| /* |
| * Contains CPU feature definitions |
| * |
| * Copyright (C) 2015 ARM Ltd. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #define pr_fmt(fmt) "CPU features: " fmt |
| |
| #include <linux/bsearch.h> |
| #include <linux/cpumask.h> |
| #include <linux/sort.h> |
| #include <linux/stop_machine.h> |
| #include <linux/types.h> |
| #include <linux/mm.h> |
| #include <asm/cpu.h> |
| #include <asm/cpufeature.h> |
| #include <asm/cpu_ops.h> |
| #include <asm/processor.h> |
| #include <asm/sysreg.h> |
| |
| #define MIDR_MONGOOSE MIDR_CPU_MODEL(ARM_CPU_IMP_SEC, ARM_CPU_PART_MONGOOSE) |
| #define MIDR_MODEL_MASK (MIDR_IMPLEMENTOR_MASK | MIDR_PARTNUM_MASK | \ |
| MIDR_ARCHITECTURE_MASK) |
| |
| unsigned long elf_hwcap __read_mostly; |
| EXPORT_SYMBOL_GPL(elf_hwcap); |
| |
| #ifdef CONFIG_COMPAT |
| #define COMPAT_ELF_HWCAP_DEFAULT \ |
| (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\ |
| COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\ |
| COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\ |
| COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\ |
| COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\ |
| COMPAT_HWCAP_LPAE) |
| unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT; |
| unsigned int compat_elf_hwcap2 __read_mostly; |
| #endif |
| |
| DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS); |
| EXPORT_SYMBOL(cpu_hwcaps); |
| |
| #define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \ |
| { \ |
| .sign = SIGNED, \ |
| .strict = STRICT, \ |
| .type = TYPE, \ |
| .shift = SHIFT, \ |
| .width = WIDTH, \ |
| .safe_val = SAFE_VAL, \ |
| } |
| |
| /* Define a feature with signed values */ |
| #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \ |
| __ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) |
| |
| /* Define a feature with unsigned value */ |
| #define U_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \ |
| __ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) |
| |
| #define ARM64_FTR_END \ |
| { \ |
| .width = 0, \ |
| } |
| |
| /* meta feature for alternatives */ |
| static bool __maybe_unused |
| cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry); |
| |
| static struct arm64_ftr_bits ftr_id_aa64isar0[] = { |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */ |
| ARM64_FTR_END, |
| }; |
| |
| static struct arm64_ftr_bits ftr_id_aa64pfr0[] = { |
| ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI), |
| /* Linux doesn't care about the EL3 */ |
| ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY), |
| ARM64_FTR_END, |
| }; |
| |
| static struct arm64_ftr_bits ftr_id_aa64mmfr0[] = { |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0), |
| /* Linux shouldn't care about secure memory */ |
| ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0), |
| /* |
| * Differing PARange is fine as long as all peripherals and memory are mapped |
| * within the minimum PARange of all CPUs |
| */ |
| U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static struct arm64_ftr_bits ftr_id_aa64mmfr1[] = { |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static struct arm64_ftr_bits ftr_id_aa64mmfr2[] = { |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static struct arm64_ftr_bits ftr_ctr[] = { |
| U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RAO */ |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0), |
| U_ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0), /* CWG */ |
| U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), /* ERG */ |
| U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */ |
| /* |
| * Linux can handle differing I-cache policies. Userspace JITs will |
| * make use of *minLine |
| */ |
| U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0), /* L1Ip */ |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0), /* RAZ */ |
| U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* IminLine */ |
| ARM64_FTR_END, |
| }; |
| |
| static struct arm64_ftr_bits ftr_id_mmfr0[] = { |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0), /* InnerShr */ |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0), /* FCSE */ |
| ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */ |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0), /* TCM */ |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0), /* ShareLvl */ |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0), /* OuterShr */ |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */ |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */ |
