEBUG]%s: current %d, 0x%02x\n", __func__, charging_current, data);
#if EN_TEST_READ
s2mu106_test_read(charger->i2c);
#endif
}
static int s2mu106_get_fast_charging_current(
struct s2mu106_charger_data *charger)
{
u8 data;
s2mu106_read_reg(charger->i2c, S2MU106_CHG_CTRL7, &data);
if (data < 0)
return data;
data = data & FAST_CHARGING_CURRENT_MASK;
if (data > 0x3F) {
pr_err("%s: Invalid fast charging current in register\n", __func__);
data = 0x3F;
}
return (data + 1) * 50;
}
static void s2mu106_set_topoff_current(
struct s2mu106_charger_data *charger,
int eoc_1st_2nd, int current_limit)
{
int data;
union power_supply_propval value;
struct power_supply *psy;
pr_info("[DEBUG]%s: current %d\n", __func__, current_limit);
if (current_limit <= 100)
data = 0;
else if (current_limit > 100 && current_limit <= 475)
data = (current_limit - 100) / 25;
else
data = 0x0F;
switch (eoc_1st_2nd) {
case 1:
s2mu106_update_reg(charger->i2c, S2MU106_CHG_CTRL10,
data << FIRST_TOPOFF_CURRENT_SHIFT, FIRST_TOPOFF_CURRENT_MASK);
psy = power_supply_get_by_name(charger->pdata->fuelgauge_name);
if (!psy)
pr_err("%s, fail to set topoff current to FG\n", __func__);
else {
value.intval = current_limit;
power_supply_set_property(psy, POWER_SUPPLY_PROP_CURRENT_FULL, &value);
}
break;
case 2:
s2mu106_update_reg(charger->i2c, S2MU106_CHG_CTRL10,
data << SECOND_TOPOFF_CURRENT_SHIFT, SECOND_TOPOFF_CURRENT_MASK);
break;
default:
break;
}
}
static int s2mu106_get_topoff_setting(
struct s2mu106_charger_data *charger)
{
u8 data;
s2mu106_read_reg(charger->i2c, S2MU106_CHG_CTRL10, &data);
if (data < 0)
return data;
data = data & FIRST_TOPOFF_CURRENT_MASK;
if (data > 0x0F)
data = 0x0F;
return data * 25 + 100;
}
static bool s2mu106_chg_init(struct s2mu106_charger_data *charger)
{
u8 temp;
/* Set default regulation voltage 4.35v
s2mu106_update_reg(charger->i2c,
S2MU106_CHG_CTRL5, 0x5A << SET_VF_VBAT_SHIFT, SET_VF_VBAT_MASK);
*/
s2mu106_update_reg(charger->i2c, 0x8b, 0x00, 0x01 << 4);
/* To prevent entering watchdog issue case we set WDT_CLR to not clear before enabling WDT */
s2mu106_update_reg(charger->i2c, S2MU106_CHG_CTRL12, 0x00, WDT_CLR_MASK);
/* set watchdog timer to 80 seconds */
s2mu106_update_reg(charger->i2c, S2MU106_CHG_CTRL12,
S2MU106_WDT_TIMER_80s << WDT_TIME_SHIFT,
WDT_TIME_MASK);
/* enable Watchdog timer and only Charging off */
s2mu106_update_reg(charger->i2c, S2MU106_CHG_CTRL12,
ENABLE << SET_EN_WDT_SHIFT | DISABLE << SET_EN_WDT_AP_RESET_SHIFT,
SET_EN_WDT_MASK | SET_EN_WDT_AP_RESET_MASK);
s2mu106_read_reg(charger->i2c, S2MU106_CHG_CTRL12, &temp);
pr_info("%s : for WDT setting S2MU106_CHG_CTRL12 : 0x%x\n", __func__, temp);
/* ICR Disable */
s2mu106_update_reg(charger->i2c, 0x7D, 0x02, 0x02);
/* 9V charging efficiency */
s2mu106_read_reg(charger->i2c, 0x9E, &charger->reg_0x9E);
/* Type-C reset off */
s2mu106_update_reg(charger->i2c, 0xEC, 0x00, 0x80);
/* MRSTB 1s set */
s2mu106_write_reg(charger->i2c, 0xE5, 0x08);
/* Change 3 Level Buck OCP current */
s2mu106_update_reg(charger->i2c, 0x82, 0xF0, 0xF0);
s2mu106_write_reg(charger->i2c, 0xA3, 0x72);
s2mu106_write_reg(charger->i2c, 0xA4, 0x32);
/* change ramp delay 128usec 0x92[3:0] = 0x05 */
s2mu106_update_reg(charger->i2c, 0x92, 0x05, 0x0F);
/* OTG Fault debounce time set 15ms */
s2mu106_update_reg(charger->i2c, 0x94, 0x0C, 0x0C);
s2mu106_update_reg(charger->i2c, 0xA6, 0x00, 0x0F);
#ifndef CONFIG_SEC_FACTORY
/* Prevent sudden power off when water detect */
if (!factory_mode) {
pr_info ("%s Normal booting\n", __func__);
s2mu106_update_reg(charger->i2c, 0x88, 0x20, 0x20);
s2mu106_write_reg(charger->i2c, 0xF3, 0x00);
s2mu106_update_reg(charger->i2c, 0x8C, 0x00, 0x80);
s2mu106_update_reg(charger->i2c, 0x90, 0x00, 0x04);
}
#endif
return true;
}
static int s2mu106_get_charging_status(
struct s2mu106_charger_data *charger)
{
int status = POWER_SUPPLY_STATUS_UNKNOWN;
int ret;
u8 chg_sts0, chg_sts1;
union power_supply_propval value;
struct power_supply *psy;
ret = s2mu106_read_reg(charger->i2c, S2MU106_CHG_STATUS0, &chg_sts0);
ret = s2mu106_read_reg(charger->i2c, S2MU106_CHG_STATUS1, &chg_sts1);
psy = power_supply_get_by_name(charger->pdata->fuelgauge_name);
if (!psy)
return -EINVAL;
ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_CURRENT_AVG, &value);
if (ret < 0)
pr_err("%s: Fail to execute property\n", __func__);
if (ret < 0)
return status;
if (chg_sts1 & 0x80)
status = POWER_SUPPLY_STATUS_DISCHARGING;
else if (chg_sts1 & 0x02 || chg_sts1 & 0x01) {
pr_info("%s: full check curr_avg(%d), topoff_curr(%d)\n",
__func__, value.intval, charger->topoff_current);
if (value.intval < charger->topoff_current)
status = POWER_SUPPLY_STATUS_FULL;
else
status = POWER_SUPPLY_STATUS_CHARGING;
} else if ((chg_sts0 & 0xE0) == 0xA0 || (chg_sts0 & 0xE0) == 0x60)
status = POWER_SUPPLY_STATUS_CHARGING;
else
status = POWER_SUPPLY_STATUS_NOT_CHARGING;
#if EN_TEST_READ
s2mu106_test_read(charger->i2c);
#endif
return status;
}
static int s2mu106_get_charge_type(struct s2mu106_charger_data *charger)
{
int status = POWER_SUPPLY_CHARGE_TYPE_UNKNOWN;
u8 ret;
s2mu106_read_reg(charger->i2c, S2MU106_CHG_STATUS3, &ret);
if (ret < 0)
pr_err("%s fail\n", __func__);
switch ((ret & BAT_STATUS_MASK) >> BAT_STATUS_SHIFT) {
case 0x6:
case 0x2: /* pre-charge mode */
case 0x3: /* pre-charge mode */
status = POWER_SUPPLY_CHARGE_TYPE_FAST;
break;
}
return status;
}
static bool s2mu106_get_batt_present(struct s2mu106_charger_data *charger)
{
u8 ret;
/*
* below operation was moved to bootloader.
