| /****************************************************************************** |
| * |
| * This file is provided under a dual BSD/GPLv2 license. When using or |
| * redistributing this file, you may do so under either license. |
| * |
| * GPL LICENSE SUMMARY |
| * |
| * Copyright(c) 2007 - 2015 Intel Corporation. All rights reserved. |
| * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH |
| * Copyright(c) 2016 Intel Deutschland GmbH |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, |
| * USA |
| * |
| * The full GNU General Public License is included in this distribution |
| * in the file called COPYING. |
| * |
| * Contact Information: |
| * Intel Linux Wireless <ilw@linux.intel.com> |
| * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| * |
| * BSD LICENSE |
| * |
| * Copyright(c) 2005 - 2015 Intel Corporation. All rights reserved. |
| * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH |
| * Copyright(c) 2016 Intel Deutschland GmbH |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * * Neither the name Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| *****************************************************************************/ |
| #include <linux/pci.h> |
| #include <linux/pci-aspm.h> |
| #include <linux/interrupt.h> |
| #include <linux/debugfs.h> |
| #include <linux/sched.h> |
| #include <linux/bitops.h> |
| #include <linux/gfp.h> |
| #include <linux/vmalloc.h> |
| |
| #include "iwl-drv.h" |
| #include "iwl-trans.h" |
| #include "iwl-csr.h" |
| #include "iwl-prph.h" |
| #include "iwl-scd.h" |
| #include "iwl-agn-hw.h" |
| #include "iwl-fw-error-dump.h" |
| #include "internal.h" |
| #include "iwl-fh.h" |
| |
| /* extended range in FW SRAM */ |
| #define IWL_FW_MEM_EXTENDED_START 0x40000 |
| #define IWL_FW_MEM_EXTENDED_END 0x57FFF |
| |
| static void iwl_pcie_free_fw_monitor(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| if (!trans_pcie->fw_mon_page) |
| return; |
| |
| dma_unmap_page(trans->dev, trans_pcie->fw_mon_phys, |
| trans_pcie->fw_mon_size, DMA_FROM_DEVICE); |
| __free_pages(trans_pcie->fw_mon_page, |
| get_order(trans_pcie->fw_mon_size)); |
| trans_pcie->fw_mon_page = NULL; |
| trans_pcie->fw_mon_phys = 0; |
| trans_pcie->fw_mon_size = 0; |
| } |
| |
| static void iwl_pcie_alloc_fw_monitor(struct iwl_trans *trans, u8 max_power) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct page *page = NULL; |
| dma_addr_t phys; |
| u32 size = 0; |
| u8 power; |
| |
| if (!max_power) { |
| /* default max_power is maximum */ |
| max_power = 26; |
| } else { |
| max_power += 11; |
| } |
| |
| if (WARN(max_power > 26, |
| "External buffer size for monitor is too big %d, check the FW TLV\n", |
| max_power)) |
| return; |
| |
| if (trans_pcie->fw_mon_page) { |
| dma_sync_single_for_device(trans->dev, trans_pcie->fw_mon_phys, |
| trans_pcie->fw_mon_size, |
| DMA_FROM_DEVICE); |
| return; |
| } |
| |
| phys = 0; |
| for (power = max_power; power >= 11; power--) { |
| int order; |
| |
| size = BIT(power); |
| order = get_order(size); |
| page = alloc_pages(__GFP_COMP | __GFP_NOWARN | __GFP_ZERO, |
| order); |
| if (!page) |
| continue; |
| |
| phys = dma_map_page(trans->dev, page, 0, PAGE_SIZE << order, |
| DMA_FROM_DEVICE); |
| if (dma_mapping_error(trans->dev, phys)) { |
| __free_pages(page, order); |
| page = NULL; |
| continue; |
| } |
| IWL_INFO(trans, |
| "Allocated 0x%08x bytes (order %d) for firmware monitor.\n", |
| size, order); |
| break; |
| } |
| |
| if (WARN_ON_ONCE(!page)) |
| return; |
| |
| if (power != max_power) |
| IWL_ERR(trans, |
| "Sorry - debug buffer is only %luK while you requested %luK\n", |
| (unsigned long)BIT(power - 10), |
| (unsigned long)BIT(max_power - 10)); |
| |
| trans_pcie->fw_mon_page = page; |
| trans_pcie->fw_mon_phys = phys; |
| trans_pcie->fw_mon_size = size; |
| } |
| |
| static u32 iwl_trans_pcie_read_shr(struct iwl_trans *trans, u32 reg) |
| { |
| iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_CTRL_REG, |
| ((reg & 0x0000ffff) | (2 << 28))); |
| return iwl_read32(trans, HEEP_CTRL_WRD_PCIEX_DATA_REG); |
| } |
| |
| static void iwl_trans_pcie_write_shr(struct iwl_trans *trans, u32 reg, u32 val) |
| { |
| iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_DATA_REG, val); |
| iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_CTRL_REG, |
| ((reg & 0x0000ffff) | (3 << 28))); |
| } |
| |
| static void iwl_pcie_set_pwr(struct iwl_trans *trans, bool vaux) |
| { |
| if (trans->cfg->apmg_not_supported) |
| return; |
| |
| if (vaux && pci_pme_capable(to_pci_dev(trans->dev), PCI_D3cold)) |
| iwl_set_bits_mask_prph(trans, APMG_PS_CTRL_REG, |
| APMG_PS_CTRL_VAL_PWR_SRC_VAUX, |
| ~APMG_PS_CTRL_MSK_PWR_SRC); |
| else |
| iwl_set_bits_mask_prph(trans, APMG_PS_CTRL_REG, |
| APMG_PS_CTRL_VAL_PWR_SRC_VMAIN, |
| ~APMG_PS_CTRL_MSK_PWR_SRC); |
| } |
| |
| /* PCI registers */ |
| #define PCI_CFG_RETRY_TIMEOUT 0x041 |
| |
| static void iwl_pcie_apm_config(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| u16 lctl; |
| u16 cap; |
| |
| /* |
| * HW bug W/A for instability in PCIe bus L0S->L1 transition. |
| * Check if BIOS (or OS) enabled L1-ASPM on this device. |
| * If so (likely), disable L0S, so device moves directly L0->L1; |
| * costs negligible amount of power savings. |
| * If not (unlikely), enable L0S, so there is at least some |
| * power savings, even without L1. |
| */ |
| pcie_capability_read_word(trans_pcie->pci_dev, PCI_EXP_LNKCTL, &lctl); |
| if (lctl & PCI_EXP_LNKCTL_ASPM_L1) |
| iwl_set_bit(trans, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED); |
| else |
| iwl_clear_bit(trans, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED); |
| trans->pm_support = !(lctl & PCI_EXP_LNKCTL_ASPM_L0S); |
| |
| pcie_capability_read_word(trans_pcie->pci_dev, PCI_EXP_DEVCTL2, &cap); |
| trans->ltr_enabled = cap & PCI_EXP_DEVCTL2_LTR_EN; |
| dev_info(trans->dev, "L1 %sabled - LTR %sabled\n", |
| (lctl & PCI_EXP_LNKCTL_ASPM_L1) ? "En" : "Dis", |
| trans->ltr_enabled ? "En" : "Dis"); |
| } |
| |
| /* |
| * Start up NIC's basic functionality after it has been reset |
| * (e.g. after platform boot, or shutdown via iwl_pcie_apm_stop()) |
| * NOTE: This does not load uCode nor start the embedded processor |
| */ |
| static int iwl_pcie_apm_init(struct iwl_trans *trans) |
| { |
| int ret = 0; |
| IWL_DEBUG_INFO(trans, "Init card's basic functions\n"); |
| |
| /* |
| * Use "set_bit" below rather than "write", to preserve any hardware |
| * bits already set by default after reset. |
| */ |
| |
| /* Disable L0S exit timer (platform NMI Work/Around) */ |
| if (trans->cfg->device_family != IWL_DEVICE_FAMILY_8000) |
| iwl_set_bit(trans, CSR_GIO_CHICKEN_BITS, |
| CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER); |
| |
| /* |
| * Disable L0s without affecting L1; |
| * don't wait for ICH L0s (ICH bug W/A) |
| */ |
| iwl_set_bit(trans, CSR_GIO_CHICKEN_BITS, |
| CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX); |
| |
| /* Set FH wait threshold to maximum (HW error during stress W/A) */ |
| iwl_set_bit(trans, CSR_DBG_HPET_MEM_REG, CSR_DBG_HPET_MEM_REG_VAL); |
| |
| /* |
| * Enable HAP INTA (interrupt from management bus) to |
| * wake device's PCI Express link L1a -> L0s |
| */ |
| iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, |
| CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A); |
| |
| iwl_pcie_apm_config(trans); |
| |
| /* Configure analog phase-lock-loop before activating to D0A */ |
| if (trans->cfg->base_params->pll_cfg_val) |
| iwl_set_bit(trans, CSR_ANA_PLL_CFG, |
| trans->cfg->base_params->pll_cfg_val); |
| |
| /* |
| * Set "initialization complete" bit to move adapter from |
| * D0U* --> D0A* (powered-up active) state. |
| */ |
| iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE); |
| |
| /* |
| * Wait for clock stabilization; once stabilized, access to |
| * device-internal resources is supported, e.g. iwl_write_prph() |
| * and accesses to uCode SRAM. |
| */ |
| ret = iwl_poll_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, |
| CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000); |
| if (ret < 0) { |
| IWL_DEBUG_INFO(trans, "Failed to init the card\n"); |
| goto out; |
| } |
| |
| if (trans->cfg->host_interrupt_operation_mode) { |
| /* |
| * This is a bit of an abuse - This is needed for 7260 / 3160 |
| * only check host_interrupt_operation_mode even if this is |
| * not related to host_interrupt_operation_mode. |
| * |
| * Enable the oscillator to count wake up time for L1 exit. This |
| * consumes slightly more power (100uA) - but allows to be sure |
| * that we wake up from L1 on time. |
| * |
| * This looks weird: read twice the same register, discard the |
| * value, set a bit, and yet again, read that same register |
| * just to discard the value. But that's the way the hardware |
| * seems to like it. |
| */ |
| iwl_read_prph(trans, OSC_CLK); |
| iwl_read_prph(trans, OSC_CLK); |
| iwl_set_bits_prph(trans, OSC_CLK, OSC_CLK_FORCE_CONTROL); |
| iwl_read_prph(trans, OSC_CLK); |
| iwl_read_prph(trans, OSC_CLK); |
| } |
| |
| /* |
| * Enable DMA clock and wait for it to stabilize. |
| * |
| * Write to "CLK_EN_REG"; "1" bits enable clocks, while "0" |
| * bits do not disable clocks. This preserves any hardware |
| * bits already set by default in "CLK_CTRL_REG" after reset. |
| */ |
| if (!trans->cfg->apmg_not_supported) { |
| iwl_write_prph(trans, APMG_CLK_EN_REG, |
| APMG_CLK_VAL_DMA_CLK_RQT); |
| udelay(20); |
| |
| /* Disable L1-Active */ |
| iwl_set_bits_prph(trans, APMG_PCIDEV_STT_REG, |
| APMG_PCIDEV_STT_VAL_L1_ACT_DIS); |
| |
| /* Clear the interrupt in APMG if the NIC is in RFKILL */ |
| iwl_write_prph(trans, APMG_RTC_INT_STT_REG, |
| APMG_RTC_INT_STT_RFKILL); |
| } |
| |
| set_bit(STATUS_DEVICE_ENABLED, &trans->status); |
| |
| out: |
| return ret; |
| } |
| |
| /* |
| * Enable LP XTAL to avoid HW bug where device may consume much power if |
| * FW is not loaded after device reset. LP XTAL is disabled by default |
| * after device HW reset. Do it only if XTAL is fed by internal source. |
| * Configure device's "persistence" mode to avoid resetting XTAL again when |
| * SHRD_HW_RST occurs in S3. |
| */ |
| static void iwl_pcie_apm_lp_xtal_enable(struct iwl_trans *trans) |
| { |
| int ret; |
| u32 apmg_gp1_reg; |
| u32 apmg_xtal_cfg_reg; |
| u32 dl_cfg_reg; |
| |
| /* Force XTAL ON */ |
| __iwl_trans_pcie_set_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_XTAL_ON); |
| |
| /* Reset entire device - do controller reset (results in SHRD_HW_RST) */ |
| iwl_set_bit(trans, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET); |
| |
| udelay(10); |
| |
| /* |
| * Set "initialization complete" bit to move adapter from |
