blob: fc606de68fbdaa84d8550d2375bde6e66a04a9a2 [file] [log] [blame]
/*
* arch/arm64/kernel/topology.c
*
* Copyright (C) 2011,2013,2014 Linaro Limited.
*
* Based on the arm32 version written by Vincent Guittot in turn based on
* arch/sh/kernel/topology.c
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/init.h>
#include <linux/percpu.h>
#include <linux/node.h>
#include <linux/nodemask.h>
#include <linux/of.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <asm/cputype.h>
#include <asm/topology.h>
#include <asm/smp_plat.h>
/*
* cpu power table
* This per cpu data structure describes the relative capacity of each core.
* On a heteregenous system, cores don't have the same computation capacity
* and we reflect that difference in the cpu_power field so the scheduler can
* take this difference into account during load balance. A per cpu structure
* is preferred because each CPU updates its own cpu_power field during the
* load balance except for idle cores. One idle core is selected to run the
* rebalance_domains for all idle cores and the cpu_power can be updated
* during this sequence.
*/
static DEFINE_PER_CPU(unsigned long, cpu_scale);
unsigned long arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
return per_cpu(cpu_scale, cpu);
}
static void set_power_scale(unsigned int cpu, unsigned long power)
{
per_cpu(cpu_scale, cpu) = power;
}
static DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
unsigned long scale_cpu_capacity(struct sched_domain *sd, int cpu)
{
#ifdef CONFIG_CPU_FREQ
unsigned long max_freq_scale = cpufreq_scale_max_freq_capacity(cpu);
return per_cpu(cpu_scale, cpu) * max_freq_scale >> SCHED_CAPACITY_SHIFT;
#else
return per_cpu(cpu_scale, cpu);
#endif
}
static int __init get_cpu_for_node(struct device_node *node)
{
struct device_node *cpu_node;
int cpu;
cpu_node = of_parse_phandle(node, "cpu", 0);
if (!cpu_node)
return -1;
for_each_possible_cpu(cpu) {
if (of_get_cpu_node(cpu, NULL) == cpu_node) {
of_node_put(cpu_node);
return cpu;
}
}
pr_crit("Unable to find CPU node for %s\n", cpu_node->full_name);
of_node_put(cpu_node);
return -1;
}
static int __init parse_core(struct device_node *core, int cluster_id,
int core_id)
{
char name[10];
bool leaf = true;
int i = 0;
int cpu;
struct device_node *t;
do {
snprintf(name, sizeof(name), "thread%d", i);
t = of_get_child_by_name(core, name);
if (t) {
leaf = false;
cpu = get_cpu_for_node(t);
if (cpu >= 0) {
cpu_topology[cpu].cluster_id = cluster_id;
cpu_topology[cpu].core_id = core_id;
cpu_topology[cpu].thread_id = i;
} else {
pr_err("%s: Can't get CPU for thread\n",
t->full_name);
of_node_put(t);
return -EINVAL;
}
of_node_put(t);
}
i++;
} while (t);
cpu = get_cpu_for_node(core);
if (cpu >= 0) {
if (!leaf) {
pr_err("%s: Core has both threads and CPU\n",
core->full_name);
return -EINVAL;
}
cpu_topology[cpu].cluster_id = cluster_id;
cpu_topology[cpu].core_id = core_id;
} else if (leaf) {
pr_err("%s: Can't get CPU for leaf core\n", core->full_name);
return -EINVAL;
}
return 0;
}
static int __init parse_cluster(struct device_node *cluster, int depth)
{
char name[10];
bool leaf = true;
bool has_cores = false;
struct device_node *c;
static int cluster_id __initdata;
int core_id = 0;
int i, ret;
/*
* First check for child clusters; we currently ignore any
* information about the nesting of clusters and present the
* scheduler with a flat list of them.
*/
i = 0;
do {
snprintf(name, sizeof(name), "cluster%d", i);
c = of_get_child_by_name(cluster, name);
if (c) {
leaf = false;
ret = parse_cluster(c, depth + 1);
of_node_put(c);
if (ret != 0)
return ret;
}
i++;
} while (c);
/* Now check for cores */
i = 0;
do {
snprintf(name, sizeof(name), "core%d", i);
c = of_get_child_by_name(cluster, name);
if (c) {
has_cores = true;
if (depth == 0) {
pr_err("%s: cpu-map children should be clusters\n",
c->full_name);
of_node_put(c);
return -EINVAL;
}
if (leaf) {
ret = parse_core(c, cluster_id, core_id++);
} else {
pr_err("%s: Non-leaf cluster with core %s\n",
cluster->full_name, name);
ret = -EINVAL;
}
of_node_put(c);
if (ret != 0)
return ret;
}
i++;
} while (c);
if (leaf && !has_cores)
pr_warn("%s: empty cluster\n", cluster->full_name);
if (leaf)
cluster_id++;
return 0;
}
struct cpu_efficiency {
const char *compatible;
unsigned long efficiency;
};
/*
* Table of relative efficiency of each processors
* The efficiency value must fit in 20bit and the final
* cpu_scale value must be in the range
* 0 < cpu_scale < 3*SCHED_POWER_SCALE/2
* in order to return at most 1 when DIV_ROUND_CLOSEST
* is used to compute the capacity of a CPU.