| ARM64_FTR_END, |
| }; |
| |
| static struct arm64_ftr_bits ftr_id_aa64dfr0[] = { |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0), |
| U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0), |
| U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0), |
| U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0), |
| U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0), |
| U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0), |
| U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6), |
| ARM64_FTR_END, |
| }; |
| |
| static struct arm64_ftr_bits ftr_mvfr2[] = { |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0), /* RAZ */ |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* FPMisc */ |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* SIMDMisc */ |
| ARM64_FTR_END, |
| }; |
| |
| static struct arm64_ftr_bits ftr_dczid[] = { |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0), /* RAZ */ |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */ |
| ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */ |
| ARM64_FTR_END, |
| }; |
| |
| |
| static struct arm64_ftr_bits ftr_id_isar5[] = { |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0), /* RAZ */ |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static struct arm64_ftr_bits ftr_id_mmfr4[] = { |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0), /* RAZ */ |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* ac2 */ |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */ |
| ARM64_FTR_END, |
| }; |
| |
| static struct arm64_ftr_bits ftr_id_pfr0[] = { |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0), /* RAZ */ |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0), /* State3 */ |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0), /* State2 */ |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* State1 */ |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* State0 */ |
| ARM64_FTR_END, |
| }; |
| |
| /* |
| * Common ftr bits for a 32bit register with all hidden, strict |
| * attributes, with 4bit feature fields and a default safe value of |
| * 0. Covers the following 32bit registers: |
| * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1] |
| */ |
| static struct arm64_ftr_bits ftr_generic_32bits[] = { |
| ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), |
| ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static struct arm64_ftr_bits ftr_generic[] = { |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static struct arm64_ftr_bits ftr_generic32[] = { |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static struct arm64_ftr_bits ftr_aa64raz[] = { |
| ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0), |
| ARM64_FTR_END, |
| }; |
| |
| #define ARM64_FTR_REG(id, table) \ |
| { \ |
| .sys_id = id, \ |
| .name = #id, \ |
| .ftr_bits = &((table)[0]), \ |
| } |
| |
| static struct arm64_ftr_reg arm64_ftr_regs[] = { |
| |
| /* Op1 = 0, CRn = 0, CRm = 1 */ |
| ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0), |
| ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits), |
| ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_generic_32bits), |
| ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0), |
| ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits), |
| ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits), |
| ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits), |
| |
| /* Op1 = 0, CRn = 0, CRm = 2 */ |
| ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits), |
| ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits), |
| ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits), |
| ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits), |
| ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits), |
| ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5), |
| ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4), |
| |
| /* Op1 = 0, CRn = 0, CRm = 3 */ |
| ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits), |
| ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits), |
| ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2), |
| |
| /* Op1 = 0, CRn = 0, CRm = 4 */ |
| ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0), |
| ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz), |