| * D0U* --> D0A* (powered-up active) state. |
| */ |
| iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE); |
| |
| /* |
| * Wait for clock stabilization; once stabilized, access to |
| * device-internal resources is possible. |
| */ |
| ret = iwl_poll_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, |
| CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, |
| 25000); |
| if (WARN_ON(ret < 0)) { |
| IWL_ERR(trans, "Access time out - failed to enable LP XTAL\n"); |
| /* Release XTAL ON request */ |
| __iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_XTAL_ON); |
| return; |
| } |
| |
| /* |
| * Clear "disable persistence" to avoid LP XTAL resetting when |
| * SHRD_HW_RST is applied in S3. |
| */ |
| iwl_clear_bits_prph(trans, APMG_PCIDEV_STT_REG, |
| APMG_PCIDEV_STT_VAL_PERSIST_DIS); |
| |
| /* |
| * Force APMG XTAL to be active to prevent its disabling by HW |
| * caused by APMG idle state. |
| */ |
| apmg_xtal_cfg_reg = iwl_trans_pcie_read_shr(trans, |
| SHR_APMG_XTAL_CFG_REG); |
| iwl_trans_pcie_write_shr(trans, SHR_APMG_XTAL_CFG_REG, |
| apmg_xtal_cfg_reg | |
| SHR_APMG_XTAL_CFG_XTAL_ON_REQ); |
| |
| /* |
| * Reset entire device again - do controller reset (results in |
| * SHRD_HW_RST). Turn MAC off before proceeding. |
| */ |
| iwl_set_bit(trans, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET); |
| |
| udelay(10); |
| |
| /* Enable LP XTAL by indirect access through CSR */ |
| apmg_gp1_reg = iwl_trans_pcie_read_shr(trans, SHR_APMG_GP1_REG); |
| iwl_trans_pcie_write_shr(trans, SHR_APMG_GP1_REG, apmg_gp1_reg | |
| SHR_APMG_GP1_WF_XTAL_LP_EN | |
| SHR_APMG_GP1_CHICKEN_BIT_SELECT); |
| |
| /* Clear delay line clock power up */ |
| dl_cfg_reg = iwl_trans_pcie_read_shr(trans, SHR_APMG_DL_CFG_REG); |
| iwl_trans_pcie_write_shr(trans, SHR_APMG_DL_CFG_REG, dl_cfg_reg & |
| ~SHR_APMG_DL_CFG_DL_CLOCK_POWER_UP); |
| |
| /* |
| * Enable persistence mode to avoid LP XTAL resetting when |
| * SHRD_HW_RST is applied in S3. |
| */ |
| iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, |
| CSR_HW_IF_CONFIG_REG_PERSIST_MODE); |
| |
| /* |
| * Clear "initialization complete" bit to move adapter from |
| * D0A* (powered-up Active) --> D0U* (Uninitialized) state. |
| */ |
| iwl_clear_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_INIT_DONE); |
| |
| /* Activates XTAL resources monitor */ |
| __iwl_trans_pcie_set_bit(trans, CSR_MONITOR_CFG_REG, |
| CSR_MONITOR_XTAL_RESOURCES); |
| |
| /* Release XTAL ON request */ |
| __iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_XTAL_ON); |
| udelay(10); |
| |
| /* Release APMG XTAL */ |
| iwl_trans_pcie_write_shr(trans, SHR_APMG_XTAL_CFG_REG, |
| apmg_xtal_cfg_reg & |
| ~SHR_APMG_XTAL_CFG_XTAL_ON_REQ); |
| } |
| |
| static int iwl_pcie_apm_stop_master(struct iwl_trans *trans) |
| { |
| int ret = 0; |
| |
| /* stop device's busmaster DMA activity */ |
| iwl_set_bit(trans, CSR_RESET, CSR_RESET_REG_FLAG_STOP_MASTER); |
| |
| ret = iwl_poll_bit(trans, CSR_RESET, |
| CSR_RESET_REG_FLAG_MASTER_DISABLED, |
| CSR_RESET_REG_FLAG_MASTER_DISABLED, 100); |
| if (ret < 0) |
| IWL_WARN(trans, "Master Disable Timed Out, 100 usec\n"); |
| |
| IWL_DEBUG_INFO(trans, "stop master\n"); |
| |
| return ret; |
| } |
| |
| static void iwl_pcie_apm_stop(struct iwl_trans *trans, bool op_mode_leave) |
| { |
| IWL_DEBUG_INFO(trans, "Stop card, put in low power state\n"); |
| |
| if (op_mode_leave) { |
| if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) |
| iwl_pcie_apm_init(trans); |
| |
| /* inform ME that we are leaving */ |
| if (trans->cfg->device_family == IWL_DEVICE_FAMILY_7000) |
| iwl_set_bits_prph(trans, APMG_PCIDEV_STT_REG, |
| APMG_PCIDEV_STT_VAL_WAKE_ME); |
| else if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000) { |
| iwl_set_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG, |
| CSR_RESET_LINK_PWR_MGMT_DISABLED); |
| iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, |
| CSR_HW_IF_CONFIG_REG_PREPARE | |
| CSR_HW_IF_CONFIG_REG_ENABLE_PME); |
| mdelay(1); |
| iwl_clear_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG, |
| CSR_RESET_LINK_PWR_MGMT_DISABLED); |
| } |
| mdelay(5); |
| } |
| |
| clear_bit(STATUS_DEVICE_ENABLED, &trans->status); |
| |
| /* Stop device's DMA activity */ |
| iwl_pcie_apm_stop_master(trans); |
| |
| if (trans->cfg->lp_xtal_workaround) { |
| iwl_pcie_apm_lp_xtal_enable(trans); |
| return; |
| } |
| |
| /* Reset the entire device */ |
| iwl_set_bit(trans, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET); |
| |
| udelay(10); |
| |
| /* |
| * Clear "initialization complete" bit to move adapter from |
| * D0A* (powered-up Active) --> D0U* (Uninitialized) state. |
| */ |
| iwl_clear_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_INIT_DONE); |
| } |
| |
| static int iwl_pcie_nic_init(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| /* nic_init */ |
| spin_lock(&trans_pcie->irq_lock); |
| iwl_pcie_apm_init(trans); |
| |
| spin_unlock(&trans_pcie->irq_lock); |
| |
| iwl_pcie_set_pwr(trans, false); |
| |
| iwl_op_mode_nic_config(trans->op_mode); |
| |
| /* Allocate the RX queue, or reset if it is already allocated */ |
| iwl_pcie_rx_init(trans); |
| |
| /* Allocate or reset and init all Tx and Command queues */ |
| if (iwl_pcie_tx_init(trans)) |
| return -ENOMEM; |
| |
| if (trans->cfg->base_params->shadow_reg_enable) { |
| /* enable shadow regs in HW */ |
| iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTRL, 0x800FFFFF); |
| IWL_DEBUG_INFO(trans, "Enabling shadow registers in device\n"); |
| } |
| |
| return 0; |
| } |
| |
| #define HW_READY_TIMEOUT (50) |
| |
| /* Note: returns poll_bit return value, which is >= 0 if success */ |
| static int iwl_pcie_set_hw_ready(struct iwl_trans *trans) |
| { |
| int ret; |
| |
| iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, |
| CSR_HW_IF_CONFIG_REG_BIT_NIC_READY); |
| |
| /* See if we got it */ |
| ret = iwl_poll_bit(trans, CSR_HW_IF_CONFIG_REG, |
| CSR_HW_IF_CONFIG_REG_BIT_NIC_READY, |
| CSR_HW_IF_CONFIG_REG_BIT_NIC_READY, |
| HW_READY_TIMEOUT); |
| |
| if (ret >= 0) |
| iwl_set_bit(trans, CSR_MBOX_SET_REG, CSR_MBOX_SET_REG_OS_ALIVE); |
| |
| IWL_DEBUG_INFO(trans, "hardware%s ready\n", ret < 0 ? " not" : ""); |
| return ret; |
| } |
| |
| /* Note: returns standard 0/-ERROR code */ |
| static int iwl_pcie_prepare_card_hw(struct iwl_trans *trans) |
| { |
| int ret; |
| int t = 0; |
| int iter; |
| |
| IWL_DEBUG_INFO(trans, "iwl_trans_prepare_card_hw enter\n"); |
| |
| ret = iwl_pcie_set_hw_ready(trans); |
| /* If the card is ready, exit 0 */ |
| if (ret >= 0) |
| return 0; |
| |
| iwl_set_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG, |
| CSR_RESET_LINK_PWR_MGMT_DISABLED); |
| msleep(1); |
| |
| for (iter = 0; iter < 10; iter++) { |
| /* If HW is not ready, prepare the conditions to check again */ |
| iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, |
| CSR_HW_IF_CONFIG_REG_PREPARE); |
| |
| do { |
| ret = iwl_pcie_set_hw_ready(trans); |
| if (ret >= 0) |
| return 0; |
| |
| usleep_range(200, 1000); |
| t += 200; |
| } while (t < 150000); |
| msleep(25); |
| } |
| |
| IWL_ERR(trans, "Couldn't prepare the card\n"); |
| |
| return ret; |
| } |
| |
| /* |
| * ucode |
| */ |
| static int iwl_pcie_load_firmware_chunk(struct iwl_trans *trans, u32 dst_addr, |
| dma_addr_t phy_addr, u32 byte_cnt) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| int ret; |
| |
| trans_pcie->ucode_write_complete = false; |
| |
| iwl_write_direct32(trans, |
| FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL), |
| FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE); |
| |
| iwl_write_direct32(trans, |
| FH_SRVC_CHNL_SRAM_ADDR_REG(FH_SRVC_CHNL), |
| dst_addr); |
| |
| iwl_write_direct32(trans, |
| FH_TFDIB_CTRL0_REG(FH_SRVC_CHNL), |
| phy_addr & FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK); |
| |
| iwl_write_direct32(trans, |
| FH_TFDIB_CTRL1_REG(FH_SRVC_CHNL), |
| (iwl_get_dma_hi_addr(phy_addr) |
| << FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt); |
| |
| iwl_write_direct32(trans, |
| FH_TCSR_CHNL_TX_BUF_STS_REG(FH_SRVC_CHNL), |
| 1 << FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM | |
| 1 << FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX | |
| FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID); |
| |
| iwl_write_direct32(trans, |
| FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL), |
| FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE | |
| FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE | |
| FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD); |
| |
| ret = wait_event_timeout(trans_pcie->ucode_write_waitq, |
| trans_pcie->ucode_write_complete, 5 * HZ); |
| if (!ret) { |
| IWL_ERR(trans, "Failed to load firmware chunk!\n"); |
| return -ETIMEDOUT; |
| } |
| |
| return 0; |
| } |
| |
| static int iwl_pcie_load_section(struct iwl_trans *trans, u8 section_num, |
| const struct fw_desc *section) |
| { |
| u8 *v_addr; |
| dma_addr_t p_addr; |
| u32 offset, chunk_sz = min_t(u32, FH_MEM_TB_MAX_LENGTH, section->len); |
| int ret = 0; |
| |
| IWL_DEBUG_FW(trans, "[%d] uCode section being loaded...\n", |
| section_num); |
| |
| v_addr = dma_alloc_coherent(trans->dev, chunk_sz, &p_addr, |
| GFP_KERNEL | __GFP_NOWARN); |
| if (!v_addr) { |
| IWL_DEBUG_INFO(trans, "Falling back to small chunks of DMA\n"); |
| chunk_sz = PAGE_SIZE; |
| v_addr = dma_alloc_coherent(trans->dev, chunk_sz, |
| &p_addr, GFP_KERNEL); |
| if (!v_addr) |
| return -ENOMEM; |
| } |
| |
| for (offset = 0; offset < section->len; offset += chunk_sz) { |
| u32 copy_size, dst_addr; |
| bool extended_addr = false; |
| |
| copy_size = min_t(u32, chunk_sz, section->len - offset); |
| dst_addr = section->offset + offset; |
| |
| if (dst_addr >= IWL_FW_MEM_EXTENDED_START && |
| dst_addr <= IWL_FW_MEM_EXTENDED_END) |
| extended_addr = true; |
| |
| if (extended_addr) |
| iwl_set_bits_prph(trans, LMPM_CHICK, |
| LMPM_CHICK_EXTENDED_ADDR_SPACE); |
| |
| memcpy(v_addr, (u8 *)section->data + offset, copy_size); |
| ret = iwl_pcie_load_firmware_chunk(trans, dst_addr, p_addr, |
| copy_size); |
| |
| if (extended_addr) |
| iwl_clear_bits_prph(trans, LMPM_CHICK, |
| LMPM_CHICK_EXTENDED_ADDR_SPACE); |
| |
| if (ret) { |
| IWL_ERR(trans, |
| "Could not load the [%d] uCode section\n", |
| section_num); |
| break; |
| } |
| } |
| |
| dma_free_coherent(trans->dev, chunk_sz, v_addr, p_addr); |
| return ret; |
| } |
| |
| /* |
| * Driver Takes the ownership on secure machine before FW load |
| * and prevent race with the BT load. |
| * W/A for ROM bug. (should be remove in the next Si step) |
| */ |
| static int iwl_pcie_rsa_race_bug_wa(struct iwl_trans *trans) |