* Processors that are not defined in the table,
* use the default SCHED_POWER_SCALE value for cpu_scale.
*/
static const struct cpu_efficiency table_efficiency[] = {
{ "arm,mongoose", 5035 },
{ "arm,cortex-a57", 3891 },
{ "arm,cortex-a53", 2048 },
/* HACK : Need to modify */
{ "arm,cortex-a73", 5035 },
{ NULL, },
};
static unsigned long *__cpu_capacity;
#define cpu_capacity(cpu) __cpu_capacity[cpu]
unsigned int *pcpu_efficiency;
static unsigned long middle_capacity = 1;
static void update_siblings_masks(unsigned int cpuid);
/*
* Iterate all CPUs' descriptor in DT and compute the efficiency
* (as per table_efficiency). Also calculate a middle efficiency
* as close as possible to (max{eff_i} - min{eff_i}) / 2
* This is later used to scale the cpu_power field such that an
* 'average' CPU is of middle power. Also see the comments near
* table_efficiency[] and update_cpu_power().
*/
static int __init parse_dt_topology(void)
{
struct device_node *cn, *map;
int ret = 0;
int cpu;
cn = of_find_node_by_path("/cpus");
if (!cn) {
pr_err("No CPU information found in DT\n");
return 0;
}
/*
* When topology is provided cpu-map is essentially a root
* cluster with restricted subnodes.
*/
map = of_get_child_by_name(cn, "cpu-map");
if (!map)
goto out;
ret = parse_cluster(map, 0);
if (ret != 0)
goto out_map;
/*
* Check that all cores are in the topology; the SMP code will
* only mark cores described in the DT as possible.
*/
for_each_possible_cpu(cpu) {
if (cpu_topology[cpu].cluster_id == -1)
ret = -EINVAL;
update_siblings_masks(cpu);
}
out_map:
of_node_put(map);
out:
of_node_put(cn);
return ret;
}
static void __init parse_dt_cpu_power(void)
{
const struct cpu_efficiency *cpu_eff;
struct device_node *cn;
unsigned long min_capacity = ULONG_MAX;
unsigned long max_capacity = 0;
unsigned long capacity = 0;
int cpu;
__cpu_capacity = kcalloc(nr_cpu_ids, sizeof(*__cpu_capacity),
GFP_NOWAIT);
pcpu_efficiency = kcalloc(nr_cpu_ids, sizeof(*pcpu_efficiency),
GFP_NOWAIT);
for_each_possible_cpu(cpu) {
const u32 *rate;
int len;
/* Too early to use cpu->of_node */
cn = of_get_cpu_node(cpu, NULL);
if (!cn) {
pr_err("Missing device node for CPU %d\n", cpu);
continue;
}
for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++)
if (of_device_is_compatible(cn, cpu_eff->compatible))
break;
if (cpu_eff->compatible == NULL) {
pr_warn("%s: Unknown CPU type\n", cn->full_name);
continue;
}
pcpu_efficiency[cpu] = cpu_eff->efficiency;
rate = of_get_property(cn, "clock-frequency", &len);
if (!rate || len != 4) {
pr_err("%s: Missing clock-frequency property\n",
cn->full_name);
continue;
}
capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency;
/* Save min capacity of the system */
if (capacity < min_capacity)
min_capacity = capacity;
/* Save max capacity of the system */
if (capacity > max_capacity)
max_capacity = capacity;
cpu_capacity(cpu) = capacity;
}
/* If min and max capacities are equal we bypass the update of the
* cpu_scale because all CPUs have the same capacity. Otherwise, we
* compute a middle_capacity factor that will ensure that the capacity
* of an 'average' CPU of the system will be as close as possible to
* SCHED_POWER_SCALE, which is the default value, but with the
* constraint explained near table_efficiency[].
*/
if (min_capacity == max_capacity)
return;
else if (4 * max_capacity < (3 * (max_capacity + min_capacity)))
middle_capacity = (min_capacity + max_capacity)
>> (SCHED_POWER_SHIFT+1);
else
middle_capacity = ((max_capacity / 3)
>> (SCHED_POWER_SHIFT-1)) + 1;
}
/*
* Look for a customed capacity of a CPU in the cpu_topo_data table during the
* boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
* function returns directly for SMP system.