* s2mu106_update_reg(charger->i2c, 0xF1, 0x01, 0x01);
*/
s2mu106_read_reg(charger->i2c, S2MU106_CHG_STATUS3, &ret);
if (ret < 0)
return false;
return (ret & DET_BAT_STATUS_MASK) ? true : false;
}
static void s2mu106_set_charging_efficiency(struct s2mu106_charger_data *charger, int onoff)
{
u8 data;
if (onoff) {
s2mu106_update_reg(charger->i2c, 0x9E,
(charger->reg_0x9E & 0xF0) >> 4, 0x0F);
} else {
s2mu106_update_reg(charger->i2c, 0x9E,
(charger->reg_0x9E & 0x0F), 0x0F);
}
s2mu106_read_reg(charger->i2c, 0x9E, &data);
pr_info("%s, %dV TA Setting! : 0x9E = 0x%2x(0x%2x)\n",
__func__, ((onoff == 1) ? 9 : 5), data, charger->reg_0x9E);
}
static void s2mu106_wdt_clear(struct s2mu106_charger_data *charger)
{
u8 reg_data, chg_fault_status;
/* watchdog kick */
s2mu106_update_reg(charger->i2c, S2MU106_CHG_CTRL12,
0x1 << WDT_CLR_SHIFT, WDT_CLR_MASK);
s2mu106_read_reg(charger->i2c, S2MU106_CHG_STATUS1, &reg_data);
chg_fault_status = (reg_data & CHG_FAULT_STATUS_MASK) >> CHG_FAULT_STATUS_SHIFT;
if ((chg_fault_status == CHG_STATUS_WD_SUSPEND) ||
(chg_fault_status == CHG_STATUS_WD_RST)) {
pr_info("%s: watchdog error status(0x%02x,%d)\n",
__func__, reg_data, chg_fault_status);
if (charger->is_charging) {
pr_info("%s: toggle charger\n", __func__);
s2mu106_enable_charger_switch(charger, false);
s2mu106_enable_charger_switch(charger, true);
}
}
}
static int s2mu106_get_charging_health(struct s2mu106_charger_data *charger)
{
u8 ret;
union power_supply_propval value;
struct power_supply *psy;
if (charger->is_charging)
s2mu106_wdt_clear(charger);
s2mu106_read_reg(charger->i2c, S2MU106_CHG_STATUS0, &ret);
pr_info("[DEBUG] %s: S2MU106_CHG_STATUS0 0x%x\n", __func__, ret);
if (ret < 0)
return POWER_SUPPLY_HEALTH_UNKNOWN;
ret = (ret & (CHGIN_STATUS_MASK)) >> CHGIN_STATUS_SHIFT;
switch (ret) {
case 0x03:
case 0x05:
charger->ovp = false;
charger->unhealth_cnt = 0;
return POWER_SUPPLY_HEALTH_GOOD;
default:
break;
}
charger->unhealth_cnt++;
if (charger->unhealth_cnt < HEALTH_DEBOUNCE_CNT)
return POWER_SUPPLY_HEALTH_GOOD;
/* 005 need to check ovp & health count */
charger->unhealth_cnt = HEALTH_DEBOUNCE_CNT;
if (charger->ovp)
return POWER_SUPPLY_HEALTH_OVERVOLTAGE;
psy = power_supply_get_by_name("battery");
if (!psy)
return -EINVAL;
ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_ONLINE, &value);
if (ret < 0)
pr_err("%s: Fail to execute property\n", __func__);
if (value.intval == SEC_BATTERY_CABLE_PDIC)
return POWER_SUPPLY_HEALTH_UNDERVOLTAGE;
else
return POWER_SUPPLY_HEALTH_GOOD;
#if EN_TEST_READ
s2mu106_test_read(charger->i2c);
#endif
}
static int s2mu106_chg_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
int chg_curr, aicr;
struct s2mu106_charger_data *charger =
power_supply_get_drvdata(psy);
switch (psp) {
case POWER_SUPPLY_PROP_ONLINE:
val->intval = charger->is_charging ? 1 : 0;
break;
case POWER_SUPPLY_PROP_STATUS:
val->intval = s2mu106_get_charging_status(charger);
break;
case POWER_SUPPLY_PROP_HEALTH:
val->intval = s2mu106_get_charging_health(charger);
break;
case POWER_SUPPLY_PROP_CURRENT_MAX:
val->intval = s2mu106_get_input_current_limit(charger);
break;
case POWER_SUPPLY_PROP_CURRENT_AVG:
case POWER_SUPPLY_PROP_CURRENT_NOW:
if (charger->charging_current) {
aicr = s2mu106_get_input_current_limit(charger);
chg_curr = s2mu106_get_fast_charging_current(charger);
val->intval = MINVAL(aicr, chg_curr);
} else
val->intval = 0;
break;
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
val->intval = s2mu106_get_fast_charging_current(charger);
break;
case POWER_SUPPLY_PROP_CURRENT_FULL:
val->intval = s2mu106_get_topoff_setting(charger);
break;
case POWER_SUPPLY_PROP_CHARGE_TYPE:
val->intval = s2mu106_get_charge_type(charger);
break;
case POWER_SUPPLY_PROP_VOLTAGE_MAX:
val->intval = s2mu106_get_regulation_voltage(charger);
break;
case POWER_SUPPLY_PROP_PRESENT:
val->intval = s2mu106_get_batt_present(charger);
break;
case POWER_SUPPLY_PROP_CHARGING_ENABLED:
val->intval = charger->is_charging;
break;
default:
return -EINVAL;
}
return 0;
}
static int s2mu106_chg_set_property(struct power_supply *psy,
enum power_supply_property psp,