| { |
| u32 val, loop = 1000; |
| |
| /* |
| * Check the RSA semaphore is accessible. |
| * If the HW isn't locked and the rsa semaphore isn't accessible, |
| * we are in trouble. |
| */ |
| val = iwl_read_prph(trans, PREG_AUX_BUS_WPROT_0); |
| if (val & (BIT(1) | BIT(17))) { |
| IWL_DEBUG_INFO(trans, |
| "can't access the RSA semaphore it is write protected\n"); |
| return 0; |
| } |
| |
| /* take ownership on the AUX IF */ |
| iwl_write_prph(trans, WFPM_CTRL_REG, WFPM_AUX_CTL_AUX_IF_MAC_OWNER_MSK); |
| iwl_write_prph(trans, AUX_MISC_MASTER1_EN, AUX_MISC_MASTER1_EN_SBE_MSK); |
| |
| do { |
| iwl_write_prph(trans, AUX_MISC_MASTER1_SMPHR_STATUS, 0x1); |
| val = iwl_read_prph(trans, AUX_MISC_MASTER1_SMPHR_STATUS); |
| if (val == 0x1) { |
| iwl_write_prph(trans, RSA_ENABLE, 0); |
| return 0; |
| } |
| |
| udelay(10); |
| loop--; |
| } while (loop > 0); |
| |
| IWL_ERR(trans, "Failed to take ownership on secure machine\n"); |
| return -EIO; |
| } |
| |
| static int iwl_pcie_load_cpu_sections_8000(struct iwl_trans *trans, |
| const struct fw_img *image, |
| int cpu, |
| int *first_ucode_section) |
| { |
| int shift_param; |
| int i, ret = 0, sec_num = 0x1; |
| u32 val, last_read_idx = 0; |
| |
| if (cpu == 1) { |
| shift_param = 0; |
| *first_ucode_section = 0; |
| } else { |
| shift_param = 16; |
| (*first_ucode_section)++; |
| } |
| |
| for (i = *first_ucode_section; i < IWL_UCODE_SECTION_MAX; i++) { |
| last_read_idx = i; |
| |
| /* |
| * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between |
| * CPU1 to CPU2. |
| * PAGING_SEPARATOR_SECTION delimiter - separate between |
| * CPU2 non paged to CPU2 paging sec. |
| */ |
| if (!image->sec[i].data || |
| image->sec[i].offset == CPU1_CPU2_SEPARATOR_SECTION || |
| image->sec[i].offset == PAGING_SEPARATOR_SECTION) { |
| IWL_DEBUG_FW(trans, |
| "Break since Data not valid or Empty section, sec = %d\n", |
| i); |
| break; |
| } |
| |
| ret = iwl_pcie_load_section(trans, i, &image->sec[i]); |
| if (ret) |
| return ret; |
| |
| /* Notify the ucode of the loaded section number and status */ |
| val = iwl_read_direct32(trans, FH_UCODE_LOAD_STATUS); |
| val = val | (sec_num << shift_param); |
| iwl_write_direct32(trans, FH_UCODE_LOAD_STATUS, val); |
| sec_num = (sec_num << 1) | 0x1; |
| } |
| |
| *first_ucode_section = last_read_idx; |
| |
| if (cpu == 1) |
| iwl_write_direct32(trans, FH_UCODE_LOAD_STATUS, 0xFFFF); |
| else |
| iwl_write_direct32(trans, FH_UCODE_LOAD_STATUS, 0xFFFFFFFF); |
| |
| return 0; |
| } |
| |
| static int iwl_pcie_load_cpu_sections(struct iwl_trans *trans, |
| const struct fw_img *image, |
| int cpu, |
| int *first_ucode_section) |
| { |
| int shift_param; |
| int i, ret = 0; |
| u32 last_read_idx = 0; |
| |
| if (cpu == 1) { |
| shift_param = 0; |
| *first_ucode_section = 0; |
| } else { |
| shift_param = 16; |
| (*first_ucode_section)++; |
| } |
| |
| for (i = *first_ucode_section; i < IWL_UCODE_SECTION_MAX; i++) { |
| last_read_idx = i; |
| |
| /* |
| * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between |
| * CPU1 to CPU2. |
| * PAGING_SEPARATOR_SECTION delimiter - separate between |
| * CPU2 non paged to CPU2 paging sec. |
| */ |
| if (!image->sec[i].data || |
| image->sec[i].offset == CPU1_CPU2_SEPARATOR_SECTION || |
| image->sec[i].offset == PAGING_SEPARATOR_SECTION) { |
| IWL_DEBUG_FW(trans, |
| "Break since Data not valid or Empty section, sec = %d\n", |
| i); |
| break; |
| } |
| |
| ret = iwl_pcie_load_section(trans, i, &image->sec[i]); |
| if (ret) |
| return ret; |
| } |
| |
| if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000) |
| iwl_set_bits_prph(trans, |
| CSR_UCODE_LOAD_STATUS_ADDR, |
| (LMPM_CPU_UCODE_LOADING_COMPLETED | |
| LMPM_CPU_HDRS_LOADING_COMPLETED | |
| LMPM_CPU_UCODE_LOADING_STARTED) << |
| shift_param); |
| |
| *first_ucode_section = last_read_idx; |
| |
| return 0; |
| } |
| |
| static void iwl_pcie_apply_destination(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| const struct iwl_fw_dbg_dest_tlv *dest = trans->dbg_dest_tlv; |
| int i; |
| |
| if (dest->version) |
| IWL_ERR(trans, |
| "DBG DEST version is %d - expect issues\n", |
| dest->version); |
| |
| IWL_INFO(trans, "Applying debug destination %s\n", |
| get_fw_dbg_mode_string(dest->monitor_mode)); |
| |
| if (dest->monitor_mode == EXTERNAL_MODE) |
| iwl_pcie_alloc_fw_monitor(trans, dest->size_power); |
| else |
| IWL_WARN(trans, "PCI should have external buffer debug\n"); |
| |
| for (i = 0; i < trans->dbg_dest_reg_num; i++) { |
| u32 addr = le32_to_cpu(dest->reg_ops[i].addr); |
| u32 val = le32_to_cpu(dest->reg_ops[i].val); |
| |
| switch (dest->reg_ops[i].op) { |
| case CSR_ASSIGN: |
| iwl_write32(trans, addr, val); |
| break; |
| case CSR_SETBIT: |
| iwl_set_bit(trans, addr, BIT(val)); |
| break; |
| case CSR_CLEARBIT: |
| iwl_clear_bit(trans, addr, BIT(val)); |
| break; |
| case PRPH_ASSIGN: |
| iwl_write_prph(trans, addr, val); |
| break; |
| case PRPH_SETBIT: |
| iwl_set_bits_prph(trans, addr, BIT(val)); |
| break; |
| case PRPH_CLEARBIT: |
| iwl_clear_bits_prph(trans, addr, BIT(val)); |
| break; |
| case PRPH_BLOCKBIT: |
| if (iwl_read_prph(trans, addr) & BIT(val)) { |
| IWL_ERR(trans, |
| "BIT(%u) in address 0x%x is 1, stopping FW configuration\n", |
| val, addr); |
| goto monitor; |
| } |
| break; |
| default: |
| IWL_ERR(trans, "FW debug - unknown OP %d\n", |
| dest->reg_ops[i].op); |
| break; |
| } |
| } |
| |
| monitor: |
| if (dest->monitor_mode == EXTERNAL_MODE && trans_pcie->fw_mon_size) { |
| iwl_write_prph(trans, le32_to_cpu(dest->base_reg), |
| trans_pcie->fw_mon_phys >> dest->base_shift); |
| if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000) |
| iwl_write_prph(trans, le32_to_cpu(dest->end_reg), |
| (trans_pcie->fw_mon_phys + |
| trans_pcie->fw_mon_size - 256) >> |
| dest->end_shift); |
| else |
| iwl_write_prph(trans, le32_to_cpu(dest->end_reg), |
| (trans_pcie->fw_mon_phys + |
| trans_pcie->fw_mon_size) >> |
| dest->end_shift); |
| } |
| } |
| |
| static int iwl_pcie_load_given_ucode(struct iwl_trans *trans, |
| const struct fw_img *image) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| int ret = 0; |
| int first_ucode_section; |
| |
| IWL_DEBUG_FW(trans, "working with %s CPU\n", |
| image->is_dual_cpus ? "Dual" : "Single"); |
| |
| /* load to FW the binary non secured sections of CPU1 */ |
| ret = iwl_pcie_load_cpu_sections(trans, image, 1, &first_ucode_section); |
| if (ret) |
| return ret; |
| |
| if (image->is_dual_cpus) { |
| /* set CPU2 header address */ |
| iwl_write_prph(trans, |
| LMPM_SECURE_UCODE_LOAD_CPU2_HDR_ADDR, |
| LMPM_SECURE_CPU2_HDR_MEM_SPACE); |
| |
| /* load to FW the binary sections of CPU2 */ |
| ret = iwl_pcie_load_cpu_sections(trans, image, 2, |
| &first_ucode_section); |
| if (ret) |
| return ret; |
| } |
| |
| /* supported for 7000 only for the moment */ |
| if (iwlwifi_mod_params.fw_monitor && |
| trans->cfg->device_family == IWL_DEVICE_FAMILY_7000) { |
| iwl_pcie_alloc_fw_monitor(trans, 0); |
| |
| if (trans_pcie->fw_mon_size) { |
| iwl_write_prph(trans, MON_BUFF_BASE_ADDR, |
| trans_pcie->fw_mon_phys >> 4); |
| iwl_write_prph(trans, MON_BUFF_END_ADDR, |
| (trans_pcie->fw_mon_phys + |
| trans_pcie->fw_mon_size) >> 4); |
| } |
| } else if (trans->dbg_dest_tlv) { |
| iwl_pcie_apply_destination(trans); |
| } |
| |
| /* release CPU reset */ |
| iwl_write32(trans, CSR_RESET, 0); |
| |
| return 0; |
| } |
| |
| static int iwl_pcie_load_given_ucode_8000(struct iwl_trans *trans, |
| const struct fw_img *image) |
| { |
| int ret = 0; |
| int first_ucode_section; |
| |
| IWL_DEBUG_FW(trans, "working with %s CPU\n", |
| image->is_dual_cpus ? "Dual" : "Single"); |
| |
| if (trans->dbg_dest_tlv) |
| iwl_pcie_apply_destination(trans); |
| |
| /* TODO: remove in the next Si step */ |
| ret = iwl_pcie_rsa_race_bug_wa(trans); |
| if (ret) |
| return ret; |
| |
| /* configure the ucode to be ready to get the secured image */ |
| /* release CPU reset */ |
| iwl_write_prph(trans, RELEASE_CPU_RESET, RELEASE_CPU_RESET_BIT); |
| |
| /* load to FW the binary Secured sections of CPU1 */ |
| ret = iwl_pcie_load_cpu_sections_8000(trans, image, 1, |
| &first_ucode_section); |
| if (ret) |
| return ret; |
| |
| /* load to FW the binary sections of CPU2 */ |
| return iwl_pcie_load_cpu_sections_8000(trans, image, 2, |
| &first_ucode_section); |
| } |
| |
| static int iwl_trans_pcie_start_fw(struct iwl_trans *trans, |
| const struct fw_img *fw, bool run_in_rfkill) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| bool hw_rfkill; |
| int ret; |
| |
| mutex_lock(&trans_pcie->mutex); |
| |
| /* Someone called stop_device, don't try to start_fw */ |
| if (trans_pcie->is_down) { |
| IWL_WARN(trans, |
| "Can't start_fw since the HW hasn't been started\n"); |
| ret = EIO; |
| goto out; |
| } |
| |
| /* This may fail if AMT took ownership of the device */ |
| if (iwl_pcie_prepare_card_hw(trans)) { |
| IWL_WARN(trans, "Exit HW not ready\n"); |
| ret = -EIO; |
| goto out; |
| } |
| |
| iwl_enable_rfkill_int(trans); |
| |
| /* If platform's RF_KILL switch is NOT set to KILL */ |
| hw_rfkill = iwl_is_rfkill_set(trans); |
| if (hw_rfkill) |
| set_bit(STATUS_RFKILL, &trans->status); |
| else |
| clear_bit(STATUS_RFKILL, &trans->status); |
| iwl_trans_pcie_rf_kill(trans, hw_rfkill); |
| if (hw_rfkill && !run_in_rfkill) { |
| ret = -ERFKILL; |
| goto out; |
| } |
| |
| iwl_write32(trans, CSR_INT, 0xFFFFFFFF); |
| |
| ret = iwl_pcie_nic_init(trans); |
| if (ret) { |
| IWL_ERR(trans, "Unable to init nic\n"); |
| goto out; |
| } |
| |
| /* make sure rfkill handshake bits are cleared */ |
| iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL); |
| iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, |
| CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED); |
| |
| /* clear (again), then enable host interrupts */ |
| iwl_write32(trans, CSR_INT, 0xFFFFFFFF); |
| iwl_enable_interrupts(trans); |
| |
| /* really make sure rfkill handshake bits are cleared */ |
| iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL); |
| iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL); |
| |
| /* Load the given image to the HW */ |
| if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000) |
| ret = iwl_pcie_load_given_ucode_8000(trans, fw); |
| else |
| ret = iwl_pcie_load_given_ucode(trans, fw); |
| |
| out: |
| mutex_unlock(&trans_pcie->mutex); |
| return ret; |
| } |
| |
| static void iwl_trans_pcie_fw_alive(struct iwl_trans *trans, u32 scd_addr) |
| { |
| iwl_pcie_reset_ict(trans); |
| iwl_pcie_tx_start(trans, scd_addr); |
| } |
| |
| static void _iwl_trans_pcie_stop_device(struct iwl_trans *trans, bool low_power) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| bool hw_rfkill, was_hw_rfkill; |