*/
static void update_cpu_power(unsigned int cpu)
{
if (!cpu_capacity(cpu))
return;
set_power_scale(cpu, cpu_capacity(cpu) / middle_capacity);
pr_info("CPU%u: update cpu_power %lu\n",
cpu, arch_scale_freq_power(NULL, cpu));
}
/*
* cpu topology table
*/
struct cpu_topology cpu_topology[NR_CPUS];
EXPORT_SYMBOL_GPL(cpu_topology);
const struct cpumask *cpu_coregroup_mask(int cpu)
{
return &cpu_topology[cpu].core_sibling;
}
static void update_siblings_masks(unsigned int cpuid)
{
struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
unsigned int mpidr = cpu_logical_map(cpuid);
unsigned int cluster_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
int cpu;
/* update core and thread sibling masks */
for_each_possible_cpu(cpu) {
cpu_topo = &cpu_topology[cpu];
mpidr = cpu_logical_map(cpu);
if (cluster_id == MPIDR_AFFINITY_LEVEL(mpidr, 1))
cpumask_set_cpu(cpuid, &cpu_topo->idle_sibling);
if (cpuid_topo->cluster_id != cpu_topo->cluster_id)
continue;
cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
if (cpu != cpuid)
cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
if (cpuid_topo->core_id != cpu_topo->core_id)
continue;
cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
if (cpu != cpuid)
cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
}
}
#ifdef CONFIG_SCHED_HMP
unsigned int ap_fuse = 0;
EXPORT_SYMBOL_GPL(ap_fuse);
static int __init setup_ap_fuse(char *str)
{
get_option(&str, &ap_fuse);
pr_info("Fuse info is %d\n", ap_fuse);
return 0;
}
early_param("androidboot.lassen.apfuse", setup_ap_fuse);
void __init arch_get_fast_and_slow_cpus(struct cpumask *fast,
struct cpumask *slow)
{
struct device_node *cn;
int cpu = 0;
int little_id;
cpumask_clear(fast);
cpumask_clear(slow);
if (ap_fuse != 2) {
/*
* Use the config options if they are given. This helps testing
* HMP scheduling on systems without a big.LITTLE architecture.
*/
if (strlen(CONFIG_HMP_FAST_CPU_MASK) && strlen(CONFIG_HMP_SLOW_CPU_MASK)) {
if (cpulist_parse(CONFIG_HMP_FAST_CPU_MASK, fast))
WARN(1, "Failed to parse HMP fast cpu mask!\n");
if (cpulist_parse(CONFIG_HMP_SLOW_CPU_MASK, slow))
WARN(1, "Failed to parse HMP slow cpu mask!\n");
return;
}
}
/*
* Else, parse device tree for little cores.
*/
cn = of_find_node_by_path("/cpus/hmp");
if (!cn) {
pr_err("/cpus/hmp node is omitted\n");
return;
}
if (of_property_read_u32(cn, "little-id", &little_id)) {
pr_err("hmp missing little-id property\n");
return;
}
cn = NULL;
while ((cn = of_find_node_by_type(cn, "cpu"))) {
u32 mpidr = cpu_logical_map(cpu);
if (MPIDR_AFFINITY_LEVEL(mpidr, 1) == little_id)
cpumask_set_cpu(cpu, slow);
else
cpumask_set_cpu(cpu, fast);
cpu++;
}
if (!cpumask_empty(fast) && !cpumask_empty(slow))
return;
/*
* We didn't find both big and little cores so let's call all cores
* fast as this will keep the system running, with all cores being
* treated equal.
*/
cpumask_setall(fast);
cpumask_clear(slow);
}
struct cpumask hmp_slow_cpu_mask;
struct cpumask hmp_fast_cpu_mask;
void __init arch_get_hmp_domains(struct list_head *hmp_domains_list)
{
struct hmp_domain *domain;
#ifdef CONFIG_SCHED_SKIP_CORE_SELECTION_MASK
struct device_node *cpu_node;
unsigned int sched_skip;
int ret, cpu_num;
#endif
arch_get_fast_and_slow_cpus(&hmp_fast_cpu_mask, &hmp_slow_cpu_mask);
/*
* Initialize hmp_domains
* Must be ordered with respect to compute capacity.
* Fastest domain at head of list.