| |
| /* Op1 = 0, CRn = 0, CRm = 5 */ |
| ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0), |
| ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic), |
| |
| /* Op1 = 0, CRn = 0, CRm = 6 */ |
| ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0), |
| ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz), |
| |
| /* Op1 = 0, CRn = 0, CRm = 7 */ |
| ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0), |
| ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1), |
| ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2), |
| |
| /* Op1 = 3, CRn = 0, CRm = 0 */ |
| ARM64_FTR_REG(SYS_CTR_EL0, ftr_ctr), |
| ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid), |
| |
| /* Op1 = 3, CRn = 14, CRm = 0 */ |
| ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32), |
| }; |
| |
| static int search_cmp_ftr_reg(const void *id, const void *regp) |
| { |
| return (int)(unsigned long)id - (int)((const struct arm64_ftr_reg *)regp)->sys_id; |
| } |
| |
| /* |
| * get_arm64_ftr_reg - Lookup a feature register entry using its |
| * sys_reg() encoding. With the array arm64_ftr_regs sorted in the |
| * ascending order of sys_id , we use binary search to find a matching |
| * entry. |
| * |
| * returns - Upon success, matching ftr_reg entry for id. |
| * - NULL on failure. It is upto the caller to decide |
| * the impact of a failure. |
| */ |
| static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id) |
| { |
| return bsearch((const void *)(unsigned long)sys_id, |
| arm64_ftr_regs, |
| ARRAY_SIZE(arm64_ftr_regs), |
| sizeof(arm64_ftr_regs[0]), |
| search_cmp_ftr_reg); |
| } |
| |
| static u64 arm64_ftr_set_value(struct arm64_ftr_bits *ftrp, s64 reg, s64 ftr_val) |
| { |
| u64 mask = arm64_ftr_mask(ftrp); |
| |
| reg &= ~mask; |
| reg |= (ftr_val << ftrp->shift) & mask; |
| return reg; |
| } |
| |
| static s64 arm64_ftr_safe_value(struct arm64_ftr_bits *ftrp, s64 new, s64 cur) |
| { |
| s64 ret = 0; |
| |
| switch (ftrp->type) { |
| case FTR_EXACT: |
| ret = ftrp->safe_val; |
| break; |
| case FTR_LOWER_SAFE: |
| ret = new < cur ? new : cur; |
| break; |
| case FTR_HIGHER_SAFE: |
| ret = new > cur ? new : cur; |
| break; |
| default: |
| BUG(); |
| } |
| |
| return ret; |
| } |
| |
| static int __init sort_cmp_ftr_regs(const void *a, const void *b) |
| { |
| return ((const struct arm64_ftr_reg *)a)->sys_id - |
| ((const struct arm64_ftr_reg *)b)->sys_id; |
| } |
| |
| static void __init swap_ftr_regs(void *a, void *b, int size) |
| { |
| struct arm64_ftr_reg tmp = *(struct arm64_ftr_reg *)a; |
| *(struct arm64_ftr_reg *)a = *(struct arm64_ftr_reg *)b; |
| *(struct arm64_ftr_reg *)b = tmp; |
| } |
| |
| static void __init sort_ftr_regs(void) |
| { |
| /* Keep the array sorted so that we can do the binary search */ |
| sort(arm64_ftr_regs, |
| ARRAY_SIZE(arm64_ftr_regs), |
| sizeof(arm64_ftr_regs[0]), |
| sort_cmp_ftr_regs, |
| swap_ftr_regs); |
| } |
| |
| /* |
| * Initialise the CPU feature register from Boot CPU values. |
| * Also initiliases the strict_mask for the register. |
| */ |
| static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new) |
| { |
| u64 val = 0; |
| u64 strict_mask = ~0x0ULL; |
| struct arm64_ftr_bits *ftrp; |
| struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg); |
| |
| BUG_ON(!reg); |
| |
| for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) { |
| s64 ftr_new = arm64_ftr_value(ftrp, new); |
| |
| val = arm64_ftr_set_value(ftrp, val, ftr_new); |
| if (!ftrp->strict) |
| strict_mask &= ~arm64_ftr_mask(ftrp); |
| } |
| reg->sys_val = val; |
| reg->strict_mask = strict_mask; |
| } |
| |
| void __init init_cpu_features(struct cpuinfo_arm64 *info) |
| { |
| /* Before we start using the tables, make sure it is sorted */ |
| sort_ftr_regs(); |
| |
| init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr); |
| init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid); |
| init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq); |
| init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0); |
| init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1); |
| init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0); |
| init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1); |
| init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0); |
| init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1); |