| |
| lockdep_assert_held(&trans_pcie->mutex); |
| |
| if (trans_pcie->is_down) |
| return; |
| |
| trans_pcie->is_down = true; |
| |
| was_hw_rfkill = iwl_is_rfkill_set(trans); |
| |
| /* tell the device to stop sending interrupts */ |
| spin_lock(&trans_pcie->irq_lock); |
| iwl_disable_interrupts(trans); |
| spin_unlock(&trans_pcie->irq_lock); |
| |
| /* device going down, Stop using ICT table */ |
| iwl_pcie_disable_ict(trans); |
| |
| /* |
| * If a HW restart happens during firmware loading, |
| * then the firmware loading might call this function |
| * and later it might be called again due to the |
| * restart. So don't process again if the device is |
| * already dead. |
| */ |
| if (test_and_clear_bit(STATUS_DEVICE_ENABLED, &trans->status)) { |
| IWL_DEBUG_INFO(trans, "DEVICE_ENABLED bit was set and is now cleared\n"); |
| iwl_pcie_tx_stop(trans); |
| iwl_pcie_rx_stop(trans); |
| |
| /* Power-down device's busmaster DMA clocks */ |
| if (!trans->cfg->apmg_not_supported) { |
| iwl_write_prph(trans, APMG_CLK_DIS_REG, |
| APMG_CLK_VAL_DMA_CLK_RQT); |
| udelay(5); |
| } |
| } |
| |
| /* Make sure (redundant) we've released our request to stay awake */ |
| iwl_clear_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); |
| |
| /* Stop the device, and put it in low power state */ |
| iwl_pcie_apm_stop(trans, false); |
| |
| /* stop and reset the on-board processor */ |
| iwl_write32(trans, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET); |
| udelay(20); |
| |
| /* |
| * Upon stop, the APM issues an interrupt if HW RF kill is set. |
| * This is a bug in certain verions of the hardware. |
| * Certain devices also keep sending HW RF kill interrupt all |
| * the time, unless the interrupt is ACKed even if the interrupt |
| * should be masked. Re-ACK all the interrupts here. |
| */ |
| spin_lock(&trans_pcie->irq_lock); |
| iwl_disable_interrupts(trans); |
| spin_unlock(&trans_pcie->irq_lock); |
| |
| |
| /* clear all status bits */ |
| clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); |
| clear_bit(STATUS_INT_ENABLED, &trans->status); |
| clear_bit(STATUS_TPOWER_PMI, &trans->status); |
| clear_bit(STATUS_RFKILL, &trans->status); |
| |
| /* |
| * Even if we stop the HW, we still want the RF kill |
| * interrupt |
| */ |
| iwl_enable_rfkill_int(trans); |
| |
| /* |
| * Check again since the RF kill state may have changed while |
| * all the interrupts were disabled, in this case we couldn't |
| * receive the RF kill interrupt and update the state in the |
| * op_mode. |
| * Don't call the op_mode if the rkfill state hasn't changed. |
| * This allows the op_mode to call stop_device from the rfkill |
| * notification without endless recursion. Under very rare |
| * circumstances, we might have a small recursion if the rfkill |
| * state changed exactly now while we were called from stop_device. |
| * This is very unlikely but can happen and is supported. |
| */ |
| hw_rfkill = iwl_is_rfkill_set(trans); |
| if (hw_rfkill) |
| set_bit(STATUS_RFKILL, &trans->status); |
| else |
| clear_bit(STATUS_RFKILL, &trans->status); |
| if (hw_rfkill != was_hw_rfkill) |
| iwl_trans_pcie_rf_kill(trans, hw_rfkill); |
| |
| /* re-take ownership to prevent other users from stealing the deivce */ |
| iwl_pcie_prepare_card_hw(trans); |
| } |
| |
| static void iwl_trans_pcie_stop_device(struct iwl_trans *trans, bool low_power) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| mutex_lock(&trans_pcie->mutex); |
| _iwl_trans_pcie_stop_device(trans, low_power); |
| mutex_unlock(&trans_pcie->mutex); |
| } |
| |
| void iwl_trans_pcie_rf_kill(struct iwl_trans *trans, bool state) |
| { |
| struct iwl_trans_pcie __maybe_unused *trans_pcie = |
| IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| lockdep_assert_held(&trans_pcie->mutex); |
| |
| if (iwl_op_mode_hw_rf_kill(trans->op_mode, state)) |
| _iwl_trans_pcie_stop_device(trans, true); |
| } |
| |
| static void iwl_trans_pcie_d3_suspend(struct iwl_trans *trans, bool test) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| if (trans->wowlan_d0i3) { |
| /* Enable persistence mode to avoid reset */ |
| iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, |
| CSR_HW_IF_CONFIG_REG_PERSIST_MODE); |
| } |
| |
| iwl_disable_interrupts(trans); |
| |
| /* |
| * in testing mode, the host stays awake and the |
| * hardware won't be reset (not even partially) |
| */ |
| if (test) |
| return; |
| |
| iwl_pcie_disable_ict(trans); |
| |
| synchronize_irq(trans_pcie->pci_dev->irq); |
| |
| iwl_clear_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); |
| iwl_clear_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_INIT_DONE); |
| |
| if (!trans->wowlan_d0i3) { |
| /* |
| * reset TX queues -- some of their registers reset during S3 |
| * so if we don't reset everything here the D3 image would try |
| * to execute some invalid memory upon resume |
| */ |
| iwl_trans_pcie_tx_reset(trans); |
| } |
| |
| iwl_pcie_set_pwr(trans, true); |
| } |
| |
| static int iwl_trans_pcie_d3_resume(struct iwl_trans *trans, |
| enum iwl_d3_status *status, |
| bool test) |
| { |
| u32 val; |
| int ret; |
| |
| if (test) { |
| iwl_enable_interrupts(trans); |
| *status = IWL_D3_STATUS_ALIVE; |
| return 0; |
| } |
| |
| /* |
| * Also enables interrupts - none will happen as the device doesn't |
| * know we're waking it up, only when the opmode actually tells it |
| * after this call. |
| */ |
| iwl_pcie_reset_ict(trans); |
| |
| iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); |
| iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE); |
| |
| if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000) |
| udelay(2); |
| |
| ret = iwl_poll_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, |
| CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, |
| 25000); |
| if (ret < 0) { |
| IWL_ERR(trans, "Failed to resume the device (mac ready)\n"); |
| return ret; |
| } |
| |
| iwl_pcie_set_pwr(trans, false); |
| |
| if (trans->wowlan_d0i3) { |
| iwl_clear_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); |
| } else { |
| iwl_trans_pcie_tx_reset(trans); |
| |
| ret = iwl_pcie_rx_init(trans); |
| if (ret) { |
| IWL_ERR(trans, |
| "Failed to resume the device (RX reset)\n"); |
| return ret; |
| } |
| } |
| |
| val = iwl_read32(trans, CSR_RESET); |
| if (val & CSR_RESET_REG_FLAG_NEVO_RESET) |
| *status = IWL_D3_STATUS_RESET; |
| else |
| *status = IWL_D3_STATUS_ALIVE; |
| |
| return 0; |
| } |
| |
| static int _iwl_trans_pcie_start_hw(struct iwl_trans *trans, bool low_power) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| bool hw_rfkill; |
| int err; |
| |
| lockdep_assert_held(&trans_pcie->mutex); |
| |
| err = iwl_pcie_prepare_card_hw(trans); |
| if (err) { |
| IWL_ERR(trans, "Error while preparing HW: %d\n", err); |
| return err; |
| } |
| |
| /* Reset the entire device */ |
| iwl_write32(trans, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET); |
| |
| usleep_range(10, 15); |
| |
| iwl_pcie_apm_init(trans); |
| |
| /* From now on, the op_mode will be kept updated about RF kill state */ |
| iwl_enable_rfkill_int(trans); |
| |
| /* Set is_down to false here so that...*/ |
| trans_pcie->is_down = false; |
| |
| hw_rfkill = iwl_is_rfkill_set(trans); |
| if (hw_rfkill) |
| set_bit(STATUS_RFKILL, &trans->status); |
| else |
| clear_bit(STATUS_RFKILL, &trans->status); |
| /* ... rfkill can call stop_device and set it false if needed */ |
| iwl_trans_pcie_rf_kill(trans, hw_rfkill); |
| |
| return 0; |
| } |
| |
| static int iwl_trans_pcie_start_hw(struct iwl_trans *trans, bool low_power) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| int ret; |
| |
| mutex_lock(&trans_pcie->mutex); |
| ret = _iwl_trans_pcie_start_hw(trans, low_power); |
| mutex_unlock(&trans_pcie->mutex); |
| |
| return ret; |
| } |
| |
| static void iwl_trans_pcie_op_mode_leave(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| mutex_lock(&trans_pcie->mutex); |
| |
| /* disable interrupts - don't enable HW RF kill interrupt */ |
| spin_lock(&trans_pcie->irq_lock); |
| iwl_disable_interrupts(trans); |
| spin_unlock(&trans_pcie->irq_lock); |
| |
| iwl_pcie_apm_stop(trans, true); |
| |
| spin_lock(&trans_pcie->irq_lock); |
| iwl_disable_interrupts(trans); |
| spin_unlock(&trans_pcie->irq_lock); |
| |
| iwl_pcie_disable_ict(trans); |
| |
| mutex_unlock(&trans_pcie->mutex); |
| |
| synchronize_irq(trans_pcie->pci_dev->irq); |
| } |
| |
| static void iwl_trans_pcie_write8(struct iwl_trans *trans, u32 ofs, u8 val) |
| { |
| writeb(val, IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs); |
| } |
| |
| static void iwl_trans_pcie_write32(struct iwl_trans *trans, u32 ofs, u32 val) |
| { |
| writel(val, IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs); |
| } |
| |
| static u32 iwl_trans_pcie_read32(struct iwl_trans *trans, u32 ofs) |
| { |
| return readl(IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs); |
| } |
| |
| static u32 iwl_trans_pcie_read_prph(struct iwl_trans *trans, u32 reg) |
| { |
| iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_RADDR, |
| ((reg & 0x000FFFFF) | (3 << 24))); |
| return iwl_trans_pcie_read32(trans, HBUS_TARG_PRPH_RDAT); |
| } |
| |
| static void iwl_trans_pcie_write_prph(struct iwl_trans *trans, u32 addr, |
| u32 val) |
| { |
| iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_WADDR, |
| ((addr & 0x000FFFFF) | (3 << 24))); |
| iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_WDAT, val); |
| } |
| |
| static int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget) |
| { |
| WARN_ON(1); |
| return 0; |
| } |
| |
| static void iwl_trans_pcie_configure(struct iwl_trans *trans, |
| const struct iwl_trans_config *trans_cfg) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| trans_pcie->cmd_queue = trans_cfg->cmd_queue; |
| trans_pcie->cmd_fifo = trans_cfg->cmd_fifo; |
| trans_pcie->cmd_q_wdg_timeout = trans_cfg->cmd_q_wdg_timeout; |
| if (WARN_ON(trans_cfg->n_no_reclaim_cmds > MAX_NO_RECLAIM_CMDS)) |
| trans_pcie->n_no_reclaim_cmds = 0; |
| else |
| trans_pcie->n_no_reclaim_cmds = trans_cfg->n_no_reclaim_cmds; |
| if (trans_pcie->n_no_reclaim_cmds) |
| memcpy(trans_pcie->no_reclaim_cmds, trans_cfg->no_reclaim_cmds, |
| trans_pcie->n_no_reclaim_cmds * sizeof(u8)); |
| |
| trans_pcie->rx_buf_size_8k = trans_cfg->rx_buf_size_8k; |
| if (trans_pcie->rx_buf_size_8k) |
| trans_pcie->rx_page_order = get_order(8 * 1024); |
| else |
| trans_pcie->rx_page_order = get_order(4 * 1024); |
| |
| trans_pcie->wide_cmd_header = trans_cfg->wide_cmd_header; |
| trans_pcie->command_names = trans_cfg->command_names; |