const union power_supply_propval *val)
{
struct s2mu106_charger_data *charger = power_supply_get_drvdata(psy);
enum power_supply_ext_property ext_psp = psp;
int buck_state = ENABLE;
union power_supply_propval value;
int ret;
u8 data = 0;
switch (psp) {
case POWER_SUPPLY_PROP_STATUS:
charger->status = val->intval;
break;
/* val->intval : type */
case POWER_SUPPLY_PROP_ONLINE:
charger->cable_type = val->intval;
charger->ivr_on = false;
if (charger->cable_type != SEC_BATTERY_CABLE_OTG) {
if (charger->cable_type == SEC_BATTERY_CABLE_NONE ||
charger->cable_type == SEC_BATTERY_CABLE_UNKNOWN) {
pr_err("[DEBUG]%s:[BATT] Type Battery\n", __func__);
regmode_vote(charger, REG_MODE_BUCK_OFF_FOR_FLASH | REG_MODE_BST, 0);
value.intval = 0;
} else {
value.intval = 1;
}
psy = power_supply_get_by_name(charger->pdata->fuelgauge_name);
if (!psy)
return -EINVAL;
ret = power_supply_set_property(psy, POWER_SUPPLY_PROP_ENERGY_AVG, &value);
if (ret < 0)
pr_err("%s: Fail to execute property\n", __func__);
if (charger->cable_type == SEC_BATTERY_CABLE_NONE) {
/* At cable removal enable IVR IRQ if it was disabled */
if (charger->irq_ivr_enabled == 0) {
u8 reg_data;
charger->irq_ivr_enabled = 1;
/* Unmask IRQ */
s2mu106_update_reg(charger->i2c, S2MU106_CHG_INT2M,
0 << IVR_M_SHIFT, IVR_M_MASK);
enable_irq(charger->irq_ivr);
s2mu106_read_reg(charger->i2c, S2MU106_CHG_INT2M, &reg_data);
pr_info("%s : enable ivr : 0x%x\n", __func__, reg_data);
}
}
} else {
pr_info("[DEBUG]%s:Cable Type OTG \n", __func__);
}
break;
case POWER_SUPPLY_PROP_CURRENT_MAX:
{
int input_current = val->intval;
s2mu106_set_input_current_limit(charger, input_current);
charger->input_current = input_current;
}
break;
case POWER_SUPPLY_PROP_CURRENT_AVG:
case POWER_SUPPLY_PROP_CURRENT_NOW:
pr_info("[DEBUG] %s: is_charging %d\n", __func__, charger->is_charging);
charger->charging_current = val->intval;
/* set charging current */
s2mu106_set_fast_charging_current(charger, charger->charging_current);
break;
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
break;
case POWER_SUPPLY_PROP_CURRENT_FULL:
charger->topoff_current = val->intval;
if (charger->pdata->chg_eoc_dualpath) {
s2mu106_set_topoff_current(charger, 1, val->intval);
s2mu106_set_topoff_current(charger, 2, 100);
} else
s2mu106_set_topoff_current(charger, 1, val->intval);
break;
case POWER_SUPPLY_PROP_VOLTAGE_MAX:
pr_info("[DEBUG]%s: float voltage(%d)\n", __func__, val->intval);
charger->pdata->chg_float_voltage = val->intval;
s2mu106_set_regulation_voltage(charger,
charger->pdata->chg_float_voltage);
break;
case POWER_SUPPLY_PROP_CHARGE_OTG_CONTROL:
s2mu106_charger_otg_control(charger, val->intval);
break;
case POWER_SUPPLY_PROP_CHARGING_ENABLED:
charger->charge_mode = val->intval;
psy = power_supply_get_by_name("battery");
if (!psy)
return -EINVAL;
ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_ONLINE, &value);
if (ret < 0)
pr_err("%s: Fail to execute property\n", __func__);
if (value.intval != SEC_BATTERY_CABLE_OTG) {
switch (charger->charge_mode) {
case SEC_BAT_CHG_MODE_BUCK_OFF:
buck_state = DISABLE;
case SEC_BAT_CHG_MODE_CHARGING_OFF:
charger->is_charging = false;
break;
case SEC_BAT_CHG_MODE_CHARGING:
charger->is_charging = true;
break;
}
value.intval = charger->is_charging;
psy = power_supply_get_by_name(charger->pdata->fuelgauge_name);
if (!psy)
return -EINVAL;
ret = power_supply_set_property(psy, POWER_SUPPLY_PROP_CHARGING_ENABLED, &value);
if (ret < 0)
pr_err("%s: Fail to execute property\n", __func__);
if (buck_state)
s2mu106_enable_charger_switch(charger, charger->is_charging);
else
s2mu106_set_buck(charger, buck_state);
} else {
pr_info("[DEBUG]%s: SKIP CHARGING CONTROL while OTG(%d)\n",
__func__, value.intval);
}
break;
#ifndef CONFIG_SEC_FACTORY
case POWER_SUPPLY_PROP_FACTORY_MODE:
if (val->intval) {
pr_info("%s : 523K, 301K, 255K\n", __func__);
s2mu106_update_reg(charger->i2c, 0x88, 0x00, 0x20);
s2mu106_write_reg(charger->i2c, 0xF3, 0x06);
s2mu106_update_reg(charger->i2c, 0x8C, 0x80, 0x80);
s2mu106_update_reg(charger->i2c, 0x90, 0x04, 0x04);
} else {
pr_info("%s : 619K, OPEN\n", __func__);