| init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2); |
| init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0); |
| init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1); |
| init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0); |
| init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0); |
| init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1); |
| init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2); |
| init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3); |
| init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4); |
| init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5); |
| init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0); |
| init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1); |
| init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2); |
| init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3); |
| init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0); |
| init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1); |
| init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0); |
| init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1); |
| init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2); |
| } |
| |
| static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new) |
| { |
| struct arm64_ftr_bits *ftrp; |
| |
| for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) { |
| s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val); |
| s64 ftr_new = arm64_ftr_value(ftrp, new); |
| |
| if (ftr_cur == ftr_new) |
| continue; |
| /* Find a safe value */ |
| ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur); |
| reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new); |
| } |
| |
| } |
| |
| static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot) |
| { |
| struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id); |
| |
| BUG_ON(!regp); |
| update_cpu_ftr_reg(regp, val); |
| if ((boot & regp->strict_mask) == (val & regp->strict_mask)) |
| return 0; |
| pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n", |
| regp->name, boot, cpu, val); |
| return 1; |
| } |
| |
| /* |
| * Update system wide CPU feature registers with the values from a |
| * non-boot CPU. Also performs SANITY checks to make sure that there |
| * aren't any insane variations from that of the boot CPU. |
| */ |
| void update_cpu_features(int cpu, |
| struct cpuinfo_arm64 *info, |
| struct cpuinfo_arm64 *boot) |
| { |
| int taint = 0; |
| |
| /* |
| * In Exynos SOC, the sanity check for customized cores is meaningless |
| * because it consists of non-arm CPUs. |
| */ |
| u32 midr = read_cpuid_id(); |
| |
| return; |
| |
| if ((midr & MIDR_MODEL_MASK) == MIDR_MONGOOSE) |
| return; |
| |
| /* |
| * The kernel can handle differing I-cache policies, but otherwise |
| * caches should look identical. Userspace JITs will make use of |
| * *minLine. |
| */ |
| taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu, |
| info->reg_ctr, boot->reg_ctr); |
| |
| /* |
| * Userspace may perform DC ZVA instructions. Mismatched block sizes |
| * could result in too much or too little memory being zeroed if a |
| * process is preempted and migrated between CPUs. |
| */ |
| taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu, |
| info->reg_dczid, boot->reg_dczid); |
| |
| /* If different, timekeeping will be broken (especially with KVM) */ |
| taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu, |
| info->reg_cntfrq, boot->reg_cntfrq); |
| |
| /* |
| * The kernel uses self-hosted debug features and expects CPUs to |
| * support identical debug features. We presently need CTX_CMPs, WRPs, |
| * and BRPs to be identical. |
| * ID_AA64DFR1 is currently RES0. |
| */ |
| taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu, |
| info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0); |
| taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu, |
| info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1); |
| /* |
| * Even in big.LITTLE, processors should be identical instruction-set |
| * wise. |
| */ |
| taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu, |
| info->reg_id_aa64isar0, boot->reg_id_aa64isar0); |
| taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu, |
| info->reg_id_aa64isar1, boot->reg_id_aa64isar1); |
| |
| /* |
| * Differing PARange support is fine as long as all peripherals and |