| trans_pcie->bc_table_dword = trans_cfg->bc_table_dword; |
| trans_pcie->scd_set_active = trans_cfg->scd_set_active; |
| |
| /* init ref_count to 1 (should be cleared when ucode is loaded) */ |
| trans_pcie->ref_count = 1; |
| |
| /* Initialize NAPI here - it should be before registering to mac80211 |
| * in the opmode but after the HW struct is allocated. |
| * As this function may be called again in some corner cases don't |
| * do anything if NAPI was already initialized. |
| */ |
| if (!trans_pcie->napi.poll) { |
| init_dummy_netdev(&trans_pcie->napi_dev); |
| netif_napi_add(&trans_pcie->napi_dev, &trans_pcie->napi, |
| iwl_pcie_dummy_napi_poll, 64); |
| } |
| } |
| |
| void iwl_trans_pcie_free(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| synchronize_irq(trans_pcie->pci_dev->irq); |
| |
| iwl_pcie_tx_free(trans); |
| iwl_pcie_rx_free(trans); |
| |
| free_irq(trans_pcie->pci_dev->irq, trans); |
| iwl_pcie_free_ict(trans); |
| |
| pci_disable_msi(trans_pcie->pci_dev); |
| iounmap(trans_pcie->hw_base); |
| pci_release_regions(trans_pcie->pci_dev); |
| pci_disable_device(trans_pcie->pci_dev); |
| |
| if (trans_pcie->napi.poll) |
| netif_napi_del(&trans_pcie->napi); |
| |
| iwl_pcie_free_fw_monitor(trans); |
| |
| iwl_trans_free(trans); |
| } |
| |
| static void iwl_trans_pcie_set_pmi(struct iwl_trans *trans, bool state) |
| { |
| if (state) |
| set_bit(STATUS_TPOWER_PMI, &trans->status); |
| else |
| clear_bit(STATUS_TPOWER_PMI, &trans->status); |
| } |
| |
| static bool iwl_trans_pcie_grab_nic_access(struct iwl_trans *trans, bool silent, |
| unsigned long *flags) |
| { |
| int ret; |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| spin_lock_irqsave(&trans_pcie->reg_lock, *flags); |
| |
| if (trans_pcie->cmd_hold_nic_awake) |
| goto out; |
| |
| /* this bit wakes up the NIC */ |
| __iwl_trans_pcie_set_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); |
| if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000) |
| udelay(2); |
| |
| /* |
| * These bits say the device is running, and should keep running for |
| * at least a short while (at least as long as MAC_ACCESS_REQ stays 1), |
| * but they do not indicate that embedded SRAM is restored yet; |
| * 3945 and 4965 have volatile SRAM, and must save/restore contents |
| * to/from host DRAM when sleeping/waking for power-saving. |
| * Each direction takes approximately 1/4 millisecond; with this |
| * overhead, it's a good idea to grab and hold MAC_ACCESS_REQUEST if a |
| * series of register accesses are expected (e.g. reading Event Log), |
| * to keep device from sleeping. |
| * |
| * CSR_UCODE_DRV_GP1 register bit MAC_SLEEP == 0 indicates that |
| * SRAM is okay/restored. We don't check that here because this call |
| * is just for hardware register access; but GP1 MAC_SLEEP check is a |
| * good idea before accessing 3945/4965 SRAM (e.g. reading Event Log). |
| * |
| * 5000 series and later (including 1000 series) have non-volatile SRAM, |
| * and do not save/restore SRAM when power cycling. |
| */ |
| ret = iwl_poll_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN, |
| (CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY | |
| CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP), 15000); |
| if (unlikely(ret < 0)) { |
| iwl_write32(trans, CSR_RESET, CSR_RESET_REG_FLAG_FORCE_NMI); |
| if (!silent) { |
| u32 val = iwl_read32(trans, CSR_GP_CNTRL); |
| WARN_ONCE(1, |
| "Timeout waiting for hardware access (CSR_GP_CNTRL 0x%08x)\n", |
| val); |
| spin_unlock_irqrestore(&trans_pcie->reg_lock, *flags); |
| return false; |
| } |
| } |
| |
| out: |
| /* |
| * Fool sparse by faking we release the lock - sparse will |
| * track nic_access anyway. |
| */ |
| __release(&trans_pcie->reg_lock); |
| return true; |
| } |
| |
| static void iwl_trans_pcie_release_nic_access(struct iwl_trans *trans, |
| unsigned long *flags) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| lockdep_assert_held(&trans_pcie->reg_lock); |
| |
| /* |
| * Fool sparse by faking we acquiring the lock - sparse will |
| * track nic_access anyway. |
| */ |
| __acquire(&trans_pcie->reg_lock); |
| |
| if (trans_pcie->cmd_hold_nic_awake) |
| goto out; |
| |
| __iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); |
| /* |
| * Above we read the CSR_GP_CNTRL register, which will flush |
| * any previous writes, but we need the write that clears the |
| * MAC_ACCESS_REQ bit to be performed before any other writes |
| * scheduled on different CPUs (after we drop reg_lock). |
| */ |
| mmiowb(); |
| out: |
| spin_unlock_irqrestore(&trans_pcie->reg_lock, *flags); |
| } |
| |
| static int iwl_trans_pcie_read_mem(struct iwl_trans *trans, u32 addr, |
| void *buf, int dwords) |
| { |
| unsigned long flags; |
| int offs, ret = 0; |
| u32 *vals = buf; |
| |
| if (iwl_trans_grab_nic_access(trans, false, &flags)) { |
| iwl_write32(trans, HBUS_TARG_MEM_RADDR, addr); |
| for (offs = 0; offs < dwords; offs++) |
| vals[offs] = iwl_read32(trans, HBUS_TARG_MEM_RDAT); |
| iwl_trans_release_nic_access(trans, &flags); |
| } else { |
| ret = -EBUSY; |
| } |
| return ret; |
| } |
| |
| static int iwl_trans_pcie_write_mem(struct iwl_trans *trans, u32 addr, |
| const void *buf, int dwords) |
| { |
| unsigned long flags; |
| int offs, ret = 0; |
| const u32 *vals = buf; |
| |
| if (iwl_trans_grab_nic_access(trans, false, &flags)) { |
| iwl_write32(trans, HBUS_TARG_MEM_WADDR, addr); |
| for (offs = 0; offs < dwords; offs++) |
| iwl_write32(trans, HBUS_TARG_MEM_WDAT, |
| vals ? vals[offs] : 0); |
| iwl_trans_release_nic_access(trans, &flags); |
| } else { |
| ret = -EBUSY; |
| } |
| return ret; |
| } |
| |
| static void iwl_trans_pcie_freeze_txq_timer(struct iwl_trans *trans, |
| unsigned long txqs, |
| bool freeze) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| int queue; |
| |
| for_each_set_bit(queue, &txqs, BITS_PER_LONG) { |
| struct iwl_txq *txq = &trans_pcie->txq[queue]; |
| unsigned long now; |
| |
| spin_lock_bh(&txq->lock); |
| |
| now = jiffies; |
| |
| if (txq->frozen == freeze) |
| goto next_queue; |
| |
| IWL_DEBUG_TX_QUEUES(trans, "%s TXQ %d\n", |
| freeze ? "Freezing" : "Waking", queue); |
| |
| txq->frozen = freeze; |
| |
| if (txq->q.read_ptr == txq->q.write_ptr) |
| goto next_queue; |
| |
| if (freeze) { |
| if (unlikely(time_after(now, |
| txq->stuck_timer.expires))) { |
| /* |
| * The timer should have fired, maybe it is |
| * spinning right now on the lock. |
| */ |
| goto next_queue; |
| } |
| /* remember how long until the timer fires */ |
| txq->frozen_expiry_remainder = |
| txq->stuck_timer.expires - now; |
| del_timer(&txq->stuck_timer); |
| goto next_queue; |
| } |
| |
| /* |
| * Wake a non-empty queue -> arm timer with the |
| * remainder before it froze |
| */ |
| mod_timer(&txq->stuck_timer, |
| now + txq->frozen_expiry_remainder); |
| |
| next_queue: |
| spin_unlock_bh(&txq->lock); |
| } |
| } |
| |
| #define IWL_FLUSH_WAIT_MS 2000 |
| |
| static int iwl_trans_pcie_wait_txq_empty(struct iwl_trans *trans, u32 txq_bm) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_txq *txq; |
| struct iwl_queue *q; |
| int cnt; |
| unsigned long now = jiffies; |
| u32 scd_sram_addr; |
| u8 buf[16]; |
| int ret = 0; |
| |
| /* waiting for all the tx frames complete might take a while */ |
| for (cnt = 0; cnt < trans->cfg->base_params->num_of_queues; cnt++) { |
| u8 wr_ptr; |
| |
| if (cnt == trans_pcie->cmd_queue) |
| continue; |
| if (!test_bit(cnt, trans_pcie->queue_used)) |
| continue; |
| if (!(BIT(cnt) & txq_bm)) |
| continue; |
| |
| IWL_DEBUG_TX_QUEUES(trans, "Emptying queue %d...\n", cnt); |
| txq = &trans_pcie->txq[cnt]; |
| q = &txq->q; |
| wr_ptr = ACCESS_ONCE(q->write_ptr); |
| |
| while (q->read_ptr != ACCESS_ONCE(q->write_ptr) && |
| !time_after(jiffies, |
| now + msecs_to_jiffies(IWL_FLUSH_WAIT_MS))) { |
| u8 write_ptr = ACCESS_ONCE(q->write_ptr); |
| |
| if (WARN_ONCE(wr_ptr != write_ptr, |
| "WR pointer moved while flushing %d -> %d\n", |
| wr_ptr, write_ptr)) |
| return -ETIMEDOUT; |
| msleep(1); |
| } |
| |
| if (q->read_ptr != q->write_ptr) { |
| IWL_ERR(trans, |
| "fail to flush all tx fifo queues Q %d\n", cnt); |
| ret = -ETIMEDOUT; |
| break; |
| } |
| IWL_DEBUG_TX_QUEUES(trans, "Queue %d is now empty.\n", cnt); |
| } |
| |
| if (!ret) |
| return 0; |
| |
| IWL_ERR(trans, "Current SW read_ptr %d write_ptr %d\n", |
| txq->q.read_ptr, txq->q.write_ptr); |
| |
| scd_sram_addr = trans_pcie->scd_base_addr + |
| SCD_TX_STTS_QUEUE_OFFSET(txq->q.id); |
| iwl_trans_read_mem_bytes(trans, scd_sram_addr, buf, sizeof(buf)); |
| |
| iwl_print_hex_error(trans, buf, sizeof(buf)); |
| |
| for (cnt = 0; cnt < FH_TCSR_CHNL_NUM; cnt++) |
| IWL_ERR(trans, "FH TRBs(%d) = 0x%08x\n", cnt, |
| iwl_read_direct32(trans, FH_TX_TRB_REG(cnt))); |
| |
| for (cnt = 0; cnt < trans->cfg->base_params->num_of_queues; cnt++) { |
| u32 status = iwl_read_prph(trans, SCD_QUEUE_STATUS_BITS(cnt)); |
| u8 fifo = (status >> SCD_QUEUE_STTS_REG_POS_TXF) & 0x7; |
| bool active = !!(status & BIT(SCD_QUEUE_STTS_REG_POS_ACTIVE)); |
| u32 tbl_dw = |
| iwl_trans_read_mem32(trans, trans_pcie->scd_base_addr + |
| SCD_TRANS_TBL_OFFSET_QUEUE(cnt)); |
| |
| if (cnt & 0x1) |
| tbl_dw = (tbl_dw & 0xFFFF0000) >> 16; |
| else |
| tbl_dw = tbl_dw & 0x0000FFFF; |
| |
| IWL_ERR(trans, |
| "Q %d is %sactive and mapped to fifo %d ra_tid 0x%04x [%d,%d]\n", |
| cnt, active ? "" : "in", fifo, tbl_dw, |
| iwl_read_prph(trans, SCD_QUEUE_RDPTR(cnt)) & |
| (TFD_QUEUE_SIZE_MAX - 1), |
| iwl_read_prph(trans, SCD_QUEUE_WRPTR(cnt))); |
| } |
| |
| return ret; |
| } |
| |
| static void iwl_trans_pcie_set_bits_mask(struct iwl_trans *trans, u32 reg, |
| u32 mask, u32 value) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&trans_pcie->reg_lock, flags); |
| __iwl_trans_pcie_set_bits_mask(trans, reg, mask, value); |
| spin_unlock_irqrestore(&trans_pcie->reg_lock, flags); |
| } |
| |
| void iwl_trans_pcie_ref(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| unsigned long flags; |
| |
| if (iwlwifi_mod_params.d0i3_disable) |
| return; |
| |
| spin_lock_irqsave(&trans_pcie->ref_lock, flags); |
| IWL_DEBUG_RPM(trans, "ref_counter: %d\n", trans_pcie->ref_count); |
| trans_pcie->ref_count++; |
| spin_unlock_irqrestore(&trans_pcie->ref_lock, flags); |
| } |
| |
| void iwl_trans_pcie_unref(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| unsigned long flags; |
| |
| if (iwlwifi_mod_params.d0i3_disable) |
| return; |
| |
| spin_lock_irqsave(&trans_pcie->ref_lock, flags); |
| IWL_DEBUG_RPM(trans, "ref_counter: %d\n", trans_pcie->ref_count); |
| if (WARN_ON_ONCE(trans_pcie->ref_count == 0)) { |
| spin_unlock_irqrestore(&trans_pcie->ref_lock, flags); |
| return; |
