| /****************************************************************************** |
| * |
| * This file is provided under a dual BSD/GPLv2 license. When using or |
| * redistributing this file, you may do so under either license. |
| * |
| * GPL LICENSE SUMMARY |
| * |
| * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, |
| * USA |
| * |
| * The full GNU General Public License is included in this distribution |
| * in the file called COPYING. |
| * |
| * Contact Information: |
| * Intel Linux Wireless <ilw@linux.intel.com> |
| * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| * |
| * BSD LICENSE |
| * |
| * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * * Neither the name Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| *****************************************************************************/ |
| |
| #include <linux/slab.h> |
| #include <net/mac80211.h> |
| |
| #include "iwl-trans.h" |
| |
| #include "dev.h" |
| #include "calib.h" |
| #include "agn.h" |
| |
| /***************************************************************************** |
| * INIT calibrations framework |
| *****************************************************************************/ |
| |
| /* Opaque calibration results */ |
| struct iwl_calib_result { |
| struct list_head list; |
| size_t cmd_len; |
| struct iwl_calib_hdr hdr; |
| /* data follows */ |
| }; |
| |
| struct statistics_general_data { |
| u32 beacon_silence_rssi_a; |
| u32 beacon_silence_rssi_b; |
| u32 beacon_silence_rssi_c; |
| u32 beacon_energy_a; |
| u32 beacon_energy_b; |
| u32 beacon_energy_c; |
| }; |
| |
| int iwl_send_calib_results(struct iwl_priv *priv) |
| { |
| struct iwl_host_cmd hcmd = { |
| .id = REPLY_PHY_CALIBRATION_CMD, |
| }; |
| struct iwl_calib_result *res; |
| |
| list_for_each_entry(res, &priv->calib_results, list) { |
| int ret; |
| |
| hcmd.len[0] = res->cmd_len; |
| hcmd.data[0] = &res->hdr; |
| hcmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY; |
| ret = iwl_dvm_send_cmd(priv, &hcmd); |
| if (ret) { |
| IWL_ERR(priv, "Error %d on calib cmd %d\n", |
| ret, res->hdr.op_code); |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int iwl_calib_set(struct iwl_priv *priv, |
| const struct iwl_calib_hdr *cmd, int len) |
| { |
| struct iwl_calib_result *res, *tmp; |
| |
| res = kmalloc(sizeof(*res) + len - sizeof(struct iwl_calib_hdr), |
| GFP_ATOMIC); |
| if (!res) |
| return -ENOMEM; |
| memcpy(&res->hdr, cmd, len); |
| res->cmd_len = len; |
| |
| list_for_each_entry(tmp, &priv->calib_results, list) { |
| if (tmp->hdr.op_code == res->hdr.op_code) { |
| list_replace(&tmp->list, &res->list); |
| kfree(tmp); |
| return 0; |
| } |
| } |
| |
| /* wasn't in list already */ |
| list_add_tail(&res->list, &priv->calib_results); |
| |
| return 0; |
| } |
| |
| void iwl_calib_free_results(struct iwl_priv *priv) |
| { |
| struct iwl_calib_result *res, *tmp; |
| |
| list_for_each_entry_safe(res, tmp, &priv->calib_results, list) { |
| list_del(&res->list); |
| kfree(res); |
| } |
| } |
| |
| /***************************************************************************** |
| * RUNTIME calibrations framework |
| *****************************************************************************/ |
| |
| /* "false alarms" are signals that our DSP tries to lock onto, |
| * but then determines that they are either noise, or transmissions |
| * from a distant wireless network (also "noise", really) that get |
| * "stepped on" by stronger transmissions within our own network. |
| * This algorithm attempts to set a sensitivity level that is high |
| * enough to receive all of our own network traffic, but not so |
| * high that our DSP gets too busy trying to lock onto non-network |
| * activity/noise. */ |
| static int iwl_sens_energy_cck(struct iwl_priv *priv, |
| u32 norm_fa, |
| u32 rx_enable_time, |
| struct statistics_general_data *rx_info) |
| { |
| u32 max_nrg_cck = 0; |
| int i = 0; |
| u8 max_silence_rssi = 0; |
| u32 silence_ref = 0; |
| u8 silence_rssi_a = 0; |
| u8 silence_rssi_b = 0; |
| u8 silence_rssi_c = 0; |
| u32 val; |
| |
| /* "false_alarms" values below are cross-multiplications to assess the |
| * numbers of false alarms within the measured period of actual Rx |
| * (Rx is off when we're txing), vs the min/max expected false alarms |
| * (some should be expected if rx is sensitive enough) in a |
| * hypothetical listening period of 200 time units (TU), 204.8 msec: |
| * |
| * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time |
| * |
| * */ |
| u32 false_alarms = norm_fa * 200 * 1024; |
| u32 max_false_alarms = MAX_FA_CCK * rx_enable_time; |
| u32 min_false_alarms = MIN_FA_CCK * rx_enable_time; |
| struct iwl_sensitivity_data *data = NULL; |
| const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens; |
| |
| data = &(priv->sensitivity_data); |
| |
| data->nrg_auto_corr_silence_diff = 0; |