| * memory are mapped within the minimum PARange of all CPUs. |
| * Linux should not care about secure memory. |
| */ |
| taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu, |
| info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0); |
| taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu, |
| info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1); |
| taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu, |
| info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2); |
| |
| /* |
| * EL3 is not our concern. |
| * ID_AA64PFR1 is currently RES0. |
| */ |
| taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu, |
| info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0); |
| taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu, |
| info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1); |
| |
| /* |
| * If we have AArch32, we care about 32-bit features for compat. These |
| * registers should be RES0 otherwise. |
| */ |
| taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu, |
| info->reg_id_dfr0, boot->reg_id_dfr0); |
| taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu, |
| info->reg_id_isar0, boot->reg_id_isar0); |
| taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu, |
| info->reg_id_isar1, boot->reg_id_isar1); |
| taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu, |
| info->reg_id_isar2, boot->reg_id_isar2); |
| taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu, |
| info->reg_id_isar3, boot->reg_id_isar3); |
| taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu, |
| info->reg_id_isar4, boot->reg_id_isar4); |
| taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu, |
| info->reg_id_isar5, boot->reg_id_isar5); |
| |
| /* |
| * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and |
| * ACTLR formats could differ across CPUs and therefore would have to |
| * be trapped for virtualization anyway. |
| */ |
| taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu, |
| info->reg_id_mmfr0, boot->reg_id_mmfr0); |
| taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu, |
| info->reg_id_mmfr1, boot->reg_id_mmfr1); |
| taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu, |
| info->reg_id_mmfr2, boot->reg_id_mmfr2); |
| taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu, |
| info->reg_id_mmfr3, boot->reg_id_mmfr3); |
| taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu, |
| info->reg_id_pfr0, boot->reg_id_pfr0); |
| taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu, |
| info->reg_id_pfr1, boot->reg_id_pfr1); |
| taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu, |
| info->reg_mvfr0, boot->reg_mvfr0); |
| taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu, |
| info->reg_mvfr1, boot->reg_mvfr1); |
| taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu, |
| info->reg_mvfr2, boot->reg_mvfr2); |
| |
| /* |
| * Mismatched CPU features are a recipe for disaster. Don't even |
| * pretend to support them. |
| */ |
| WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC, |
| "Unsupported CPU feature variation.\n"); |
| } |
| |
| u64 read_system_reg(u32 id) |
| { |
| struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id); |
| |
| /* We shouldn't get a request for an unsupported register */ |
| BUG_ON(!regp); |
| return regp->sys_val; |
| } |
| |
| #include <linux/irqchip/arm-gic-v3.h> |
| |
| static bool |
| feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry) |
| { |
| int val = cpuid_feature_extract_field(reg, entry->field_pos); |
| |
| return val >= entry->min_field_value; |
| } |
| |
| static bool |
| has_cpuid_feature(const struct arm64_cpu_capabilities *entry) |
| { |
| u64 val; |
| |
| val = read_system_reg(entry->sys_reg); |
| return feature_matches(val, entry); |
| } |
| |
| static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry) |
| { |
| bool has_sre; |
| |
| if (!has_cpuid_feature(entry)) |
| return false; |
| |
| has_sre = gic_enable_sre(); |
| if (!has_sre) |
| pr_warn_once("%s present but disabled by higher exception level\n", |
| entry->desc); |
| |
| return has_sre; |
| } |
| |
| static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry) |
| { |
| u32 midr = read_cpuid_id(); |
| u32 rv_min, rv_max; |
| |
| /* Cavium ThunderX pass 1.x and 2.x */ |
| rv_min = 0; |
| rv_max = (1 << MIDR_VARIANT_SHIFT) | MIDR_REVISION_MASK; |
| |