s2mu106_update_reg(charger->i2c, 0x88, 0x20, 0x20);
s2mu106_write_reg(charger->i2c, 0xF3, 0x00);
s2mu106_update_reg(charger->i2c, 0x8C, 0x00, 0x80);
s2mu106_update_reg(charger->i2c, 0x90, 0x00, 0x04);
}
break;
#endif
case POWER_SUPPLY_PROP_AFC_CHARGER_MODE:
s2mu106_set_charging_efficiency(charger, val->intval);
break;
case POWER_SUPPLY_PROP_ENERGY_NOW:
if (val->intval) {
pr_info("%s: Factory Mode Set 523K, 301K\n", __func__);
#if defined(CONFIG_LEDS_S2MU106_FLASH)
/* FLED driver TA only mode set, 0x5C[7:6] -> 0x02*/
s2mu106_fled_set_operation_mode(1);
#endif
s2mu106_update_reg(charger->i2c, 0xE5, 0x08, 0x0F);
value.intval = SEC_BAT_FGSRC_SWITCHING_OFF;
psy_do_property("s2mu106-fuelgauge", set,
POWER_SUPPLY_EXT_PROP_INBAT_VOLTAGE_FGSRC_SWITCHING, value);
charger->input_current = s2mu106_get_input_current_limit(charger);
s2mu106_update_reg(charger->i2c, 0x19, 0x4E, 0x7F);
} else {
pr_info("%s: Factory Mode release 619K\n", __func__);
#if defined(CONFIG_LEDS_S2MU106_FLASH)
/* FLED driver Auto control mode set, 0x5C[7:6] -> 0x00*/
s2mu106_fled_set_operation_mode(0);
#endif
s2mu106_update_reg(charger->i2c, 0x2F, 0x40, 0xC0);
s2mu106_update_reg(charger->i2c, 0x8B, 0x08, 0x08);
s2mu106_update_reg(charger->i2c, 0x38, 0x01, 0x03);
s2mu106_update_reg(charger->i2c, 0xE5, 0x0E, 0x0F);
s2mu106_update_reg(charger->i2c, 0x19, 0x46, 0x7F);
s2mu106_set_regulation_vsys(charger, 4400);
value.intval = SEC_BAT_FGSRC_SWITCHING_ON;
psy_do_property("s2mu106-fuelgauge", set,
POWER_SUPPLY_EXT_PROP_INBAT_VOLTAGE_FGSRC_SWITCHING, value);
}
break;
case POWER_SUPPLY_PROP_INPUT_VOLTAGE_REGULATION:
if (val->intval) {
pr_info("%s: Relieve VBUS2BAT\n", __func__);
s2mu106_update_reg(charger->i2c, 0x39, 0xC0, 0xC0);
}
break;
case POWER_SUPPLY_PROP_AUTHENTIC:
if (val->intval) {
pr_info("%s: Bypass set\n", __func__);
psy_do_property("s2mu106_pmeter", set,
POWER_SUPPLY_PROP_PM_FACTORY, value);
/* Enter Bypass */
s2mu106_update_reg(charger->i2c, S2MU106_CHG_CTRL0, 0x10, 0x30);
s2mu106_update_reg(charger->i2c, 0x88, 0x20, 0x20);
s2mu106_write_reg(charger->i2c, 0x6E, 0x00);
s2mu106_update_reg(charger->i2c, S2MU106_CHG_CTRL0, 0x30, 0x30);
s2mu106_update_reg(charger->i2c, 0xE5, 0x0F, 0x0F);
s2mu106_update_reg(charger->i2c, 0xEF, 0x00, 0x01);
s2mu106_update_reg(charger->i2c, 0xE4, 0x00, 0x80);
s2mu106_update_reg(charger->i2c, 0xEA, 0x80, 0x80);
s2mu106_update_reg(charger->i2c, 0x72, 0x00, 0x80);
psy_do_property("s2mu106-usbpd", set,
POWER_SUPPLY_PROP_AUTHENTIC, value);
pr_info("%s complete %d\n", __func__, __LINE__);
} else {
pr_info("%s: Bypass release, set off\n", __func__);
s2mu106_update_reg(charger->i2c, S2MU106_CHG_CTRL0, 0x00, 0x0F);
s2mu106_update_reg(charger->i2c, 0x88, 0x00, 0x20);
}
break;
case POWER_SUPPLY_PROP_FUELGAUGE_RESET:
s2mu106_read_reg(charger->i2c, 0xE3, &data);
data |= 0x03 << 6;
s2mu106_write_reg(charger->i2c, 0xE3, data);
msleep(1000);
data &= ~(0x03 << 6);
s2mu106_write_reg(charger->i2c, 0xE3, data);
msleep(50);
pr_info("%s: reset fuelgauge when surge occur!\n", __func__);
break;
case POWER_SUPPLY_PROP_ENERGY_AVG:
regmode_vote(charger, REG_MODE_BUCK_OFF_FOR_FLASH, REG_MODE_BUCK_OFF_FOR_FLASH);
if (val->intval) {
pr_info("[DEBUG]%s: FLED turn on charger driver\n", __func__);
usleep_range(1000, 1100);
// regmode_vote(charger, REG_MODE_BUCK_OFF_FOR_FLASH | REG_MODE_BST, REG_MODE_BST);
} else {
pr_info("[DEBUG]%s: FLED turn off charger driver\n", __func__);
regmode_vote(charger, REG_MODE_BUCK_OFF_FOR_FLASH | REG_MODE_BST, 0);
}
break;
case POWER_SUPPLY_PROP_MAX ... POWER_SUPPLY_EXT_PROP_MAX:
switch (ext_psp) {
case POWER_SUPPLY_EXT_PROP_FACTORY_VOLTAGE_REGULATION:
/* enable EN_JIG_AP */
pr_info("%s: factory voltage regulation (%d)\n", __func__, val->intval);
s2mu106_set_regulation_vsys(charger, val->intval);
s2mu106_update_reg(charger->i2c, S2MU106_CHG_CTRL8,
1 << EN_JIG_REG_AP_SHIFT, EN_JIG_REG_AP_MASK);
break;
case POWER_SUPPLY_EXT_PROP_CURRENT_MEASURE:
if (val->intval) {
pr_info("%s: Bypass set for current measure\n", __func__);
/*
* Charger/muic interrupt can occur by entering Bypass mode
* Disable all interrupt mask for testing current measure.
