blob: 67ed1b4d1bd028ff2a652c34d25f5d4de073f1fd [file] [log] [blame]
/*
* FP/SIMD context switching and fault handling
*
* Copyright (C) 2012 ARM Ltd.
* Author: Catalin Marinas <catalin.marinas@arm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/cpu.h>
#include <linux/cpu_pm.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/signal.h>
#include <linux/hardirq.h>
#include <asm/fpsimd.h>
#include <asm/cputype.h>
#define FPEXC_IOF (1 << 0)
#define FPEXC_DZF (1 << 1)
#define FPEXC_OFF (1 << 2)
#define FPEXC_UFF (1 << 3)
#define FPEXC_IXF (1 << 4)
#define FPEXC_IDF (1 << 7)
/*
* In order to reduce the number of times the FPSIMD state is needlessly saved
* and restored, we need to keep track of two things:
* (a) for each task, we need to remember which CPU was the last one to have
* the task's FPSIMD state loaded into its FPSIMD registers;
* (b) for each CPU, we need to remember which task's userland FPSIMD state has
* been loaded into its FPSIMD registers most recently, or whether it has
* been used to perform kernel mode NEON in the meantime.
*
* For (a), we add a 'cpu' field to struct fpsimd_state, which gets updated to
* the id of the current CPU everytime the state is loaded onto a CPU. For (b),
* we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
* address of the userland FPSIMD state of the task that was loaded onto the CPU
* the most recently, or NULL if kernel mode NEON has been performed after that.
*
* With this in place, we no longer have to restore the next FPSIMD state right
* when switching between tasks. Instead, we can defer this check to userland
* resume, at which time we verify whether the CPU's fpsimd_last_state and the
* task's fpsimd_state.cpu are still mutually in sync. If this is the case, we
* can omit the FPSIMD restore.
*
* As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
* indicate whether or not the userland FPSIMD state of the current task is
* present in the registers. The flag is set unless the FPSIMD registers of this
* CPU currently contain the most recent userland FPSIMD state of the current
* task.
*
* For a certain task, the sequence may look something like this:
* - the task gets scheduled in; if both the task's fpsimd_state.cpu field
* contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
* variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
* cleared, otherwise it is set;
*
* - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
* userland FPSIMD state is copied from memory to the registers, the task's
* fpsimd_state.cpu field is set to the id of the current CPU, the current
* CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
* TIF_FOREIGN_FPSTATE flag is cleared;
*
* - the task executes an ordinary syscall; upon return to userland, the
* TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
* restored;
*
* - the task executes a syscall which executes some NEON instructions; this is
* preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
* register contents to memory, clears the fpsimd_last_state per-cpu variable
* and sets the TIF_FOREIGN_FPSTATE flag;
*
* - the task gets preempted after kernel_neon_end() is called; as we have not
* returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
* whatever is in the FPSIMD registers is not saved to memory, but discarded.
*/
static DEFINE_PER_CPU(struct fpsimd_state *, fpsimd_last_state);
#ifdef CONFIG_FPSIMD_CORRUPTION_DETECT
void fpsimd_context_check(struct task_struct *next);
#else
#define fpsimd_context_check(a) do { } while (0)
#endif
/*
* Trapped FP/ASIMD access.
*/
void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs)
{
/* TODO: implement lazy context saving/restoring */
WARN_ON(1);
}
/*
* Raise a SIGFPE for the current process.
*/
void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs)
{
siginfo_t info;
unsigned int si_code = 0;
if (esr & FPEXC_IOF)
si_code = FPE_FLTINV;
else if (esr & FPEXC_DZF)
si_code = FPE_FLTDIV;
else if (esr & FPEXC_OFF)
si_code = FPE_FLTOVF;
else if (esr & FPEXC_UFF)
si_code = FPE_FLTUND;
else if (esr & FPEXC_IXF)
si_code = FPE_FLTRES;
memset(&info, 0, sizeof(info));
info.si_signo = SIGFPE;
info.si_code = si_code;
info.si_addr = (void __user *)instruction_pointer(regs);
send_sig_info(SIGFPE, &info, current);
}
#ifdef CONFIG_FPSIMD_CORRUPTION_DETECT
void fpsimd_context_check(struct task_struct *next)
{
int simd_reg_index;
struct fpsimd_state current_st, *saved_st;
saved_st = &next->thread.fpsimd_state;
fpsimd_save_state(&current_st);
for (simd_reg_index = 0; simd_reg_index < 32; simd_reg_index++)
{
if(current_st.vregs[simd_reg_index] != saved_st->vregs[simd_reg_index])
BUG();
}
if((current_st.fpsr != saved_st->fpsr) || (current_st.fpcr != saved_st->fpcr))
BUG();
}
#endif
void fpsimd_thread_switch(struct task_struct *next)
{
struct fpsimd_state *cur_st = &current->thread.fpsimd_state;
struct fpsimd_kernel_state *cur_kst
= &current->thread.fpsimd_kernel_state;
struct fpsimd_state *nxt_st = &next->thread.fpsimd_state;
struct fpsimd_kernel_state *nxt_kst
= &next->thread.fpsimd_kernel_state;
/*
* Save the current FPSIMD state to memory, but only if whatever is in
* the registers is in fact the most recent userland FPSIMD state of
* 'current'.