| return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX, rv_min, rv_max); |
| } |
| |
| #ifdef CONFIG_UNMAP_KERNEL_AT_EL0 |
| static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */ |
| |
| static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry) |
| { |
| u64 pfr0 = read_system_reg(SYS_ID_AA64PFR0_EL1); |
| |
| /* Forced on command line? */ |
| if (__kpti_forced) { |
| pr_info_once("kernel page table isolation forced %s by command line option\n", |
| __kpti_forced > 0 ? "ON" : "OFF"); |
| return __kpti_forced > 0; |
| } |
| |
| /* Useful for KASLR robustness */ |
| if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) |
| return true; |
| |
| /* Defer to CPU feature registers */ |
| return !cpuid_feature_extract_unsigned_field(pfr0, |
| ID_AA64PFR0_CSV3_SHIFT); |
| } |
| |
| static int __init parse_kpti(char *str) |
| { |
| bool enabled; |
| int ret = strtobool(str, &enabled); |
| |
| if (ret) |
| return ret; |
| |
| __kpti_forced = enabled ? 1 : -1; |
| return 0; |
| } |
| __setup("kpti=", parse_kpti); |
| #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */ |
| |
| static const struct arm64_cpu_capabilities arm64_features[] = { |
| { |
| .desc = "GIC system register CPU interface", |
| .capability = ARM64_HAS_SYSREG_GIC_CPUIF, |
| .matches = has_useable_gicv3_cpuif, |
| .sys_reg = SYS_ID_AA64PFR0_EL1, |
| .field_pos = ID_AA64PFR0_GIC_SHIFT, |
| .min_field_value = 1, |
| }, |
| #ifdef CONFIG_ARM64_PAN |
| { |
| .desc = "Privileged Access Never", |
| .capability = ARM64_HAS_PAN, |
| .matches = has_cpuid_feature, |
| .sys_reg = SYS_ID_AA64MMFR1_EL1, |
| .field_pos = ID_AA64MMFR1_PAN_SHIFT, |
| .min_field_value = 1, |
| .enable = cpu_enable_pan, |
| }, |
| #endif /* CONFIG_ARM64_PAN */ |
| #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS) |
| { |
| .desc = "LSE atomic instructions", |
| .capability = ARM64_HAS_LSE_ATOMICS, |
| .matches = has_cpuid_feature, |
| .sys_reg = SYS_ID_AA64ISAR0_EL1, |
| .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT, |
| .min_field_value = 2, |
| }, |
| #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */ |
| { |
| .desc = "Software prefetching using PRFM", |
| .capability = ARM64_HAS_NO_HW_PREFETCH, |
| .matches = has_no_hw_prefetch, |
| }, |
| #ifdef CONFIG_ARM64_UAO |
| { |
| .desc = "User Access Override", |
| .capability = ARM64_HAS_UAO, |
| .matches = has_cpuid_feature, |
| .sys_reg = SYS_ID_AA64MMFR2_EL1, |
| .field_pos = ID_AA64MMFR2_UAO_SHIFT, |
| .min_field_value = 1, |
| .enable = cpu_enable_uao, |
| }, |
| #endif /* CONFIG_ARM64_UAO */ |
| #ifdef CONFIG_ARM64_PAN |
| { |
| .capability = ARM64_ALT_PAN_NOT_UAO, |
| .matches = cpufeature_pan_not_uao, |
| }, |
| #endif /* CONFIG_ARM64_PAN */ |
| #ifdef CONFIG_UNMAP_KERNEL_AT_EL0 |
| { |
| .desc = "Kernel page table isolation (KPTI)", |
| .capability = ARM64_UNMAP_KERNEL_AT_EL0, |
| .matches = unmap_kernel_at_el0, |
| }, |
| #endif |
| { |
| .desc = "32-bit EL0 Support", |
| .capability = ARM64_HAS_32BIT_EL0, |
| .matches = has_cpuid_feature, |
| .sys_reg = SYS_ID_AA64PFR0_EL1, |
| .field_pos = ID_AA64PFR0_EL0_SHIFT, |
| .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT, |
| }, |
| {}, |
| }; |
| |
| #define HWCAP_CAP(reg, field, min_value, type, cap) \ |
| { \ |
| .desc = #cap, \ |
| .matches = has_cpuid_feature, \ |
| .sys_reg = reg, \ |
| .field_pos = field, \ |
| .min_field_value = min_value, \ |
| .hwcap_type = type, \ |
| .hwcap = cap, \ |
| } |
| |
| static const struct arm64_cpu_capabilities arm64_hwcaps[] = { |
| HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 2, CAP_HWCAP, HWCAP_PMULL), |
| HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 1, CAP_HWCAP, HWCAP_AES), |
| HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, 1, CAP_HWCAP, HWCAP_SHA1), |
| HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, 1, CAP_HWCAP, HWCAP_SHA2), |
| HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, 1, CAP_HWCAP, HWCAP_CRC32), |
| HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, 2, CAP_HWCAP, HWCAP_ATOMICS), |
| HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, 0, CAP_HWCAP, HWCAP_FP), |
| HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, 0, CAP_HWCAP, HWCAP_ASIMD), |
| #ifdef CONFIG_COMPAT |
| HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL), |
| HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES), |
| HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1), |
| HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2), |
| HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32), |
| #endif |
| {}, |
| }; |
| |
| static void __init cap_set_hwcap(const struct arm64_cpu_capabilities *cap) |
| { |
| switch (cap->hwcap_type) { |
| case CAP_HWCAP: |
| elf_hwcap |= cap->hwcap; |
| break; |
| #ifdef CONFIG_COMPAT |
| case CAP_COMPAT_HWCAP: |
| compat_elf_hwcap |= (u32)cap->hwcap; |
| break; |
| case CAP_COMPAT_HWCAP2: |
| compat_elf_hwcap2 |= (u32)cap->hwcap; |
| break; |
| #endif |
| default: |
| WARN_ON(1); |
| break; |
| } |
| } |
| |
| /* Check if we have a particular HWCAP enabled */ |
| static bool __maybe_unused cpus_have_hwcap(const struct arm64_cpu_capabilities *cap) |
| { |
| bool rc; |
| |
| switch (cap->hwcap_type) { |
| case CAP_HWCAP: |
| rc = (elf_hwcap & cap->hwcap) != 0; |
| break; |
| #ifdef CONFIG_COMPAT |
| case CAP_COMPAT_HWCAP: |
| rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0; |
| break; |
| case CAP_COMPAT_HWCAP2: |
| rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0; |
| break; |
| #endif |
| default: |
| WARN_ON(1); |
| rc = false; |
| } |
| |
| return rc; |
| } |
| |
| static void __init setup_cpu_hwcaps(void) |
| { |
| int i; |
| const struct arm64_cpu_capabilities *hwcaps = arm64_hwcaps; |
| |
| for (i = 0; hwcaps[i].matches; i++) |
| if (hwcaps[i].matches(&hwcaps[i])) |
| cap_set_hwcap(&hwcaps[i]); |
| } |
| |
| void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps, |
| const char *info) |
| { |
| int i; |
| |
| for (i = 0; caps[i].matches; i++) { |
| if (!caps[i].matches(&caps[i])) |
| continue; |
| |
| if (!cpus_have_cap(caps[i].capability) && caps[i].desc) |
| pr_info("%s %s\n", info, caps[i].desc); |
| cpus_set_cap(caps[i].capability); |
| } |
| } |
| |
| /* |
| * Run through the enabled capabilities and enable() it on all active |
| * CPUs |
| */ |
| void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps) |
| { |
| int i; |
| |
| for (i = 0; caps[i].matches; i++) |
| if (caps[i].enable && cpus_have_cap(caps[i].capability)) |
| /* |
| * Use stop_machine() as it schedules the work allowing |
| * us to modify PSTATE, instead of on_each_cpu() which |
| * uses an IPI, giving us a PSTATE that disappears when |
| * we return. |
| */ |
| stop_machine(caps[i].enable, (void *)&caps[i], cpu_online_mask); |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| |
| /* |
| * Flag to indicate if we have computed the system wide |
| * capabilities based on the boot time active CPUs. This |
| * will be used to determine if a new booting CPU should |
| * go through the verification process to make sure that it |
| * supports the system capabilities, without using a hotplug |
| * notifier. |
| */ |
| static bool sys_caps_initialised; |
| |
| static inline void set_sys_caps_initialised(void) |
| { |
| sys_caps_initialised = true; |
| } |
| |
| /* |
| * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated. |
| */ |
| static u64 __raw_read_system_reg(u32 sys_id) |
| { |
| switch (sys_id) { |
| case SYS_ID_PFR0_EL1: return read_cpuid(SYS_ID_PFR0_EL1); |
| case SYS_ID_PFR1_EL1: return read_cpuid(SYS_ID_PFR1_EL1); |
| case SYS_ID_DFR0_EL1: return read_cpuid(SYS_ID_DFR0_EL1); |
| case SYS_ID_MMFR0_EL1: return read_cpuid(SYS_ID_MMFR0_EL1); |
| case SYS_ID_MMFR1_EL1: return read_cpuid(SYS_ID_MMFR1_EL1); |
| case SYS_ID_MMFR2_EL1: return read_cpuid(SYS_ID_MMFR2_EL1); |
| case SYS_ID_MMFR3_EL1: return read_cpuid(SYS_ID_MMFR3_EL1); |
| case SYS_ID_ISAR0_EL1: return read_cpuid(SYS_ID_ISAR0_EL1); |
| case SYS_ID_ISAR1_EL1: return read_cpuid(SYS_ID_ISAR1_EL1); |
| case SYS_ID_ISAR2_EL1: return read_cpuid(SYS_ID_ISAR2_EL1); |
| case SYS_ID_ISAR3_EL1: return read_cpuid(SYS_ID_ISAR3_EL1); |
| case SYS_ID_ISAR4_EL1: return read_cpuid(SYS_ID_ISAR4_EL1); |
| case SYS_ID_ISAR5_EL1: return read_cpuid(SYS_ID_ISAR4_EL1); |
| case SYS_MVFR0_EL1: return read_cpuid(SYS_MVFR0_EL1); |
| case SYS_MVFR1_EL1: return read_cpuid(SYS_MVFR1_EL1); |
| case SYS_MVFR2_EL1: return read_cpuid(SYS_MVFR2_EL1); |
| |
| case SYS_ID_AA64PFR0_EL1: return read_cpuid(SYS_ID_AA64PFR0_EL1); |
| case SYS_ID_AA64PFR1_EL1: return read_cpuid(SYS_ID_AA64PFR0_EL1); |
| case SYS_ID_AA64DFR0_EL1: return read_cpuid(SYS_ID_AA64DFR0_EL1); |
| case SYS_ID_AA64DFR1_EL1: return read_cpuid(SYS_ID_AA64DFR0_EL1); |
| case SYS_ID_AA64MMFR0_EL1: return read_cpuid(SYS_ID_AA64MMFR0_EL1); |