| } |
| trans_pcie->ref_count--; |
| spin_unlock_irqrestore(&trans_pcie->ref_lock, flags); |
| } |
| |
| static const char *get_csr_string(int cmd) |
| { |
| #define IWL_CMD(x) case x: return #x |
| switch (cmd) { |
| IWL_CMD(CSR_HW_IF_CONFIG_REG); |
| IWL_CMD(CSR_INT_COALESCING); |
| IWL_CMD(CSR_INT); |
| IWL_CMD(CSR_INT_MASK); |
| IWL_CMD(CSR_FH_INT_STATUS); |
| IWL_CMD(CSR_GPIO_IN); |
| IWL_CMD(CSR_RESET); |
| IWL_CMD(CSR_GP_CNTRL); |
| IWL_CMD(CSR_HW_REV); |
| IWL_CMD(CSR_EEPROM_REG); |
| IWL_CMD(CSR_EEPROM_GP); |
| IWL_CMD(CSR_OTP_GP_REG); |
| IWL_CMD(CSR_GIO_REG); |
| IWL_CMD(CSR_GP_UCODE_REG); |
| IWL_CMD(CSR_GP_DRIVER_REG); |
| IWL_CMD(CSR_UCODE_DRV_GP1); |
| IWL_CMD(CSR_UCODE_DRV_GP2); |
| IWL_CMD(CSR_LED_REG); |
| IWL_CMD(CSR_DRAM_INT_TBL_REG); |
| IWL_CMD(CSR_GIO_CHICKEN_BITS); |
| IWL_CMD(CSR_ANA_PLL_CFG); |
| IWL_CMD(CSR_HW_REV_WA_REG); |
| IWL_CMD(CSR_MONITOR_STATUS_REG); |
| IWL_CMD(CSR_DBG_HPET_MEM_REG); |
| default: |
| return "UNKNOWN"; |
| } |
| #undef IWL_CMD |
| } |
| |
| void iwl_pcie_dump_csr(struct iwl_trans *trans) |
| { |
| int i; |
| static const u32 csr_tbl[] = { |
| CSR_HW_IF_CONFIG_REG, |
| CSR_INT_COALESCING, |
| CSR_INT, |
| CSR_INT_MASK, |
| CSR_FH_INT_STATUS, |
| CSR_GPIO_IN, |
| CSR_RESET, |
| CSR_GP_CNTRL, |
| CSR_HW_REV, |
| CSR_EEPROM_REG, |
| CSR_EEPROM_GP, |
| CSR_OTP_GP_REG, |
| CSR_GIO_REG, |
| CSR_GP_UCODE_REG, |
| CSR_GP_DRIVER_REG, |
| CSR_UCODE_DRV_GP1, |
| CSR_UCODE_DRV_GP2, |
| CSR_LED_REG, |
| CSR_DRAM_INT_TBL_REG, |
| CSR_GIO_CHICKEN_BITS, |
| CSR_ANA_PLL_CFG, |
| CSR_MONITOR_STATUS_REG, |
| CSR_HW_REV_WA_REG, |
| CSR_DBG_HPET_MEM_REG |
| }; |
| IWL_ERR(trans, "CSR values:\n"); |
| IWL_ERR(trans, "(2nd byte of CSR_INT_COALESCING is " |
| "CSR_INT_PERIODIC_REG)\n"); |
| for (i = 0; i < ARRAY_SIZE(csr_tbl); i++) { |
| IWL_ERR(trans, " %25s: 0X%08x\n", |
| get_csr_string(csr_tbl[i]), |
| iwl_read32(trans, csr_tbl[i])); |
| } |
| } |
| |
| #ifdef CONFIG_IWLWIFI_DEBUGFS |
| /* create and remove of files */ |
| #define DEBUGFS_ADD_FILE(name, parent, mode) do { \ |
| if (!debugfs_create_file(#name, mode, parent, trans, \ |
| &iwl_dbgfs_##name##_ops)) \ |
| goto err; \ |
| } while (0) |
| |
| /* file operation */ |
| #define DEBUGFS_READ_FILE_OPS(name) \ |
| static const struct file_operations iwl_dbgfs_##name##_ops = { \ |
| .read = iwl_dbgfs_##name##_read, \ |
| .open = simple_open, \ |
| .llseek = generic_file_llseek, \ |
| }; |
| |
| #define DEBUGFS_WRITE_FILE_OPS(name) \ |
| static const struct file_operations iwl_dbgfs_##name##_ops = { \ |
| .write = iwl_dbgfs_##name##_write, \ |
| .open = simple_open, \ |
| .llseek = generic_file_llseek, \ |
| }; |
| |
| #define DEBUGFS_READ_WRITE_FILE_OPS(name) \ |
| static const struct file_operations iwl_dbgfs_##name##_ops = { \ |
| .write = iwl_dbgfs_##name##_write, \ |
| .read = iwl_dbgfs_##name##_read, \ |
| .open = simple_open, \ |
| .llseek = generic_file_llseek, \ |
| }; |
| |
| static ssize_t iwl_dbgfs_tx_queue_read(struct file *file, |
| char __user *user_buf, |
| size_t count, loff_t *ppos) |
| { |
| struct iwl_trans *trans = file->private_data; |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_txq *txq; |
| struct iwl_queue *q; |
| char *buf; |
| int pos = 0; |
| int cnt; |
| int ret; |
| size_t bufsz; |
| |
| bufsz = sizeof(char) * 75 * trans->cfg->base_params->num_of_queues; |
| |
| if (!trans_pcie->txq) |
| return -EAGAIN; |
| |
| buf = kzalloc(bufsz, GFP_KERNEL); |
| if (!buf) |
| return -ENOMEM; |
| |
| for (cnt = 0; cnt < trans->cfg->base_params->num_of_queues; cnt++) { |
| txq = &trans_pcie->txq[cnt]; |
| q = &txq->q; |
| pos += scnprintf(buf + pos, bufsz - pos, |
| "hwq %.2d: read=%u write=%u use=%d stop=%d need_update=%d frozen=%d%s\n", |
| cnt, q->read_ptr, q->write_ptr, |
| !!test_bit(cnt, trans_pcie->queue_used), |
| !!test_bit(cnt, trans_pcie->queue_stopped), |
| txq->need_update, txq->frozen, |
| (cnt == trans_pcie->cmd_queue ? " HCMD" : "")); |
| } |
| ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos); |
| kfree(buf); |
| return ret; |
| } |
| |
| static ssize_t iwl_dbgfs_rx_queue_read(struct file *file, |
| char __user *user_buf, |
| size_t count, loff_t *ppos) |
| { |
| struct iwl_trans *trans = file->private_data; |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_rxq *rxq = &trans_pcie->rxq; |
| char buf[256]; |
| int pos = 0; |
| const size_t bufsz = sizeof(buf); |
| |
| pos += scnprintf(buf + pos, bufsz - pos, "read: %u\n", |
| rxq->read); |
| pos += scnprintf(buf + pos, bufsz - pos, "write: %u\n", |
| rxq->write); |
| pos += scnprintf(buf + pos, bufsz - pos, "write_actual: %u\n", |
| rxq->write_actual); |
| pos += scnprintf(buf + pos, bufsz - pos, "need_update: %d\n", |
| rxq->need_update); |
| pos += scnprintf(buf + pos, bufsz - pos, "free_count: %u\n", |
| rxq->free_count); |
| if (rxq->rb_stts) { |
| pos += scnprintf(buf + pos, bufsz - pos, "closed_rb_num: %u\n", |
| le16_to_cpu(rxq->rb_stts->closed_rb_num) & 0x0FFF); |
| } else { |
| pos += scnprintf(buf + pos, bufsz - pos, |
| "closed_rb_num: Not Allocated\n"); |
| } |
| return simple_read_from_buffer(user_buf, count, ppos, buf, pos); |
| } |
| |
| static ssize_t iwl_dbgfs_interrupt_read(struct file *file, |
| char __user *user_buf, |
| size_t count, loff_t *ppos) |
| { |
| struct iwl_trans *trans = file->private_data; |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct isr_statistics *isr_stats = &trans_pcie->isr_stats; |
| |
| int pos = 0; |
| char *buf; |
| int bufsz = 24 * 64; /* 24 items * 64 char per item */ |
| ssize_t ret; |
| |
| buf = kzalloc(bufsz, GFP_KERNEL); |
| if (!buf) |
| return -ENOMEM; |
| |
| pos += scnprintf(buf + pos, bufsz - pos, |
| "Interrupt Statistics Report:\n"); |
| |
| pos += scnprintf(buf + pos, bufsz - pos, "HW Error:\t\t\t %u\n", |
| isr_stats->hw); |
| pos += scnprintf(buf + pos, bufsz - pos, "SW Error:\t\t\t %u\n", |
| isr_stats->sw); |
| if (isr_stats->sw || isr_stats->hw) { |
| pos += scnprintf(buf + pos, bufsz - pos, |
| "\tLast Restarting Code: 0x%X\n", |
| isr_stats->err_code); |
| } |
| #ifdef CONFIG_IWLWIFI_DEBUG |
| pos += scnprintf(buf + pos, bufsz - pos, "Frame transmitted:\t\t %u\n", |
| isr_stats->sch); |
| pos += scnprintf(buf + pos, bufsz - pos, "Alive interrupt:\t\t %u\n", |
| isr_stats->alive); |
| #endif |
| pos += scnprintf(buf + pos, bufsz - pos, |
| "HW RF KILL switch toggled:\t %u\n", isr_stats->rfkill); |
| |
| pos += scnprintf(buf + pos, bufsz - pos, "CT KILL:\t\t\t %u\n", |
| isr_stats->ctkill); |
| |
| pos += scnprintf(buf + pos, bufsz - pos, "Wakeup Interrupt:\t\t %u\n", |
| isr_stats->wakeup); |
| |
| pos += scnprintf(buf + pos, bufsz - pos, |
| "Rx command responses:\t\t %u\n", isr_stats->rx); |
| |
| pos += scnprintf(buf + pos, bufsz - pos, "Tx/FH interrupt:\t\t %u\n", |
| isr_stats->tx); |
| |
| pos += scnprintf(buf + pos, bufsz - pos, "Unexpected INTA:\t\t %u\n", |
| isr_stats->unhandled); |
| |
| ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos); |
| kfree(buf); |
| return ret; |
| } |
| |
| static ssize_t iwl_dbgfs_interrupt_write(struct file *file, |
| const char __user *user_buf, |
| size_t count, loff_t *ppos) |
| { |
| struct iwl_trans *trans = file->private_data; |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct isr_statistics *isr_stats = &trans_pcie->isr_stats; |
| |
| char buf[8]; |
| int buf_size; |
| u32 reset_flag; |
| |
| memset(buf, 0, sizeof(buf)); |
| buf_size = min(count, sizeof(buf) - 1); |
| if (copy_from_user(buf, user_buf, buf_size)) |
| return -EFAULT; |
| if (sscanf(buf, "%x", &reset_flag) != 1) |
| return -EFAULT; |
| if (reset_flag == 0) |
| memset(isr_stats, 0, sizeof(*isr_stats)); |
| |
| return count; |
| } |
| |
| static ssize_t iwl_dbgfs_csr_write(struct file *file, |
| const char __user *user_buf, |
| size_t count, loff_t *ppos) |
| { |
| struct iwl_trans *trans = file->private_data; |
| char buf[8]; |
| int buf_size; |
| int csr; |
| |
| memset(buf, 0, sizeof(buf)); |
| buf_size = min(count, sizeof(buf) - 1); |
| if (copy_from_user(buf, user_buf, buf_size)) |
| return -EFAULT; |
| if (sscanf(buf, "%d", &csr) != 1) |
| return -EFAULT; |
| |
| iwl_pcie_dump_csr(trans); |
| |
| return count; |
| } |
| |
| static ssize_t iwl_dbgfs_fh_reg_read(struct file *file, |
| char __user *user_buf, |
| size_t count, loff_t *ppos) |
| { |
| struct iwl_trans *trans = file->private_data; |
| char *buf = NULL; |
| ssize_t ret; |
| |
| ret = iwl_dump_fh(trans, &buf); |
| if (ret < 0) |
| return ret; |
| if (!buf) |
| return -EINVAL; |
| ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); |
| kfree(buf); |
| return ret; |
| } |
| |
| DEBUGFS_READ_WRITE_FILE_OPS(interrupt); |
| DEBUGFS_READ_FILE_OPS(fh_reg); |
| DEBUGFS_READ_FILE_OPS(rx_queue); |
| DEBUGFS_READ_FILE_OPS(tx_queue); |
| DEBUGFS_WRITE_FILE_OPS(csr); |
| |
| /* |
| * Create the debugfs files and directories |
| * |
| */ |
| static int iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans, |
| struct dentry *dir) |
| { |
| DEBUGFS_ADD_FILE(rx_queue, dir, S_IRUSR); |
| DEBUGFS_ADD_FILE(tx_queue, dir, S_IRUSR); |
| DEBUGFS_ADD_FILE(interrupt, dir, S_IWUSR | S_IRUSR); |
| DEBUGFS_ADD_FILE(csr, dir, S_IWUSR); |
| DEBUGFS_ADD_FILE(fh_reg, dir, S_IRUSR); |
| return 0; |
| |
| err: |
| IWL_ERR(trans, "failed to create the trans debugfs entry\n"); |
| return -ENOMEM; |
| } |
| #else |
| static int iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans, |
| struct dentry *dir) |
| { |
| return 0; |
| } |
| #endif /*CONFIG_IWLWIFI_DEBUGFS */ |
| |
| static u32 iwl_trans_pcie_get_cmdlen(struct iwl_tfd *tfd) |
| { |
| u32 cmdlen = 0; |
| int i; |
| |
| for (i = 0; i < IWL_NUM_OF_TBS; i++) |
| cmdlen += iwl_pcie_tfd_tb_get_len(tfd, i); |
| |
| return cmdlen; |
| } |
| |
| static const struct { |
| u32 start, end; |
| } iwl_prph_dump_addr[] = { |
| { .start = 0x00a00000, .end = 0x00a00000 }, |
| { .start = 0x00a0000c, .end = 0x00a00024 }, |
| { .start = 0x00a0002c, .end = 0x00a0003c }, |
| { .start = 0x00a00410, .end = 0x00a00418 }, |
| { .start = 0x00a00420, .end = 0x00a00420 }, |
| { .start = 0x00a00428, .end = 0x00a00428 }, |
| { .start = 0x00a00430, .end = 0x00a0043c }, |
| { .start = 0x00a00444, .end = 0x00a00444 }, |
| { .start = 0x00a004c0, .end = 0x00a004cc }, |
| { .start = 0x00a004d8, .end = 0x00a004d8 }, |
| { .start = 0x00a004e0, .end = 0x00a004f0 }, |
| { .start = 0x00a00840, .end = 0x00a00840 }, |
| { .start = 0x00a00850, .end = 0x00a00858 }, |
| { .start = 0x00a01004, .end = 0x00a01008 }, |
| { .start = 0x00a01010, .end = 0x00a01010 }, |
| { .start = 0x00a01018, .end = 0x00a01018 }, |
| { .start = 0x00a01024, .end = 0x00a01024 }, |
| { .start = 0x00a0102c, .end = 0x00a01034 }, |