*/
if (current->mm && !test_thread_flag(TIF_FOREIGN_FPSTATE))
fpsimd_save_state(cur_st);
if (atomic_read(&cur_kst->depth))
fpsimd_save_state((struct fpsimd_state *)cur_kst);
if (atomic_read(&nxt_kst->depth)) {
fpsimd_load_state((struct fpsimd_state *)nxt_kst);
this_cpu_write(fpsimd_last_state, (struct fpsimd_state *)nxt_kst);
}
if (next->mm) {
/*
* If we are switching to a task whose most recent userland
* FPSIMD state is already in the registers of *this* cpu,
* we can skip loading the state from memory. Otherwise, set
* the TIF_FOREIGN_FPSTATE flag so the state will be loaded
* upon the next return to userland.
*/
if (__this_cpu_read(fpsimd_last_state) == nxt_st
&& nxt_st->cpu == smp_processor_id()) {
fpsimd_context_check(next);
clear_ti_thread_flag(task_thread_info(next),
TIF_FOREIGN_FPSTATE);
}
else
set_ti_thread_flag(task_thread_info(next),
TIF_FOREIGN_FPSTATE);
}
}
void fpsimd_flush_thread(void)
{
preempt_disable();
memset(&current->thread.fpsimd_state, 0, sizeof(struct fpsimd_state));
fpsimd_flush_task_state(current);
set_thread_flag(TIF_FOREIGN_FPSTATE);
preempt_enable();
}
/*
* Save the userland FPSIMD state of 'current' to memory, but only if the state
* currently held in the registers does in fact belong to 'current'
*/
void fpsimd_preserve_current_state(void)
{
preempt_disable();
if (!test_thread_flag(TIF_FOREIGN_FPSTATE))
fpsimd_save_state(&current->thread.fpsimd_state);
preempt_enable();
}
/*
* Load the userland FPSIMD state of 'current' from memory, but only if the
* FPSIMD state already held in the registers is /not/ the most recent FPSIMD
* state of 'current'
*/
void fpsimd_restore_current_state(void)
{
preempt_disable();
if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
struct fpsimd_state *st = &current->thread.fpsimd_state;
fpsimd_load_state(st);
this_cpu_write(fpsimd_last_state, st);
st->cpu = smp_processor_id();
}
preempt_enable();
}
/*
* Load an updated userland FPSIMD state for 'current' from memory and set the
* flag that indicates that the FPSIMD register contents are the most recent
* FPSIMD state of 'current'
*/
void fpsimd_update_current_state(struct fpsimd_state *state)
{
preempt_disable();
fpsimd_load_state(state);
if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
struct fpsimd_state *st = &current->thread.fpsimd_state;
this_cpu_write(fpsimd_last_state, st);
st->cpu = smp_processor_id();
}
preempt_enable();
}
/*
* Invalidate live CPU copies of task t's FPSIMD state
*/
void fpsimd_flush_task_state(struct task_struct *t)
{
t->thread.fpsimd_state.cpu = NR_CPUS;
}
void fpsimd_set_task_using(struct task_struct *t)
{
atomic_set(&t->thread.fpsimd_kernel_state.depth, 1);
}
void fpsimd_clr_task_using(struct task_struct *t)
{
atomic_set(&t->thread.fpsimd_kernel_state.depth, 0);
}
void fpsimd_get(void)
{
if (in_interrupt())
return;
if (atomic_inc_return(&current->thread.fpsimd_kernel_state.depth) == 1) {
preempt_disable();
if (current->mm &&
!test_and_set_thread_flag(TIF_FOREIGN_FPSTATE)) {
fpsimd_save_state(&current->thread.fpsimd_state);
fpsimd_flush_task_state(current);
}
this_cpu_write(fpsimd_last_state, NULL);
preempt_enable();
}
}
void fpsimd_put(void)
{
if (in_interrupt())
return;
BUG_ON(atomic_dec_return(
&current->thread.fpsimd_kernel_state.depth) < 0);
}
#ifdef CONFIG_KERNEL_MODE_NEON
static DEFINE_PER_CPU(struct fpsimd_partial_state, hardirq_fpsimdstate);
static DEFINE_PER_CPU(struct fpsimd_partial_state, softirq_fpsimdstate);
/*
* Kernel-side NEON support functions
*/
void kernel_neon_begin_partial(u32 num_regs)
{
if (in_interrupt()) {
struct fpsimd_partial_state *s = this_cpu_ptr(
in_irq() ? &hardirq_fpsimdstate : &softirq_fpsimdstate);
BUG_ON(num_regs > 32);
fpsimd_save_partial_state(s, roundup(num_regs, 2));
} else {
/*
* Save the userland FPSIMD state if we have one and if we
* haven't done so already. Clear fpsimd_last_state to indicate
* that there is no longer userland FPSIMD state in the
* registers.