| case SYS_ID_AA64MMFR1_EL1: return read_cpuid(SYS_ID_AA64MMFR1_EL1); |
| case SYS_ID_AA64MMFR2_EL1: return read_cpuid(SYS_ID_AA64MMFR2_EL1); |
| case SYS_ID_AA64ISAR0_EL1: return read_cpuid(SYS_ID_AA64ISAR0_EL1); |
| case SYS_ID_AA64ISAR1_EL1: return read_cpuid(SYS_ID_AA64ISAR1_EL1); |
| |
| case SYS_CNTFRQ_EL0: return read_cpuid(SYS_CNTFRQ_EL0); |
| case SYS_CTR_EL0: return read_cpuid(SYS_CTR_EL0); |
| case SYS_DCZID_EL0: return read_cpuid(SYS_DCZID_EL0); |
| default: |
| BUG(); |
| return 0; |
| } |
| } |
| |
| /* |
| * Park the CPU which doesn't have the capability as advertised |
| * by the system. |
| */ |
| static void fail_incapable_cpu(char *cap_type, |
| const struct arm64_cpu_capabilities *cap) |
| { |
| int cpu = smp_processor_id(); |
| |
| pr_crit("CPU%d: missing %s : %s\n", cpu, cap_type, cap->desc); |
| /* Mark this CPU absent */ |
| set_cpu_present(cpu, 0); |
| |
| /* Check if we can park ourselves */ |
| if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die) |
| cpu_ops[cpu]->cpu_die(cpu); |
| asm( |
| "1: wfe\n" |
| " wfi\n" |
| " b 1b"); |
| } |
| |
| /* |
| * Run through the enabled system capabilities and enable() it on this CPU. |
| * The capabilities were decided based on the available CPUs at the boot time. |
| * Any new CPU should match the system wide status of the capability. If the |
| * new CPU doesn't have a capability which the system now has enabled, we |
| * cannot do anything to fix it up and could cause unexpected failures. So |
| * we park the CPU. |
| */ |
| void verify_local_cpu_capabilities(void) |
| { |
| int i; |
| const struct arm64_cpu_capabilities *caps; |
| |
| /* |
| * If we haven't computed the system capabilities, there is nothing |
| * to verify. |
| */ |
| if (!sys_caps_initialised) |
| return; |
| |
| caps = arm64_features; |
| for (i = 0; caps[i].matches; i++) { |
| if (!cpus_have_cap(caps[i].capability) || !caps[i].sys_reg) |
| continue; |
| /* |
| * If the new CPU misses an advertised feature, we cannot proceed |
| * further, park the cpu. |
| */ |
| if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i])) |
| fail_incapable_cpu("arm64_features", &caps[i]); |
| if (caps[i].enable) |
| caps[i].enable((void *)&caps[i]); |
| } |
| |
| for (i = 0, caps = arm64_hwcaps; caps[i].matches; i++) { |
| if (!cpus_have_hwcap(&caps[i])) |
| continue; |
| if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i])) |
| fail_incapable_cpu("arm64_hwcaps", &caps[i]); |
| } |
| } |
| |
| #else /* !CONFIG_HOTPLUG_CPU */ |
| |
| static inline void set_sys_caps_initialised(void) |
| { |
| } |
| |
| #endif /* CONFIG_HOTPLUG_CPU */ |
| |
| static void __init setup_feature_capabilities(void) |
| { |
| update_cpu_capabilities(arm64_features, "detected feature:"); |
| enable_cpu_capabilities(arm64_features); |
| } |
| |
| /* |
| * Check if the current CPU has a given feature capability. |
| * Should be called from non-preemptible context. |
| */ |
| static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array, |
| unsigned int cap) |
| { |
| const struct arm64_cpu_capabilities *caps; |
| |
| if (WARN_ON(preemptible())) |
| return false; |
| |
| for (caps = cap_array; caps->desc; caps++) |
| if (caps->capability == cap && caps->matches) |
| return caps->matches(caps); |
| |
| return false; |
| } |
| |
| extern const struct arm64_cpu_capabilities arm64_errata[]; |
| |
| bool this_cpu_has_cap(unsigned int cap) |
| { |
| return (__this_cpu_has_cap(arm64_features, cap) || |
| __this_cpu_has_cap(arm64_errata, cap)); |
| } |
| |
| void __init setup_cpu_features(void) |
| { |
| u32 cwg; |
| int cls; |
| |
| /* Set the CPU feature capabilies */ |
| setup_feature_capabilities(); |
| enable_errata_workarounds(); |
| setup_cpu_hwcaps(); |
| |
| /* Advertise that we have computed the system capabilities */ |
| set_sys_caps_initialised(); |
| |
| /* |
| * Check for sane CTR_EL0.CWG value. |
| */ |
| cwg = cache_type_cwg(); |
| cls = cache_line_size(); |
| if (!cwg) |
| pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n", |
| cls); |
| if (L1_CACHE_BYTES < cls) |
| pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n", |
| L1_CACHE_BYTES, cls); |
| } |
| |
| static bool __maybe_unused |
| cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry) |
| { |
| return (cpus_have_cap(ARM64_HAS_PAN) && !cpus_have_cap(ARM64_HAS_UAO)); |
| } |