| { .start = 0x00a0103c, .end = 0x00a01040 }, |
| { .start = 0x00a01048, .end = 0x00a01094 }, |
| { .start = 0x00a01c00, .end = 0x00a01c20 }, |
| { .start = 0x00a01c58, .end = 0x00a01c58 }, |
| { .start = 0x00a01c7c, .end = 0x00a01c7c }, |
| { .start = 0x00a01c28, .end = 0x00a01c54 }, |
| { .start = 0x00a01c5c, .end = 0x00a01c5c }, |
| { .start = 0x00a01c60, .end = 0x00a01cdc }, |
| { .start = 0x00a01ce0, .end = 0x00a01d0c }, |
| { .start = 0x00a01d18, .end = 0x00a01d20 }, |
| { .start = 0x00a01d2c, .end = 0x00a01d30 }, |
| { .start = 0x00a01d40, .end = 0x00a01d5c }, |
| { .start = 0x00a01d80, .end = 0x00a01d80 }, |
| { .start = 0x00a01d98, .end = 0x00a01d9c }, |
| { .start = 0x00a01da8, .end = 0x00a01da8 }, |
| { .start = 0x00a01db8, .end = 0x00a01df4 }, |
| { .start = 0x00a01dc0, .end = 0x00a01dfc }, |
| { .start = 0x00a01e00, .end = 0x00a01e2c }, |
| { .start = 0x00a01e40, .end = 0x00a01e60 }, |
| { .start = 0x00a01e68, .end = 0x00a01e6c }, |
| { .start = 0x00a01e74, .end = 0x00a01e74 }, |
| { .start = 0x00a01e84, .end = 0x00a01e90 }, |
| { .start = 0x00a01e9c, .end = 0x00a01ec4 }, |
| { .start = 0x00a01ed0, .end = 0x00a01ee0 }, |
| { .start = 0x00a01f00, .end = 0x00a01f1c }, |
| { .start = 0x00a01f44, .end = 0x00a01ffc }, |
| { .start = 0x00a02000, .end = 0x00a02048 }, |
| { .start = 0x00a02068, .end = 0x00a020f0 }, |
| { .start = 0x00a02100, .end = 0x00a02118 }, |
| { .start = 0x00a02140, .end = 0x00a0214c }, |
| { .start = 0x00a02168, .end = 0x00a0218c }, |
| { .start = 0x00a021c0, .end = 0x00a021c0 }, |
| { .start = 0x00a02400, .end = 0x00a02410 }, |
| { .start = 0x00a02418, .end = 0x00a02420 }, |
| { .start = 0x00a02428, .end = 0x00a0242c }, |
| { .start = 0x00a02434, .end = 0x00a02434 }, |
| { .start = 0x00a02440, .end = 0x00a02460 }, |
| { .start = 0x00a02468, .end = 0x00a024b0 }, |
| { .start = 0x00a024c8, .end = 0x00a024cc }, |
| { .start = 0x00a02500, .end = 0x00a02504 }, |
| { .start = 0x00a0250c, .end = 0x00a02510 }, |
| { .start = 0x00a02540, .end = 0x00a02554 }, |
| { .start = 0x00a02580, .end = 0x00a025f4 }, |
| { .start = 0x00a02600, .end = 0x00a0260c }, |
| { .start = 0x00a02648, .end = 0x00a02650 }, |
| { .start = 0x00a02680, .end = 0x00a02680 }, |
| { .start = 0x00a026c0, .end = 0x00a026d0 }, |
| { .start = 0x00a02700, .end = 0x00a0270c }, |
| { .start = 0x00a02804, .end = 0x00a02804 }, |
| { .start = 0x00a02818, .end = 0x00a0281c }, |
| { .start = 0x00a02c00, .end = 0x00a02db4 }, |
| { .start = 0x00a02df4, .end = 0x00a02fb0 }, |
| { .start = 0x00a03000, .end = 0x00a03014 }, |
| { .start = 0x00a0301c, .end = 0x00a0302c }, |
| { .start = 0x00a03034, .end = 0x00a03038 }, |
| { .start = 0x00a03040, .end = 0x00a03048 }, |
| { .start = 0x00a03060, .end = 0x00a03068 }, |
| { .start = 0x00a03070, .end = 0x00a03074 }, |
| { .start = 0x00a0307c, .end = 0x00a0307c }, |
| { .start = 0x00a03080, .end = 0x00a03084 }, |
| { .start = 0x00a0308c, .end = 0x00a03090 }, |
| { .start = 0x00a03098, .end = 0x00a03098 }, |
| { .start = 0x00a030a0, .end = 0x00a030a0 }, |
| { .start = 0x00a030a8, .end = 0x00a030b4 }, |
| { .start = 0x00a030bc, .end = 0x00a030bc }, |
| { .start = 0x00a030c0, .end = 0x00a0312c }, |
| { .start = 0x00a03c00, .end = 0x00a03c5c }, |
| { .start = 0x00a04400, .end = 0x00a04454 }, |
| { .start = 0x00a04460, .end = 0x00a04474 }, |
| { .start = 0x00a044c0, .end = 0x00a044ec }, |
| { .start = 0x00a04500, .end = 0x00a04504 }, |
| { .start = 0x00a04510, .end = 0x00a04538 }, |
| { .start = 0x00a04540, .end = 0x00a04548 }, |
| { .start = 0x00a04560, .end = 0x00a0457c }, |
| { .start = 0x00a04590, .end = 0x00a04598 }, |
| { .start = 0x00a045c0, .end = 0x00a045f4 }, |
| }; |
| |
| static u32 iwl_trans_pcie_dump_prph(struct iwl_trans *trans, |
| struct iwl_fw_error_dump_data **data) |
| { |
| struct iwl_fw_error_dump_prph *prph; |
| unsigned long flags; |
| u32 prph_len = 0, i; |
| |
| if (!iwl_trans_grab_nic_access(trans, false, &flags)) |
| return 0; |
| |
| for (i = 0; i < ARRAY_SIZE(iwl_prph_dump_addr); i++) { |
| /* The range includes both boundaries */ |
| int num_bytes_in_chunk = iwl_prph_dump_addr[i].end - |
| iwl_prph_dump_addr[i].start + 4; |
| int reg; |
| __le32 *val; |
| |
| prph_len += sizeof(**data) + sizeof(*prph) + num_bytes_in_chunk; |
| |
| (*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_PRPH); |
| (*data)->len = cpu_to_le32(sizeof(*prph) + |
| num_bytes_in_chunk); |
| prph = (void *)(*data)->data; |
| prph->prph_start = cpu_to_le32(iwl_prph_dump_addr[i].start); |
| val = (void *)prph->data; |
| |
| for (reg = iwl_prph_dump_addr[i].start; |
| reg <= iwl_prph_dump_addr[i].end; |
| reg += 4) |
| *val++ = cpu_to_le32(iwl_trans_pcie_read_prph(trans, |
| reg)); |
| *data = iwl_fw_error_next_data(*data); |
| } |
| |
| iwl_trans_release_nic_access(trans, &flags); |
| |
| return prph_len; |
| } |
| |
| static u32 iwl_trans_pcie_dump_rbs(struct iwl_trans *trans, |
| struct iwl_fw_error_dump_data **data, |
| int allocated_rb_nums) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| int max_len = PAGE_SIZE << trans_pcie->rx_page_order; |
| struct iwl_rxq *rxq = &trans_pcie->rxq; |
| u32 i, r, j, rb_len = 0; |
| |
| spin_lock(&rxq->lock); |
| |
| r = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF; |
| |
| for (i = rxq->read, j = 0; |
| i != r && j < allocated_rb_nums; |
| i = (i + 1) & RX_QUEUE_MASK, j++) { |
| struct iwl_rx_mem_buffer *rxb = rxq->queue[i]; |
| struct iwl_fw_error_dump_rb *rb; |
| |
| dma_unmap_page(trans->dev, rxb->page_dma, max_len, |
| DMA_FROM_DEVICE); |
| |
| rb_len += sizeof(**data) + sizeof(*rb) + max_len; |
| |
| (*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_RB); |
| (*data)->len = cpu_to_le32(sizeof(*rb) + max_len); |
| rb = (void *)(*data)->data; |
| rb->index = cpu_to_le32(i); |
| memcpy(rb->data, page_address(rxb->page), max_len); |
| /* remap the page for the free benefit */ |
| rxb->page_dma = dma_map_page(trans->dev, rxb->page, 0, |
| max_len, |
| DMA_FROM_DEVICE); |
| |
| *data = iwl_fw_error_next_data(*data); |
| } |
| |
| spin_unlock(&rxq->lock); |
| |
| return rb_len; |
| } |
| #define IWL_CSR_TO_DUMP (0x250) |
| |
| static u32 iwl_trans_pcie_dump_csr(struct iwl_trans *trans, |
| struct iwl_fw_error_dump_data **data) |
| { |
| u32 csr_len = sizeof(**data) + IWL_CSR_TO_DUMP; |
| __le32 *val; |
| int i; |
| |
| (*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_CSR); |
| (*data)->len = cpu_to_le32(IWL_CSR_TO_DUMP); |
| val = (void *)(*data)->data; |
| |
| for (i = 0; i < IWL_CSR_TO_DUMP; i += 4) |
| *val++ = cpu_to_le32(iwl_trans_pcie_read32(trans, i)); |
| |
| *data = iwl_fw_error_next_data(*data); |
| |
| return csr_len; |
| } |
| |
| static u32 iwl_trans_pcie_fh_regs_dump(struct iwl_trans *trans, |
| struct iwl_fw_error_dump_data **data) |
| { |
| u32 fh_regs_len = FH_MEM_UPPER_BOUND - FH_MEM_LOWER_BOUND; |
| unsigned long flags; |
| __le32 *val; |
| int i; |
| |
| if (!iwl_trans_grab_nic_access(trans, false, &flags)) |
| return 0; |
| |
| (*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_FH_REGS); |
| (*data)->len = cpu_to_le32(fh_regs_len); |
| val = (void *)(*data)->data; |
| |
| for (i = FH_MEM_LOWER_BOUND; i < FH_MEM_UPPER_BOUND; i += sizeof(u32)) |
| *val++ = cpu_to_le32(iwl_trans_pcie_read32(trans, i)); |
| |
| iwl_trans_release_nic_access(trans, &flags); |
| |
| *data = iwl_fw_error_next_data(*data); |
| |
| return sizeof(**data) + fh_regs_len; |
| } |
| |
| static u32 |
| iwl_trans_pci_dump_marbh_monitor(struct iwl_trans *trans, |
| struct iwl_fw_error_dump_fw_mon *fw_mon_data, |
| u32 monitor_len) |
| { |
| u32 buf_size_in_dwords = (monitor_len >> 2); |
| u32 *buffer = (u32 *)fw_mon_data->data; |
| unsigned long flags; |
| u32 i; |
| |
| if (!iwl_trans_grab_nic_access(trans, false, &flags)) |
| return 0; |
| |
| __iwl_write_prph(trans, MON_DMARB_RD_CTL_ADDR, 0x1); |
| for (i = 0; i < buf_size_in_dwords; i++) |
| buffer[i] = __iwl_read_prph(trans, MON_DMARB_RD_DATA_ADDR); |
| __iwl_write_prph(trans, MON_DMARB_RD_CTL_ADDR, 0x0); |
| |
| iwl_trans_release_nic_access(trans, &flags); |
| |
| return monitor_len; |
| } |
| |
| static u32 |
| iwl_trans_pcie_dump_monitor(struct iwl_trans *trans, |
| struct iwl_fw_error_dump_data **data, |
| u32 monitor_len) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| u32 len = 0; |
| |
| if ((trans_pcie->fw_mon_page && |
| trans->cfg->device_family == IWL_DEVICE_FAMILY_7000) || |
| trans->dbg_dest_tlv) { |
| struct iwl_fw_error_dump_fw_mon *fw_mon_data; |
| u32 base, write_ptr, wrap_cnt; |
| |
| /* If there was a dest TLV - use the values from there */ |
| if (trans->dbg_dest_tlv) { |
| write_ptr = |
| le32_to_cpu(trans->dbg_dest_tlv->write_ptr_reg); |
| wrap_cnt = le32_to_cpu(trans->dbg_dest_tlv->wrap_count); |
| base = le32_to_cpu(trans->dbg_dest_tlv->base_reg); |
| } else { |
| base = MON_BUFF_BASE_ADDR; |
| write_ptr = MON_BUFF_WRPTR; |
| wrap_cnt = MON_BUFF_CYCLE_CNT; |
| } |
| |
| (*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_FW_MONITOR); |
| fw_mon_data = (void *)(*data)->data; |
| fw_mon_data->fw_mon_wr_ptr = |
| cpu_to_le32(iwl_read_prph(trans, write_ptr)); |
| fw_mon_data->fw_mon_cycle_cnt = |
| cpu_to_le32(iwl_read_prph(trans, wrap_cnt)); |
| fw_mon_data->fw_mon_base_ptr = |
| cpu_to_le32(iwl_read_prph(trans, base)); |
| |
| len += sizeof(**data) + sizeof(*fw_mon_data); |
| if (trans_pcie->fw_mon_page) { |
| /* |
| * The firmware is now asserted, it won't write anything |
| * to the buffer. CPU can take ownership to fetch the |
| * data. The buffer will be handed back to the device |
| * before the firmware will be restarted. |
| */ |
| dma_sync_single_for_cpu(trans->dev, |
| trans_pcie->fw_mon_phys, |
| trans_pcie->fw_mon_size, |
| DMA_FROM_DEVICE); |
| memcpy(fw_mon_data->data, |
| page_address(trans_pcie->fw_mon_page), |
| trans_pcie->fw_mon_size); |
| |
| monitor_len = trans_pcie->fw_mon_size; |
| } else if (trans->dbg_dest_tlv->monitor_mode == SMEM_MODE) { |
| /* |
| * Update pointers to reflect actual values after |
| * shifting |
| */ |
| base = iwl_read_prph(trans, base) << |
| trans->dbg_dest_tlv->base_shift; |
| iwl_trans_read_mem(trans, base, fw_mon_data->data, |
| monitor_len / sizeof(u32)); |
| } else if (trans->dbg_dest_tlv->monitor_mode == MARBH_MODE) { |
| monitor_len = |
| iwl_trans_pci_dump_marbh_monitor(trans, |
| fw_mon_data, |
| monitor_len); |
| } else { |
| /* Didn't match anything - output no monitor data */ |
| monitor_len = 0; |
| } |
| |
| len += monitor_len; |
| (*data)->len = cpu_to_le32(monitor_len + sizeof(*fw_mon_data)); |
| } |
| |
| return len; |
| } |
| |
| static struct iwl_trans_dump_data |
| *iwl_trans_pcie_dump_data(struct iwl_trans *trans, |