*/
psy_do_property("s2mu106_pmeter", set,
POWER_SUPPLY_PROP_PM_FACTORY, value);
value.intval = SEC_BAT_FGSRC_SWITCHING_OFF;
psy_do_property("s2mu106-fuelgauge", set,
POWER_SUPPLY_EXT_PROP_INBAT_VOLTAGE_FGSRC_SWITCHING, value);
value.intval = true;
psy_do_property("muic-manager", set,
POWER_SUPPLY_EXT_PROP_CURRENT_MEASURE, value);
/* VBUS UVLO disable */
s2mu106_update_reg(charger->i2c, 0x39, 0xC0, 0xC0);
/* Enter Bypass mode set for current measure */
s2mu106_update_reg(charger->i2c, 0x88, 0x20, 0x20);
s2mu106_write_reg(charger->i2c, 0x6E, 0x00);
s2mu106_update_reg(charger->i2c, S2MU106_CHG_CTRL0, 0x30, 0x30);
/* QBAT off for prevent SMPL when detach cable */
s2mu106_update_reg(charger->i2c, 0x2F, 0xC0, 0xC0);
s2mu106_update_reg(charger->i2c, 0x8B, 0x00, 0x08);
s2mu106_update_reg(charger->i2c, 0x38, 0x00, 0x03);
s2mu106_update_reg(charger->i2c, 0xE5, 0x08, 0x0F);
psy_do_property("s2mu106-usbpd", set,
POWER_SUPPLY_EXT_PROP_CURRENT_MEASURE, value);
} else {
value.intval = SEC_BAT_FGSRC_SWITCHING_ON;
psy_do_property("s2mu106-fuelgauge", set,
POWER_SUPPLY_EXT_PROP_INBAT_VOLTAGE_FGSRC_SWITCHING, value);
pr_info("%s: Bypass exit for current measure\n", __func__);
s2mu106_update_reg(charger->i2c, S2MU106_CHG_CTRL0, 0x00, 0x0F);
s2mu106_update_reg(charger->i2c, 0x88, 0x00, 0x20);
}
break;
default:
return -EINVAL;
}
break;
default:
return -EINVAL;
}
return 0;
}
static int s2mu106_otg_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
struct s2mu106_charger_data *charger = power_supply_get_drvdata(psy);
u8 reg;
switch (psp) {
case POWER_SUPPLY_PROP_ONLINE:
val->intval = charger->otg_on;
break;
case POWER_SUPPLY_PROP_CHARGE_POWERED_OTG_CONTROL:
s2mu106_read_reg(charger->i2c, S2MU106_CHG_STATUS2, &reg);
pr_info("%s: S2MU106_CHG_STATUS2 : 0x%X\n", __func__, reg);
if ((reg & 0xC0) == 0x80)
val->intval = 1;
else
val->intval = 0;
s2mu106_read_reg(charger->i2c, S2MU106_CHG_CTRL0, &reg);
pr_info("%s: S2MU106_CHG_CTRL0 : 0x%X\n", __func__, reg);
break;
default:
return -EINVAL;
}
return 0;
}
static int s2mu106_otg_set_property(struct power_supply *psy,
enum power_supply_property psp,
const union power_supply_propval *val)
{
struct s2mu106_charger_data *charger = power_supply_get_drvdata(psy);
union power_supply_propval value;
int ret;
switch (psp) {
case POWER_SUPPLY_PROP_ONLINE:
value.intval = val->intval;
pr_info("%s: OTG %s\n", __func__, value.intval > 0 ? "ON" : "OFF");
psy = power_supply_get_by_name(charger->pdata->charger_name);
if (!psy)
return -EINVAL;
ret = power_supply_set_property(psy, POWER_SUPPLY_PROP_CHARGE_OTG_CONTROL, &value);
if (ret < 0)
pr_err("%s: Fail to execute property\n", __func__);
power_supply_changed(charger->psy_otg);
break;
default:
return -EINVAL;
}
return 0;
}
static void s2mu106_charger_otg_vbus_work(struct work_struct *work)
{
struct s2mu106_charger_data *charger = container_of(work,
struct s2mu106_charger_data,
otg_vbus_work.work);
u8 val = 0;
#ifdef CONFIG_USB_HOST_NOTIFY
struct otg_notify *o_notify;
o_notify = get_otg_notify();
#endif
s2mu106_read_reg(charger->i2c, S2MU106_CHG_STATUS2, &val);
pr_info("%s - 1, 0x%02x\n", __func__, val);
if ((val & 0xC0) == 0x80) {
/* Try to read the OTG Status after 100ms. */
msleep(50);
s2mu106_read_reg(charger->i2c, S2MU106_CHG_STATUS2, &val);
pr_info("%s - 2, 0x%02x\n", __func__, val);
if ((val & 0xC0) == 0x80) {
pr_info("%s: bypass overcurrent limit\n", __func__);
#ifdef CONFIG_USB_HOST_NOTIFY
if (o_notify)
send_otg_notify(o_notify, NOTIFY_EVENT_OVERCURRENT, 0);
#endif
}
}
s2mu106_write_reg(charger->i2c, S2MU106_CHG_CTRL11, 0x16);
}
#if EN_BAT_DET_IRQ
/* s2mu106 interrupt service routine */
static irqreturn_t s2mu106_det_bat_isr(int irq, void *data)
{
struct s2mu106_charger_data *charger = data;
u8 val;
s2mu106_read_reg(charger->i2c, S2MU106_CHG_STATUS3, &val);
if ((val & DET_BAT_STATUS_MASK) == 0) {
s2mu106_set_buck(charger, 0);
pr_err("charger-off if battery removed\n");
}
return IRQ_HANDLED;
}
#endif
static irqreturn_t s2mu106_done_isr(int irq, void *data)
{
struct s2mu106_charger_data *charger = data;
u8 val;
s2mu106_read_reg(charger->i2c, S2MU106_CHG_STATUS1, &val);
pr_info("%s , %02x\n", __func__, val);
if (val & (DONE_STATUS_MASK)) {
pr_err("add self chg done\n");
/* add chg done code here */
}
return IRQ_HANDLED;
}
static irqreturn_t s2mu106_chg_isr(int irq, void *data)
{
struct s2mu106_charger_data *charger = data;
u8 val;
s2mu106_read_reg(charger->i2c, S2MU106_CHG_STATUS0, &val);
pr_info("%s , %02x\n", __func__, val);
return IRQ_HANDLED;
}
static irqreturn_t s2mu106_event_isr(int irq, void *data)
{
struct s2mu106_charger_data *charger = data;
union power_supply_propval value;
u8 val;
u8 fault;
s2mu106_read_reg(charger->i2c, S2MU106_CHG_STATUS1, &val);
pr_info("%s , %02x\n", __func__, val);
fault = (val & CHG_FAULT_STATUS_MASK) >> CHG_FAULT_STATUS_SHIFT;
if (fault == CHG_STATUS_WD_SUSPEND || fault == CHG_STATUS_WD_RST) {
value.intval = 1;
pr_info("%s, reset USBPD\n", __func__);
psy_do_property("s2mu106-usbpd", set,
POWER_SUPPLY_PROP_USBPD_RESET, value);
}
return IRQ_HANDLED;
}
static irqreturn_t s2mu106_otg_isr(int irq, void *data)
{
struct s2mu106_charger_data *charger = data;
queue_delayed_work(charger->charger_wqueue, &charger->otg_vbus_work, 0);
return IRQ_HANDLED;
}
static irqreturn_t s2mu106_bat_isr(int irq, void *data)
{
struct s2mu106_charger_data *charger = data;
u8 val = 0;
s2mu106_read_reg(charger->i2c, S2MU106_CHG_STATUS3, &val);
pr_info("%s - 1, 0x%02x\n", __func__, val);
if (val & 0x02) {
regmode_vote(charger, REG_MODE_OTG_TX, 0);
if (charger->otg_on)
s2mu106_update_reg(charger->i2c, S2MU106_CHG_CTRL9, 0x10, 0x10);
}
/* OTG Fault debounce time set 100us */
s2mu106_update_reg(charger->i2c, 0x94, 0x08, 0x0C);
return IRQ_HANDLED;
}
static irqreturn_t s2mu106_ovp_isr(int irq, void *data)
{
struct s2mu106_charger_data *charger = data;
u8 val;
s2mu106_read_reg(charger->i2c, S2MU106_CHG_STATUS0, &val);
pr_info("%s ovp %02x\n", __func__, val);
return IRQ_HANDLED;
}
static void reduce_input_current(struct s2mu106_charger_data *charger)
{
int old_input_current, new_input_current;
int data;
old_input_current = s2mu106_get_input_current_limit(charger);
new_input_current = (old_input_current > MINIMUM_INPUT_CURRENT + REDUCE_CURRENT_STEP) ?