*/
preempt_disable();
if (current->mm &&
!test_and_set_thread_flag(TIF_FOREIGN_FPSTATE))
fpsimd_save_state(&current->thread.fpsimd_state);
this_cpu_write(fpsimd_last_state, NULL);
}
}
EXPORT_SYMBOL(kernel_neon_begin_partial);
void kernel_neon_end(void)
{
if (in_interrupt()) {
struct fpsimd_partial_state *s = this_cpu_ptr(
in_irq() ? &hardirq_fpsimdstate : &softirq_fpsimdstate);
fpsimd_load_partial_state(s);
} else {
preempt_enable();
}
}
EXPORT_SYMBOL(kernel_neon_end);
#endif /* CONFIG_KERNEL_MODE_NEON */
#ifdef CONFIG_CPU_PM
static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
unsigned long cmd, void *v)
{
switch (cmd) {
case CPU_PM_ENTER:
if ((current->mm && !test_thread_flag(TIF_FOREIGN_FPSTATE))
|| atomic_read(&current->thread.fpsimd_kernel_state.depth)) {
fpsimd_save_state(&current->thread.fpsimd_state);
}
this_cpu_write(fpsimd_last_state, NULL);
break;
case CPU_PM_EXIT:
if (current->mm)
set_thread_flag(TIF_FOREIGN_FPSTATE);
if (atomic_read(&current->thread.fpsimd_kernel_state.depth)) {
fpsimd_load_state(&current->thread.fpsimd_state);
this_cpu_write(fpsimd_last_state,
&current->thread.fpsimd_state);
current->thread.fpsimd_state.cpu = smp_processor_id();
}
break;
case CPU_PM_ENTER_FAILED:
default:
return NOTIFY_DONE;
}
return NOTIFY_OK;
}
static struct notifier_block fpsimd_cpu_pm_notifier_block = {
.notifier_call = fpsimd_cpu_pm_notifier,
};
static void __init fpsimd_pm_init(void)
{
cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
}
#else
static inline void fpsimd_pm_init(void) { }
#endif /* CONFIG_CPU_PM */
#ifdef CONFIG_HOTPLUG_CPU
static int fpsimd_cpu_hotplug_notifier(struct notifier_block *nfb,
unsigned long action,
void *hcpu)
{
unsigned int cpu = (long)hcpu;
switch (action) {
case CPU_DEAD:
case CPU_DEAD_FROZEN:
per_cpu(fpsimd_last_state, cpu) = NULL;
break;
}
return NOTIFY_OK;
}
static struct notifier_block fpsimd_cpu_hotplug_notifier_block = {
.notifier_call = fpsimd_cpu_hotplug_notifier,
};
static inline void fpsimd_hotplug_init(void)
{
register_cpu_notifier(&fpsimd_cpu_hotplug_notifier_block);
}
#else
static inline void fpsimd_hotplug_init(void) { }
#endif
/*
* FP/SIMD support code initialisation.
*/
static int __init fpsimd_init(void)
{
if (elf_hwcap & HWCAP_FP) {
fpsimd_pm_init();
fpsimd_hotplug_init();
} else {
pr_notice("Floating-point is not implemented\n");
}
if (!(elf_hwcap & HWCAP_ASIMD))
pr_notice("Advanced SIMD is not implemented\n");
return 0;
}
late_initcall(fpsimd_init);