| |
| /* Find max silence rssi among all 3 receivers. |
| * This is background noise, which may include transmissions from other |
| * networks, measured during silence before our network's beacon */ |
| silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a & |
| ALL_BAND_FILTER) >> 8); |
| silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b & |
| ALL_BAND_FILTER) >> 8); |
| silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c & |
| ALL_BAND_FILTER) >> 8); |
| |
| val = max(silence_rssi_b, silence_rssi_c); |
| max_silence_rssi = max(silence_rssi_a, (u8) val); |
| |
| /* Store silence rssi in 20-beacon history table */ |
| data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi; |
| data->nrg_silence_idx++; |
| if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L) |
| data->nrg_silence_idx = 0; |
| |
| /* Find max silence rssi across 20 beacon history */ |
| for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) { |
| val = data->nrg_silence_rssi[i]; |
| silence_ref = max(silence_ref, val); |
| } |
| IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n", |
| silence_rssi_a, silence_rssi_b, silence_rssi_c, |
| silence_ref); |
| |
| /* Find max rx energy (min value!) among all 3 receivers, |
| * measured during beacon frame. |
| * Save it in 10-beacon history table. */ |
| i = data->nrg_energy_idx; |
| val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c); |
| data->nrg_value[i] = min(rx_info->beacon_energy_a, val); |
| |
| data->nrg_energy_idx++; |
| if (data->nrg_energy_idx >= 10) |
| data->nrg_energy_idx = 0; |
| |
| /* Find min rx energy (max value) across 10 beacon history. |
| * This is the minimum signal level that we want to receive well. |
| * Add backoff (margin so we don't miss slightly lower energy frames). |
| * This establishes an upper bound (min value) for energy threshold. */ |
| max_nrg_cck = data->nrg_value[0]; |
| for (i = 1; i < 10; i++) |
| max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i])); |
| max_nrg_cck += 6; |
| |
| IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n", |
| rx_info->beacon_energy_a, rx_info->beacon_energy_b, |
| rx_info->beacon_energy_c, max_nrg_cck - 6); |
| |
| /* Count number of consecutive beacons with fewer-than-desired |
| * false alarms. */ |
| if (false_alarms < min_false_alarms) |
| data->num_in_cck_no_fa++; |
| else |
| data->num_in_cck_no_fa = 0; |
| IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n", |
| data->num_in_cck_no_fa); |
| |
| /* If we got too many false alarms this time, reduce sensitivity */ |
| if ((false_alarms > max_false_alarms) && |
| (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) { |
| IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n", |
| false_alarms, max_false_alarms); |
| IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n"); |
| data->nrg_curr_state = IWL_FA_TOO_MANY; |
| /* Store for "fewer than desired" on later beacon */ |
| data->nrg_silence_ref = silence_ref; |
| |
| /* increase energy threshold (reduce nrg value) |
| * to decrease sensitivity */ |
| data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK; |
| /* Else if we got fewer than desired, increase sensitivity */ |
| } else if (false_alarms < min_false_alarms) { |
| data->nrg_curr_state = IWL_FA_TOO_FEW; |
| |
| /* Compare silence level with silence level for most recent |
| * healthy number or too many false alarms */ |
| data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref - |
| (s32)silence_ref; |
| |
| IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n", |
| false_alarms, min_false_alarms, |
| data->nrg_auto_corr_silence_diff); |
| |
| /* Increase value to increase sensitivity, but only if: |
| * 1a) previous beacon did *not* have *too many* false alarms |
| * 1b) AND there's a significant difference in Rx levels |
| * from a previous beacon with too many, or healthy # FAs |
| * OR 2) We've seen a lot of beacons (100) with too few |
| * false alarms */ |
| if ((data->nrg_prev_state != IWL_FA_TOO_MANY) && |
| ((data->nrg_auto_corr_silence_diff > NRG_DIFF) || |
| (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) { |
| |
| IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n"); |
| /* Increase nrg value to increase sensitivity */ |
| val = data->nrg_th_cck + NRG_STEP_CCK; |
| data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val); |
| } else { |
| IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n"); |
| } |
| |
| /* Else we got a healthy number of false alarms, keep status quo */ |
| } else { |
| IWL_DEBUG_CALIB(priv, " FA in safe zone\n"); |
| data->nrg_curr_state = IWL_FA_GOOD_RANGE; |
| |
| /* Store for use in "fewer than desired" with later beacon */ |
| data->nrg_silence_ref = silence_ref; |
| |
| /* If previous beacon had too many false alarms, |
| * give it some extra margin by reducing sensitivity again |