(old_input_current - REDUCE_CURRENT_STEP) : MINIMUM_INPUT_CURRENT;
if (old_input_current <= new_input_current) {
pr_info("%s: Same or less new input current:(%d, %d, %d)\n", __func__,
old_input_current, new_input_current, charger->input_current);
} else {
pr_info("%s: input currents:(%d, %d, %d)\n", __func__,
old_input_current, new_input_current, charger->input_current);
data = (new_input_current - 50) / 25;
s2mu106_update_reg(charger->i2c, S2MU106_CHG_CTRL1,
data << INPUT_CURRENT_LIMIT_SHIFT, INPUT_CURRENT_LIMIT_MASK);
charger->input_current = s2mu106_get_input_current_limit(charger);
}
charger->ivr_on = true;
}
static void s2mu106_ivr_irq_work(struct work_struct *work)
{
struct s2mu106_charger_data *charger = container_of(work,
struct s2mu106_charger_data, ivr_work.work);
u8 ivr_state;
int ret;
int ivr_cnt = 0;
pr_info("%s:\n", __func__);
if (charger->cable_type == SEC_BATTERY_CABLE_NONE) {
u8 ivr_mask;
pr_info("%s : skip\n", __func__);
s2mu106_read_reg(charger->i2c, S2MU106_CHG_INT2M, &ivr_mask);
if (ivr_mask & 0x02) {
/* Unmask IRQ */
s2mu106_update_reg(charger->i2c, S2MU106_CHG_INT2M,
0 << IVR_M_SHIFT, IVR_M_MASK);
}
wake_unlock(&charger->ivr_wake_lock);
return;
}
ret = s2mu106_read_reg(charger->i2c, S2MU106_CHG_STATUS5, &ivr_state);
if (ret < 0) {
wake_unlock(&charger->ivr_wake_lock);
pr_info("%s : I2C error\n", __func__);
/* Unmask IRQ */
s2mu106_update_reg(charger->i2c, S2MU106_CHG_INT2M,
0 << IVR_M_SHIFT, IVR_M_MASK);
return;
}
pr_info("%s: ivr_status 0x13:0x%02x\n", __func__, ivr_state);
mutex_lock(&charger->charger_mutex);
while ((ivr_state & IVR_STATUS) &&
charger->cable_type != SEC_BATTERY_CABLE_NONE) {
if (s2mu106_read_reg(charger->i2c, S2MU106_CHG_STATUS5, &ivr_state)) {
pr_err("%s: Error reading S2MU106_CHG_STATUS5\n", __func__);
break;
}
pr_info("%s: ivr_status 0x13:0x%02x\n", __func__, ivr_state);
if (++ivr_cnt >= 2) {
reduce_input_current(charger);
ivr_cnt = 0;
}
msleep(50);
if (!(ivr_state & IVR_STATUS)) {
pr_info("%s: EXIT IVR WORK: check value (0x13:0x%02x, input current:%d)\n", __func__,
ivr_state, charger->input_current);
break;
}
if (s2mu106_get_input_current_limit(charger) <= MINIMUM_INPUT_CURRENT)
break;
}
if (charger->ivr_on) {
union power_supply_propval value;
if ((charger->irq_ivr_enabled == 1) &&
(charger->input_current <= MINIMUM_INPUT_CURRENT)) {
/* Disable IVR IRQ, can't reduce current any more */
u8 reg_data;
charger->irq_ivr_enabled = 0;
disable_irq_nosync(charger->irq_ivr);
/* Mask IRQ */
s2mu106_update_reg(charger->i2c,
S2MU106_CHG_INT2M, 1 << IVR_M_SHIFT, IVR_M_MASK);
s2mu106_read_reg(charger->i2c, S2MU106_CHG_INT2M, &reg_data);
pr_info("%s : disable ivr : 0x%x\n", __func__, reg_data);
}
value.intval = s2mu106_get_input_current_limit(charger);
psy_do_property("battery", set,
POWER_SUPPLY_EXT_PROP_AICL_CURRENT, value);
}
if (charger->irq_ivr_enabled == 1) {
/* Unmask IRQ */
s2mu106_update_reg(charger->i2c, S2MU106_CHG_INT2M,
0 << IVR_M_SHIFT, IVR_M_MASK);
}
mutex_unlock(&charger->charger_mutex);
wake_unlock(&charger->ivr_wake_lock);
}
static irqreturn_t s2mu106_ivr_isr(int irq, void *data)
{
struct s2mu106_charger_data *charger = data;
pr_info("%s: Start\n", __func__);
wake_lock(&charger->ivr_wake_lock);
/* Mask IRQ */
s2mu106_update_reg(charger->i2c,
S2MU106_CHG_INT2M, 1 << IVR_M_SHIFT, IVR_M_MASK);
queue_delayed_work(charger->charger_wqueue, &charger->ivr_work,
msecs_to_jiffies(IVR_WORK_DELAY));
pr_info("%s: irq(%d)\n", __func__, irq);
return IRQ_HANDLED;
}
static int s2mu106_charger_parse_dt(struct device *dev,
struct s2mu106_charger_platform_data *pdata)
{
struct device_node *np = of_find_node_by_name(NULL, "s2mu106-charger");
int ret = 0;
if (!np) {
pr_err("%s np NULL(s2mu106-charger)\n", __func__);
} else {
ret = of_property_read_u32(np, "battery,chg_switching_freq",
&pdata->chg_switching_freq);
if (ret < 0)
pr_info("%s: Charger switching FRQ is Empty\n", __func__);
}
np = of_find_node_by_name(NULL, "battery");
if (!np) {
pr_err("%s np NULL\n", __func__);
} else {
ret = of_property_read_string(np,
"battery,fuelgauge_name",
(char const **)&pdata->fuelgauge_name);
if (ret < 0)
pr_info("%s: Fuel-gauge name is Empty\n", __func__);
ret = of_property_read_u32(np, "battery,chg_float_voltage",
&pdata->chg_float_voltage);
if (ret) {
pr_info("%s: battery,chg_float_voltage is Empty\n", __func__);
pdata->chg_float_voltage = 4200;
}
pr_info("%s: battery,chg_float_voltage is %d\n",
__func__, pdata->chg_float_voltage);
pdata->chg_eoc_dualpath = of_property_read_bool(np,