*/
if(!cpumask_empty(&hmp_slow_cpu_mask)) {
domain = (struct hmp_domain *)
kmalloc(sizeof(struct hmp_domain), GFP_KERNEL);
cpumask_copy(&domain->possible_cpus, &hmp_slow_cpu_mask);
cpumask_and(&domain->cpus, cpu_online_mask, &domain->possible_cpus);
#ifdef CONFIG_SCHED_SKIP_CORE_SELECTION_MASK
cpu_num = 0;
cpumask_clear(&domain->cpumask_skip);
for_each_node_by_type(cpu_node, "cpu") {
ret = of_property_read_u32(cpu_node, "sched_skip", &sched_skip);
if (!ret)
cpumask_set_cpu(cpu_num, &domain->cpumask_skip);
cpu_num++;
}
#endif
list_add(&domain->hmp_domains, hmp_domains_list);
}
domain = (struct hmp_domain *)
kmalloc(sizeof(struct hmp_domain), GFP_KERNEL);
cpumask_copy(&domain->possible_cpus, &hmp_fast_cpu_mask);
cpumask_and(&domain->cpus, cpu_online_mask, &domain->possible_cpus);
#ifdef CONFIG_SCHED_SKIP_CORE_SELECTION_MASK
cpu_num = 0;
cpumask_clear(&domain->cpumask_skip);
for_each_node_by_type(cpu_node, "cpu") {
ret = of_property_read_u32(cpu_node, "sched_skip", &sched_skip);
if (!ret)
cpumask_set_cpu(cpu_num, &domain->cpumask_skip);
cpu_num++;
}
#endif
list_add(&domain->hmp_domains, hmp_domains_list);
}
#endif /* CONFIG_SCHED_HMP */
#ifdef CONFIG_DISABLE_CPU_SCHED_DOMAIN_BALANCE
int cpu_cpu_flags(void)
{
return SD_NO_LOAD_BALANCE;
}
#endif /* CONFIG_DISABLE_CPU_SCHED_DOMAIN_BALANCE */
/*
* cluster_to_logical_mask - return cpu logical mask of CPUs in a cluster
* @socket_id: cluster HW identifier
* @cluster_mask: the cpumask location to be initialized, modified by the
* function only if return value == 0
*
* Return:
*
* 0 on success
* -EINVAL if cluster_mask is NULL or there is no record matching socket_id
*/
int cluster_to_logical_mask(unsigned int socket_id, cpumask_t *cluster_mask)
{
int cpu;
if (!cluster_mask)
return -EINVAL;
for_each_online_cpu(cpu) {
if (socket_id == topology_physical_package_id(cpu)) {
cpumask_copy(cluster_mask, topology_core_cpumask(cpu));
return 0;
}
}
return -EINVAL;
}
int get_current_cpunum(void)
{
unsigned int mpidr;
int core_id;
int cluster_id;
int cpuid;
mpidr = read_cpuid_mpidr();
core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
cluster_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
cpuid = cluster_id ? core_id : core_id + 4;
return cpuid;
}
void store_cpu_topology(unsigned int cpuid)
{
struct cpu_topology *cpu_topo = &cpu_topology[cpuid];
unsigned int mpidr;
/* If the cpu topology has been already set, just return */
if (cpu_topo->core_id != -1)
return;
mpidr = read_cpuid_mpidr();
/* create cpu topology mapping */
if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
/*
* This is a multiprocessor system
* multiprocessor format & multiprocessor mode field are set
*/
if (mpidr & MPIDR_MT_BITMASK) {
/* core performance interdependency */
cpu_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
cpu_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
cpu_topo->cluster_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
} else {
/* largely independent cores */
cpu_topo->thread_id = -1;
cpu_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
cpu_topo->cluster_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
}
} else {
/*
* This is an uniprocessor system
* we are in multiprocessor format but uniprocessor system
* or in the old uniprocessor format
*/
cpu_topo->thread_id = -1;
cpu_topo->core_id = 0;
cpu_topo->cluster_id = -1;
}
update_siblings_masks(cpuid);
update_cpu_power(cpuid);
pr_info("CPU%u: thread %d, cpu %d, cluster %d, mpidr %x\n",
cpuid, cpu_topology[cpuid].thread_id,
cpu_topology[cpuid].core_id,
cpu_topology[cpuid].cluster_id, mpidr);
}
static void __init reset_cpu_topology(void)
{
unsigned int cpu;
for_each_possible_cpu(cpu) {
struct cpu_topology *cpu_topo = &cpu_topology[cpu];
cpu_topo->thread_id = -1;
cpu_topo->core_id = -1;
cpu_topo->cluster_id = -1;
cpumask_clear(&cpu_topo->core_sibling);
cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
cpumask_clear(&cpu_topo->thread_sibling);
cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
cpumask_clear(&cpu_topo->idle_sibling);
cpumask_set_cpu(cpu, &cpu_topo->idle_sibling);
}
}
static void __init reset_cpu_power(void)
{
unsigned int cpu;
for_each_possible_cpu(cpu)
set_power_scale(cpu, SCHED_POWER_SCALE);
}
void __init init_cpu_topology(void)
{
reset_cpu_topology();
/*
* Discard anything that was parsed if we hit an error so we
* don't use partial information.
*/
if (of_have_populated_dt() && parse_dt_topology())
reset_cpu_topology();
reset_cpu_power();
parse_dt_cpu_power();
}