| struct iwl_fw_dbg_trigger_tlv *trigger) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_fw_error_dump_data *data; |
| struct iwl_txq *cmdq = &trans_pcie->txq[trans_pcie->cmd_queue]; |
| struct iwl_fw_error_dump_txcmd *txcmd; |
| struct iwl_trans_dump_data *dump_data; |
| u32 len, num_rbs; |
| u32 monitor_len; |
| int i, ptr; |
| bool dump_rbs = test_bit(STATUS_FW_ERROR, &trans->status); |
| |
| /* transport dump header */ |
| len = sizeof(*dump_data); |
| |
| /* host commands */ |
| len += sizeof(*data) + |
| cmdq->q.n_window * (sizeof(*txcmd) + TFD_MAX_PAYLOAD_SIZE); |
| |
| /* FW monitor */ |
| if (trans_pcie->fw_mon_page) { |
| len += sizeof(*data) + sizeof(struct iwl_fw_error_dump_fw_mon) + |
| trans_pcie->fw_mon_size; |
| monitor_len = trans_pcie->fw_mon_size; |
| } else if (trans->dbg_dest_tlv) { |
| u32 base, end; |
| |
| base = le32_to_cpu(trans->dbg_dest_tlv->base_reg); |
| end = le32_to_cpu(trans->dbg_dest_tlv->end_reg); |
| |
| base = iwl_read_prph(trans, base) << |
| trans->dbg_dest_tlv->base_shift; |
| end = iwl_read_prph(trans, end) << |
| trans->dbg_dest_tlv->end_shift; |
| |
| /* Make "end" point to the actual end */ |
| if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000 || |
| trans->dbg_dest_tlv->monitor_mode == MARBH_MODE) |
| end += (1 << trans->dbg_dest_tlv->end_shift); |
| monitor_len = end - base; |
| len += sizeof(*data) + sizeof(struct iwl_fw_error_dump_fw_mon) + |
| monitor_len; |
| } else { |
| monitor_len = 0; |
| } |
| |
| if (trigger && (trigger->mode & IWL_FW_DBG_TRIGGER_MONITOR_ONLY)) { |
| dump_data = vzalloc(len); |
| if (!dump_data) |
| return NULL; |
| |
| data = (void *)dump_data->data; |
| len = iwl_trans_pcie_dump_monitor(trans, &data, monitor_len); |
| dump_data->len = len; |
| |
| return dump_data; |
| } |
| |
| /* CSR registers */ |
| len += sizeof(*data) + IWL_CSR_TO_DUMP; |
| |
| /* PRPH registers */ |
| for (i = 0; i < ARRAY_SIZE(iwl_prph_dump_addr); i++) { |
| /* The range includes both boundaries */ |
| int num_bytes_in_chunk = iwl_prph_dump_addr[i].end - |
| iwl_prph_dump_addr[i].start + 4; |
| |
| len += sizeof(*data) + sizeof(struct iwl_fw_error_dump_prph) + |
| num_bytes_in_chunk; |
| } |
| |
| /* FH registers */ |
| len += sizeof(*data) + (FH_MEM_UPPER_BOUND - FH_MEM_LOWER_BOUND); |
| |
| if (dump_rbs) { |
| /* RBs */ |
| num_rbs = le16_to_cpu(ACCESS_ONCE( |
| trans_pcie->rxq.rb_stts->closed_rb_num)) |
| & 0x0FFF; |
| num_rbs = (num_rbs - trans_pcie->rxq.read) & RX_QUEUE_MASK; |
| len += num_rbs * (sizeof(*data) + |
| sizeof(struct iwl_fw_error_dump_rb) + |
| (PAGE_SIZE << trans_pcie->rx_page_order)); |
| } |
| |
| dump_data = vzalloc(len); |
| if (!dump_data) |
| return NULL; |
| |
| len = 0; |
| data = (void *)dump_data->data; |
| data->type = cpu_to_le32(IWL_FW_ERROR_DUMP_TXCMD); |
| txcmd = (void *)data->data; |
| spin_lock_bh(&cmdq->lock); |
| ptr = cmdq->q.write_ptr; |
| for (i = 0; i < cmdq->q.n_window; i++) { |
| u8 idx = get_cmd_index(&cmdq->q, ptr); |
| u32 caplen, cmdlen; |
| |
| cmdlen = iwl_trans_pcie_get_cmdlen(&cmdq->tfds[ptr]); |
| caplen = min_t(u32, TFD_MAX_PAYLOAD_SIZE, cmdlen); |
| |
| if (cmdlen) { |
| len += sizeof(*txcmd) + caplen; |
| txcmd->cmdlen = cpu_to_le32(cmdlen); |
| txcmd->caplen = cpu_to_le32(caplen); |
| memcpy(txcmd->data, cmdq->entries[idx].cmd, caplen); |
| txcmd = (void *)((u8 *)txcmd->data + caplen); |
| } |
| |
| ptr = iwl_queue_dec_wrap(ptr); |
| } |
| spin_unlock_bh(&cmdq->lock); |
| |
| data->len = cpu_to_le32(len); |
| len += sizeof(*data); |
| data = iwl_fw_error_next_data(data); |
| |
| len += iwl_trans_pcie_dump_prph(trans, &data); |
| len += iwl_trans_pcie_dump_csr(trans, &data); |
| len += iwl_trans_pcie_fh_regs_dump(trans, &data); |
| if (dump_rbs) |
| len += iwl_trans_pcie_dump_rbs(trans, &data, num_rbs); |
| |
| len += iwl_trans_pcie_dump_monitor(trans, &data, monitor_len); |
| |
| dump_data->len = len; |
| |
| return dump_data; |
| } |
| |
| static const struct iwl_trans_ops trans_ops_pcie = { |
| .start_hw = iwl_trans_pcie_start_hw, |
| .op_mode_leave = iwl_trans_pcie_op_mode_leave, |
| .fw_alive = iwl_trans_pcie_fw_alive, |
| .start_fw = iwl_trans_pcie_start_fw, |
| .stop_device = iwl_trans_pcie_stop_device, |
| |
| .d3_suspend = iwl_trans_pcie_d3_suspend, |
| .d3_resume = iwl_trans_pcie_d3_resume, |
| |
| .send_cmd = iwl_trans_pcie_send_hcmd, |
| |
| .tx = iwl_trans_pcie_tx, |
| .reclaim = iwl_trans_pcie_reclaim, |
| |
| .txq_disable = iwl_trans_pcie_txq_disable, |
| .txq_enable = iwl_trans_pcie_txq_enable, |
| |
| .dbgfs_register = iwl_trans_pcie_dbgfs_register, |
| |
| .wait_tx_queue_empty = iwl_trans_pcie_wait_txq_empty, |
| .freeze_txq_timer = iwl_trans_pcie_freeze_txq_timer, |
| |
| .write8 = iwl_trans_pcie_write8, |
| .write32 = iwl_trans_pcie_write32, |
| .read32 = iwl_trans_pcie_read32, |
| .read_prph = iwl_trans_pcie_read_prph, |
| .write_prph = iwl_trans_pcie_write_prph, |
| .read_mem = iwl_trans_pcie_read_mem, |
| .write_mem = iwl_trans_pcie_write_mem, |
| .configure = iwl_trans_pcie_configure, |
| .set_pmi = iwl_trans_pcie_set_pmi, |
| .grab_nic_access = iwl_trans_pcie_grab_nic_access, |
| .release_nic_access = iwl_trans_pcie_release_nic_access, |
| .set_bits_mask = iwl_trans_pcie_set_bits_mask, |
| |
| .ref = iwl_trans_pcie_ref, |
| .unref = iwl_trans_pcie_unref, |
| |
| .dump_data = iwl_trans_pcie_dump_data, |
| }; |
| |
| struct iwl_trans *iwl_trans_pcie_alloc(struct pci_dev *pdev, |
| const struct pci_device_id *ent, |
| const struct iwl_cfg *cfg) |
| { |
| struct iwl_trans_pcie *trans_pcie; |
| struct iwl_trans *trans; |
| u16 pci_cmd; |
| int ret; |
| |
| trans = iwl_trans_alloc(sizeof(struct iwl_trans_pcie), |
| &pdev->dev, cfg, &trans_ops_pcie, 0); |
| if (!trans) |
| return ERR_PTR(-ENOMEM); |
| |
| trans->max_skb_frags = IWL_PCIE_MAX_FRAGS; |
| |
| trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| trans_pcie->trans = trans; |
| spin_lock_init(&trans_pcie->irq_lock); |
| spin_lock_init(&trans_pcie->reg_lock); |
| spin_lock_init(&trans_pcie->ref_lock); |
| mutex_init(&trans_pcie->mutex); |
| init_waitqueue_head(&trans_pcie->ucode_write_waitq); |
| |
| ret = pci_enable_device(pdev); |
| if (ret) |
| goto out_no_pci; |
| |
| if (!cfg->base_params->pcie_l1_allowed) { |
| /* |
| * W/A - seems to solve weird behavior. We need to remove this |
| * if we don't want to stay in L1 all the time. This wastes a |
| * lot of power. |
| */ |
| pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S | |
| PCIE_LINK_STATE_L1 | |
| PCIE_LINK_STATE_CLKPM); |
| } |
| |
| pci_set_master(pdev); |
| |
| ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(36)); |
| if (!ret) |
| ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(36)); |
| if (ret) { |
| ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); |
| if (!ret) |
| ret = pci_set_consistent_dma_mask(pdev, |
| DMA_BIT_MASK(32)); |
| /* both attempts failed: */ |
| if (ret) { |
| dev_err(&pdev->dev, "No suitable DMA available\n"); |
| goto out_pci_disable_device; |
| } |
| } |
| |
| ret = pci_request_regions(pdev, DRV_NAME); |
| if (ret) { |
| dev_err(&pdev->dev, "pci_request_regions failed\n"); |
| goto out_pci_disable_device; |
| } |
| |
| trans_pcie->hw_base = pci_ioremap_bar(pdev, 0); |
| if (!trans_pcie->hw_base) { |
| dev_err(&pdev->dev, "pci_ioremap_bar failed\n"); |
| ret = -ENODEV; |
| goto out_pci_release_regions; |
| } |
| |
| /* We disable the RETRY_TIMEOUT register (0x41) to keep |
| * PCI Tx retries from interfering with C3 CPU state */ |
| pci_write_config_byte(pdev, PCI_CFG_RETRY_TIMEOUT, 0x00); |
| |
| trans->dev = &pdev->dev; |
| trans_pcie->pci_dev = pdev; |
| iwl_disable_interrupts(trans); |
| |
| ret = pci_enable_msi(pdev); |
| if (ret) { |
| dev_err(&pdev->dev, "pci_enable_msi failed(0X%x)\n", ret); |
| /* enable rfkill interrupt: hw bug w/a */ |
| pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); |
| if (pci_cmd & PCI_COMMAND_INTX_DISABLE) { |
| pci_cmd &= ~PCI_COMMAND_INTX_DISABLE; |
| pci_write_config_word(pdev, PCI_COMMAND, pci_cmd); |
| } |
| } |
| |
| trans->hw_rev = iwl_read32(trans, CSR_HW_REV); |
| /* |
| * In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have |
| * changed, and now the revision step also includes bit 0-1 (no more |
| * "dash" value). To keep hw_rev backwards compatible - we'll store it |
| * in the old format. |
| */ |
| if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000) { |
| unsigned long flags; |
| |
| trans->hw_rev = (trans->hw_rev & 0xfff0) | |
| (CSR_HW_REV_STEP(trans->hw_rev << 2) << 2); |
| |
| ret = iwl_pcie_prepare_card_hw(trans); |
| if (ret) { |
| IWL_WARN(trans, "Exit HW not ready\n"); |
| goto out_pci_disable_msi; |
| } |
| |
| /* |
| * in-order to recognize C step driver should read chip version |
| * id located at the AUX bus MISC address space. |
| */ |
| iwl_set_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_INIT_DONE); |
| udelay(2); |
| |
| ret = iwl_poll_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, |
| CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, |
| 25000); |
| if (ret < 0) { |
| IWL_DEBUG_INFO(trans, "Failed to wake up the nic\n"); |
| goto out_pci_disable_msi; |
| } |
| |
| if (iwl_trans_grab_nic_access(trans, false, &flags)) { |
| u32 hw_step; |
| |
| hw_step = __iwl_read_prph(trans, WFPM_CTRL_REG); |
| hw_step |= ENABLE_WFPM; |
| __iwl_write_prph(trans, WFPM_CTRL_REG, hw_step); |
| hw_step = __iwl_read_prph(trans, AUX_MISC_REG); |
| hw_step = (hw_step >> HW_STEP_LOCATION_BITS) & 0xF; |
| if (hw_step == 0x3) |
| trans->hw_rev = (trans->hw_rev & 0xFFFFFFF3) | |
| (SILICON_C_STEP << 2); |
| iwl_trans_release_nic_access(trans, &flags); |
| } |
| } |
| |
| trans->hw_id = (pdev->device << 16) + pdev->subsystem_device; |
| snprintf(trans->hw_id_str, sizeof(trans->hw_id_str), |
| "PCI ID: 0x%04X:0x%04X", pdev->device, pdev->subsystem_device); |
| |
| /* Initialize the wait queue for commands */ |
| init_waitqueue_head(&trans_pcie->wait_command_queue); |
| |
| ret = iwl_pcie_alloc_ict(trans); |
| if (ret) |
| goto out_pci_disable_msi; |
| |
| ret = request_threaded_irq(pdev->irq, iwl_pcie_isr, |
| iwl_pcie_irq_handler, |
| IRQF_SHARED, DRV_NAME, trans); |
| if (ret) { |
| IWL_ERR(trans, "Error allocating IRQ %d\n", pdev->irq); |
| goto out_free_ict; |
| } |
| |
| trans_pcie->inta_mask = CSR_INI_SET_MASK; |
| trans->d0i3_mode = IWL_D0I3_MODE_ON_SUSPEND; |
| |
| return trans; |
| |
| out_free_ict: |
| iwl_pcie_free_ict(trans); |
| out_pci_disable_msi: |
| pci_disable_msi(pdev); |
| out_pci_release_regions: |
| pci_release_regions(pdev); |
| out_pci_disable_device: |
| pci_disable_device(pdev); |
| out_no_pci: |
| iwl_trans_free(trans); |
| return ERR_PTR(ret); |
| } |