"battery,chg_eoc_dualpath");
}
np = of_find_node_by_name(NULL, "sec-multi-charger");
if (!np) {
pr_err("%s np NULL(sec-multi-charger)\n", __func__);
} else {
ret = of_property_read_string(np,
"charger,main_charger",
(char const **)&pdata->charger_name);
if (ret < 0)
pr_info("%s: Charger name is Empty\n", __func__);
}
#if 0
p = of_get_property(np, "battery,input_current_limit", &len);
if (!p)
return 1;
len = len / sizeof(u32);
pdata->charging_current =
kzalloc(sizeof(sec_charging_current_t) * len,
GFP_KERNEL);
for (i = 0; i < len; i++) {
ret = of_property_read_u32_index(np,
"battery,input_current_limit", i,
&pdata->charging_current[i].input_current_limit);
if (ret)
pr_info("%s : Input_current_limit is Empty\n",
__func__);
ret = of_property_read_u32_index(np,
"battery,fast_charging_current", i,
&pdata->charging_current[i].fast_charging_current);
if (ret)
pr_info("%s : Fast charging current is Empty\n",
__func__);
ret = of_property_read_u32_index(np,
"battery,full_check_current", i,
&pdata->charging_current[i].full_check_current);
if (ret)
pr_info("%s : Full check current is Empty\n",
__func__);
}
}
#endif
pr_info("%s DT file parsed succesfully, %d\n", __func__, ret);
return ret;
}
/* if need to set s2mu106 pdata */
static const struct of_device_id s2mu106_charger_match_table[] = {
{ .compatible = "samsung,s2mu106-charger",},
{},
};
static int s2mu106_charger_probe(struct platform_device *pdev)
{
struct s2mu106_dev *s2mu106 = dev_get_drvdata(pdev->dev.parent);
struct s2mu106_platform_data *pdata = dev_get_platdata(s2mu106->dev);
struct s2mu106_charger_data *charger;
struct power_supply_config psy_cfg = {};
int ret = 0;
u8 data = 0;
pr_info("%s:[BATT] S2MU106 Charger driver probe\n", __func__);
charger = kzalloc(sizeof(*charger), GFP_KERNEL);
if (!charger)
return -ENOMEM;
mutex_init(&charger->charger_mutex);
mutex_init(&charger->regmode_mutex);
charger->otg_on = false;
charger->ivr_on = false;
charger->dev = &pdev->dev;
charger->i2c = s2mu106->i2c;
charger->pdata = devm_kzalloc(&pdev->dev, sizeof(*(charger->pdata)),
GFP_KERNEL);
if (!charger->pdata) {
ret = -ENOMEM;
goto err_parse_dt_nomem;
}
ret = s2mu106_charger_parse_dt(&pdev->dev, charger->pdata);
if (ret < 0)
goto err_parse_dt;
platform_set_drvdata(pdev, charger);
if (charger->pdata->charger_name == NULL)
charger->pdata->charger_name = "s2mu106-charger";
if (charger->pdata->fuelgauge_name == NULL)
charger->pdata->fuelgauge_name = "s2mu106-fuelgauge";
charger->psy_chg_desc.name = charger->pdata->charger_name;
charger->psy_chg_desc.type = POWER_SUPPLY_TYPE_UNKNOWN;
charger->psy_chg_desc.get_property = s2mu106_chg_get_property;
charger->psy_chg_desc.set_property = s2mu106_chg_set_property;
charger->psy_chg_desc.properties = s2mu106_charger_props;
charger->psy_chg_desc.num_properties = ARRAY_SIZE(s2mu106_charger_props);
charger->psy_otg_desc.name = "otg";
charger->psy_otg_desc.type = POWER_SUPPLY_TYPE_OTG;
charger->psy_otg_desc.get_property = s2mu106_otg_get_property;
charger->psy_otg_desc.set_property = s2mu106_otg_set_property;
charger->psy_otg_desc.properties = s2mu106_otg_props;
charger->psy_otg_desc.num_properties = ARRAY_SIZE(s2mu106_otg_props);
s2mu106_chg_init(charger);
charger->input_current = s2mu106_get_input_current_limit(charger);
charger->charging_current = s2mu106_get_fast_charging_current(charger);
psy_cfg.drv_data = charger;
psy_cfg.supplied_to = s2mu106_supplied_to;
psy_cfg.num_supplicants = ARRAY_SIZE(s2mu106_supplied_to);
charger->psy_chg = power_supply_register(&pdev->dev, &charger->psy_chg_desc, &psy_cfg);
if (IS_ERR(charger->psy_chg)) {
pr_err("%s: Failed to Register psy_chg\n", __func__);
ret = PTR_ERR(charger->psy_chg);
goto err_power_supply_register;
}
charger->psy_otg = power_supply_register(&pdev->dev, &charger->psy_otg_desc, &psy_cfg);
if (IS_ERR(charger->psy_otg)) {
pr_err("%s: Failed to Register psy_otg\n", __func__);
ret = PTR_ERR(charger->psy_otg);
goto err_power_supply_register_otg;
}
charger->charger_wqueue = create_singlethread_workqueue("charger-wq");
if (!charger->charger_wqueue) {
pr_info("%s: failed to create wq.\n", __func__);
ret = -ESRCH;
goto err_create_wq;
}
wake_lock_init(&charger->ivr_wake_lock, WAKE_LOCK_SUSPEND,
"charger-ivr");
INIT_DELAYED_WORK(&charger->otg_vbus_work, s2mu106_charger_otg_vbus_work);
INIT_DELAYED_WORK(&charger->ivr_work, s2mu106_ivr_irq_work);
/*
* irq request
* if you need to add irq , please refer below code.
*/
charger->irq_sys = pdata->irq_base + S2MU106_CHG1_IRQ_SYS;
ret = request_threaded_irq(charger->irq_sys, NULL,
s2mu106_ovp_isr, 0, "sys-irq", charger);
if (ret < 0) {
dev_err(s2mu106->dev, "%s: Fail to request SYS in IRQ: %d: %d\n",
__func__, charger->irq_sys, ret);
goto err_reg_irq;
}
#if EN_BAT_DET_IRQ
charger->irq_det_bat = pdata->irq_base + S2MU106_CHG2_IRQ_DET_BAT;
ret = request_threaded_irq(charger->irq_det_bat, NULL,
s2mu106_det_bat_isr, 0, "det_bat-irq", charger);
if (ret < 0) {
dev_err(s2mu106->dev, "%s: Fail to request DET_BAT in IRQ: %d: %d\n",
__func__, charger->irq_det_bat, ret);
goto err_reg_irq;
}
#endif
#if EN_CHG1_IRQ_CHGIN
charger->irq_chgin = pdata->irq_base + S2MU106_CHG1_IRQ_CHGIN;
ret = request_threaded_irq(charger->irq_chgin, NULL,
s2mu106_chg_isr, 0, "chgin-irq", charger);
if (ret < 0) {
dev_err(s2mu106->dev, "%s: Fail to request CHGIN in IRQ: %d: %d\n",
__func__, charger->irq_chgin, ret);
goto err_reg_irq;
}
#endif
charger->irq_rst = pdata->irq_base + S2MU106_CHG1_IRQ_CHG_RSTART;
ret = request_threaded_irq(charger->irq_rst, NULL,
s2mu106_chg_isr, 0, "restart-irq", charger);
if (ret < 0) {
dev_err(s2mu106->dev, "%s: Fail to request CHG_Restart in IRQ: %d: %d\n",
__func__, charger->irq_rst, ret);
goto err_reg_irq;
}
charger->irq_done = pdata->irq_base + S2MU106_CHG1_IRQ_DONE;
ret = request_threaded_irq(charger->irq_done, NULL,
s2mu106_done_isr, 0, "done-irq", charger);
if (ret < 0) {
dev_err(s2mu106->dev, "%s: Fail to request DONE in IRQ: %d: %d\n",
__func__, charger->irq_done, ret);
goto err_reg_irq;
}
charger->irq_chg_fault = pdata->irq_base + S2MU106_CHG1_IRQ_CHG_Fault;
ret = request_threaded_irq(charger->irq_chg_fault, NULL,
s2mu106_event_isr, 0, "chg_fault-irq", charger);
if (ret < 0) {
dev_err(s2mu106->dev, "%s: Fail to request CHG_Fault in IRQ: %d: %d\n",
__func__, charger->irq_chg_fault, ret);
goto err_reg_irq;
}
charger->irq_otg = pdata->irq_base + S2MU106_CHG3_IRQ_OTG;
ret = request_threaded_irq(charger->irq_otg, NULL,
s2mu106_otg_isr, 0, "otg-irq", charger);
if (ret < 0) {
dev_err(s2mu106->dev, "%s: Fail to request OTG in IRQ: %d: %d\n",
__func__, charger->irq_otg, ret);
goto err_reg_irq;
}
charger->irq_bat = pdata->irq_base + S2MU106_CHG2_IRQ_BAT;
ret = request_threaded_irq(charger->irq_bat, NULL,
s2mu106_bat_isr, 0, "bat-irq", charger);
if (ret < 0) {
dev_err(s2mu106->dev, "%s: Fail to request BAT in IRQ: %d: %d\n",
__func__, charger->irq_bat, ret);
goto err_reg_irq;
}
charger->irq_ivr = pdata->irq_base + S2MU106_CHG2_IRQ_IVR;
charger->irq_ivr_enabled = 1;
ret = request_threaded_irq(charger->irq_ivr, NULL,
s2mu106_ivr_isr, 0, "ivr-irq", charger);
if (ret < 0) {
pr_err("%s: Fail to request IVR_INT IRQ: %d: %d\n",
__func__, charger->irq_ivr, ret);
charger->irq_ivr_enabled = -1;
goto err_reg_irq;
}
/* Do max charging by freq. change, when duty is max */
s2mu106_update_reg(charger->i2c, 0x7A, 0x1 << 4, 0x1 << 4);
#if EN_TEST_READ
s2mu106_test_read(charger->i2c);
#endif
s2mu106_read_reg(charger->i2c, S2MU106_CHG_STATUS5, &data);
/* IVR status set */
if (data & IVR_STATUS) {
pr_info("%s: IVR work start\n", __func__);
wake_lock(&charger->ivr_wake_lock);
/* Mask IRQ */
s2mu106_update_reg(charger->i2c,
S2MU106_CHG_INT2M, 1 << IVR_M_SHIFT, IVR_M_MASK);
queue_delayed_work(charger->charger_wqueue, &charger->ivr_work, 0);
}
pr_info("%s:[BATT] S2MU106 charger driver loaded OK\n", __func__);
return 0;
err_reg_irq:
destroy_workqueue(charger->charger_wqueue);
err_create_wq:
power_supply_unregister(charger->psy_otg);
err_power_supply_register_otg:
power_supply_unregister(charger->psy_chg);
err_power_supply_register:
err_parse_dt:
err_parse_dt_nomem:
mutex_destroy(&charger->charger_mutex);
mutex_destroy(&charger->regmode_mutex);
kfree(charger);
return ret;
}
static int s2mu106_charger_remove(struct platform_device *pdev)
{
struct s2mu106_charger_data *charger =
platform_get_drvdata(pdev);
power_supply_unregister(charger->psy_chg);
mutex_destroy(&charger->charger_mutex);
mutex_destroy(&charger->regmode_mutex);
kfree(charger);
return 0;
}
#if defined CONFIG_PM
static int s2mu106_charger_suspend(struct device *dev)
{
return 0;
}
static int s2mu106_charger_resume(struct device *dev)
{
return 0;
}
#else
#define s2mu106_charger_suspend NULL
#define s2mu106_charger_resume NULL
#endif
static void s2mu106_charger_shutdown(struct device *dev)
{
pr_info("%s: S2MU106 Charger driver shutdown\n", __func__);
}
static SIMPLE_DEV_PM_OPS(s2mu106_charger_pm_ops, s2mu106_charger_suspend,
s2mu106_charger_resume);
static struct platform_driver s2mu106_charger_driver = {
.driver = {
.name = "s2mu106-charger",
.owner = THIS_MODULE,
.of_match_table = s2mu106_charger_match_table,
.pm = &s2mu106_charger_pm_ops,
.shutdown = s2mu106_charger_shutdown,
},
.probe = s2mu106_charger_probe,
.remove = s2mu106_charger_remove,
};
static int __init s2mu106_charger_init(void)
{
int ret = 0;
pr_info("%s start\n", __func__);
ret = platform_driver_register(&s2mu106_charger_driver);
return ret;
}
module_init(s2mu106_charger_init);
static void __exit s2mu106_charger_exit(void)
{
platform_driver_unregister(&s2mu106_charger_driver);
}
module_exit(s2mu106_charger_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Samsung Electronics");
MODULE_DESCRIPTION("Charger driver for S2MU106");