| * (but don't go below measured energy of desired Rx) */ |
| if (IWL_FA_TOO_MANY == data->nrg_prev_state) { |
| IWL_DEBUG_CALIB(priv, "... increasing margin\n"); |
| if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN)) |
| data->nrg_th_cck -= NRG_MARGIN; |
| else |
| data->nrg_th_cck = max_nrg_cck; |
| } |
| } |
| |
| /* Make sure the energy threshold does not go above the measured |
| * energy of the desired Rx signals (reduced by backoff margin), |
| * or else we might start missing Rx frames. |
| * Lower value is higher energy, so we use max()! |
| */ |
| data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck); |
| IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck); |
| |
| data->nrg_prev_state = data->nrg_curr_state; |
| |
| /* Auto-correlation CCK algorithm */ |
| if (false_alarms > min_false_alarms) { |
| |
| /* increase auto_corr values to decrease sensitivity |
| * so the DSP won't be disturbed by the noise |
| */ |
| if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK) |
| data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1; |
| else { |
| val = data->auto_corr_cck + AUTO_CORR_STEP_CCK; |
| data->auto_corr_cck = |
| min((u32)ranges->auto_corr_max_cck, val); |
| } |
| val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK; |
| data->auto_corr_cck_mrc = |
| min((u32)ranges->auto_corr_max_cck_mrc, val); |
| } else if ((false_alarms < min_false_alarms) && |
| ((data->nrg_auto_corr_silence_diff > NRG_DIFF) || |
| (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) { |
| |
| /* Decrease auto_corr values to increase sensitivity */ |
| val = data->auto_corr_cck - AUTO_CORR_STEP_CCK; |
| data->auto_corr_cck = |
| max((u32)ranges->auto_corr_min_cck, val); |
| val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK; |
| data->auto_corr_cck_mrc = |
| max((u32)ranges->auto_corr_min_cck_mrc, val); |
| } |
| |
| return 0; |
| } |
| |
| |
| static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv, |
| u32 norm_fa, |
| u32 rx_enable_time) |
| { |
| u32 val; |
| u32 false_alarms = norm_fa * 200 * 1024; |
| u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time; |
| u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time; |
| struct iwl_sensitivity_data *data = NULL; |
| const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens; |
| |
| data = &(priv->sensitivity_data); |
| |
| /* If we got too many false alarms this time, reduce sensitivity */ |
| if (false_alarms > max_false_alarms) { |
| |
| IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n", |
| false_alarms, max_false_alarms); |
| |
| val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM; |
| data->auto_corr_ofdm = |
| min((u32)ranges->auto_corr_max_ofdm, val); |
| |
| val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM; |
| data->auto_corr_ofdm_mrc = |
| min((u32)ranges->auto_corr_max_ofdm_mrc, val); |
| |
| val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM; |
| data->auto_corr_ofdm_x1 = |
| min((u32)ranges->auto_corr_max_ofdm_x1, val); |
| |
| val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM; |
| data->auto_corr_ofdm_mrc_x1 = |
| min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val); |
| } |
| |
| /* Else if we got fewer than desired, increase sensitivity */ |
| else if (false_alarms < min_false_alarms) { |
| |
| IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n", |
| false_alarms, min_false_alarms); |
| |
| val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM; |
| data->auto_corr_ofdm = |
| max((u32)ranges->auto_corr_min_ofdm, val); |
| |
| val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM; |
| data->auto_corr_ofdm_mrc = |
| max((u32)ranges->auto_corr_min_ofdm_mrc, val); |
| |
| val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM; |
| data->auto_corr_ofdm_x1 = |
| max((u32)ranges->auto_corr_min_ofdm_x1, val); |
| |
| val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM; |
| data->auto_corr_ofdm_mrc_x1 = |
| max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val); |
| } else { |
| IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n", |
| min_false_alarms, false_alarms, max_false_alarms); |
| } |
| return 0; |
| } |
| |
| static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv, |
| struct iwl_sensitivity_data *data, |
| __le16 *tbl) |
| { |
| tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] = |
| cpu_to_le16((u16)data->auto_corr_ofdm); |
| tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] = |
| cpu_to_le16((u16)data->auto_corr_ofdm_mrc); |
| tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] = |
| cpu_to_le16((u16)data->auto_corr_ofdm_x1); |
| tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] = |
| cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1); |
| |
| tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] = |
| cpu_to_le16((u16)data->auto_corr_cck); |
| tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] = |
| cpu_to_le16((u16)data->auto_corr_cck_mrc); |
| |
| tbl[HD_MIN_ENERGY_CCK_DET_INDEX] = |
| cpu_to_le16((u16)data->nrg_th_cck); |
| tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] = |
| cpu_to_le16((u16)data->nrg_th_ofdm); |
| |
| tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] = |
| cpu_to_le16(data->barker_corr_th_min); |
| tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] = |
| cpu_to_le16(data->barker_corr_th_min_mrc); |
| tbl[HD_OFDM_ENERGY_TH_IN_INDEX] = |
| cpu_to_le16(data->nrg_th_cca); |
| |
| IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n", |
| data->auto_corr_ofdm, data->auto_corr_ofdm_mrc, |
| data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1, |
| data->nrg_th_ofdm); |
| |
| IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n", |
| data->auto_corr_cck, data->auto_corr_cck_mrc, |
| data->nrg_th_cck); |
| } |
| |
| /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */ |
| static int iwl_sensitivity_write(struct iwl_priv *priv) |
| { |
| struct iwl_sensitivity_cmd cmd; |
| struct iwl_sensitivity_data *data = NULL; |
| struct iwl_host_cmd cmd_out = { |
| .id = SENSITIVITY_CMD, |
| .len = { sizeof(struct iwl_sensitivity_cmd), }, |
| .flags = CMD_ASYNC, |
| .data = { &cmd, }, |
| }; |
| |
| data = &(priv->sensitivity_data); |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| |
| iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]); |
| |
| /* Update uCode's "work" table, and copy it to DSP */ |
| cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE; |
| |
| /* Don't send command to uCode if nothing has changed */ |
| if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]), |
| sizeof(u16)*HD_TABLE_SIZE)) { |
| IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n"); |
| return 0; |
| } |
| |
| /* Copy table for comparison next time */ |
| memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]), |
| sizeof(u16)*HD_TABLE_SIZE); |
| |
| return iwl_dvm_send_cmd(priv, &cmd_out); |
| } |
| |
| /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */ |
| static int iwl_enhance_sensitivity_write(struct iwl_priv *priv) |
| { |
| struct iwl_enhance_sensitivity_cmd cmd; |
| struct iwl_sensitivity_data *data = NULL; |
| struct iwl_host_cmd cmd_out = { |
| .id = SENSITIVITY_CMD, |
| .len = { sizeof(struct iwl_enhance_sensitivity_cmd), }, |
| .flags = CMD_ASYNC, |
| .data = { &cmd, }, |
| }; |
| |
| data = &(priv->sensitivity_data); |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| |
| iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]); |
| |
| if (priv->lib->hd_v2) { |
| cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] = |
| HD_INA_NON_SQUARE_DET_OFDM_DATA_V2; |
| cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] = |
| HD_INA_NON_SQUARE_DET_CCK_DATA_V2; |
| cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] = |
| HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2; |
| cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] = |
| HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2; |
| cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] = |
| HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2; |
| cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] = |
| HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2; |
| cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] = |
| HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2; |
| cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] = |
| HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2; |
| cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] = |
| HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2; |
| cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] = |
| HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2; |
| cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] = |
| HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2; |
| } else { |
| cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] = |
| HD_INA_NON_SQUARE_DET_OFDM_DATA_V1; |
| cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] = |
| HD_INA_NON_SQUARE_DET_CCK_DATA_V1; |
| cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] = |
| HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1; |
| cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] = |
| HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1; |
| cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] = |
| HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1; |
| cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] = |
| HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1; |
| cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] = |
| HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1; |
| cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] = |
| HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1; |
| cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] = |
| HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1; |
| cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] = |
| HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1; |
| cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] = |
| HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1; |
| } |
| |
| /* Update uCode's "work" table, and copy it to DSP */ |
| cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE; |
| |
| /* Don't send command to uCode if nothing has changed */ |
| if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]), |
| sizeof(u16)*HD_TABLE_SIZE) && |
| !memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX], |
| &(priv->enhance_sensitivity_tbl[0]), |
| sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) { |
| IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n"); |
| return 0; |
| } |
| |
| /* Copy table for comparison next time */ |
| memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]), |
| sizeof(u16)*HD_TABLE_SIZE); |
| memcpy(&(priv->enhance_sensitivity_tbl[0]), |
| &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]), |
| sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES); |
| |
| return iwl_dvm_send_cmd(priv, &cmd_out); |
| } |
| |
| void iwl_init_sensitivity(struct iwl_priv *priv) |
| { |
| int ret = 0; |
| int i; |
| struct iwl_sensitivity_data *data = NULL; |
| const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens; |
| |
| if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED) |
| return; |
| |
| IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n"); |
| |
| /* Clear driver's sensitivity algo data */ |
| data = &(priv->sensitivity_data); |
| |
| if (ranges == NULL) |
| return; |
| |
| memset(data, 0, sizeof(struct iwl_sensitivity_data)); |
| |
| data->num_in_cck_no_fa = 0; |
| data->nrg_curr_state = IWL_FA_TOO_MANY; |
| data->nrg_prev_state = IWL_FA_TOO_MANY; |
| data->nrg_silence_ref = 0; |
| data->nrg_silence_idx = 0; |
| data->nrg_energy_idx = 0; |
| |
| for (i = 0; i < 10; i++) |
| data->nrg_value[i] = 0; |
| |
| for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) |
| data->nrg_silence_rssi[i] = 0; |
| |
| data->auto_corr_ofdm = ranges->auto_corr_min_ofdm; |
| data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc; |
| data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1; |
| data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1; |
| data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF; |
| data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc; |
| data->nrg_th_cck = ranges->nrg_th_cck; |
| data->nrg_th_ofdm = ranges->nrg_th_ofdm; |
| data->barker_corr_th_min = ranges->barker_corr_th_min; |
| data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc; |
| data->nrg_th_cca = ranges->nrg_th_cca; |
| |
| data->last_bad_plcp_cnt_ofdm = 0; |
| data->last_fa_cnt_ofdm = 0; |
| data->last_bad_plcp_cnt_cck = 0; |
| data->last_fa_cnt_cck = 0; |
| |
| if (priv->fw->enhance_sensitivity_table) |
| ret |= iwl_enhance_sensitivity_write(priv); |
| else |
| ret |= iwl_sensitivity_write(priv); |
| IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret); |
| } |
| |
| void iwl_sensitivity_calibration(struct iwl_priv *priv) |
| { |
| u32 rx_enable_time; |
| u32 fa_cck; |
| u32 fa_ofdm; |
| u32 bad_plcp_cck; |
| u32 bad_plcp_ofdm; |
| u32 norm_fa_ofdm; |
| u32 norm_fa_cck; |
| struct iwl_sensitivity_data *data = NULL; |
| struct statistics_rx_non_phy *rx_info; |
| struct statistics_rx_phy *ofdm, *cck; |
| struct statistics_general_data statis; |
| |
| if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED) |
| return; |
| |
| data = &(priv->sensitivity_data); |
| |
| if (!iwl_is_any_associated(priv)) { |
| IWL_DEBUG_CALIB(priv, "<< - not associated\n"); |
| return; |
| } |
| |
| spin_lock_bh(&priv->statistics.lock); |
| rx_info = &priv->statistics.rx_non_phy; |
| ofdm = &priv->statistics.rx_ofdm; |
| cck = &priv->statistics.rx_cck; |
| if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) { |
| IWL_DEBUG_CALIB(priv, "<< invalid data.\n"); |
| spin_unlock_bh(&priv->statistics.lock); |
| return; |
| } |
| |
| /* Extract Statistics: */ |
| rx_enable_time = le32_to_cpu(rx_info->channel_load); |
| fa_cck = le32_to_cpu(cck->false_alarm_cnt); |
| fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt); |
| bad_plcp_cck = le32_to_cpu(cck->plcp_err); |
| bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err); |
| |
| statis.beacon_silence_rssi_a = |
| le32_to_cpu(rx_info->beacon_silence_rssi_a); |
| statis.beacon_silence_rssi_b = |
| le32_to_cpu(rx_info->beacon_silence_rssi_b); |
| statis.beacon_silence_rssi_c = |
| le32_to_cpu(rx_info->beacon_silence_rssi_c); |
| statis.beacon_energy_a = |
| le32_to_cpu(rx_info->beacon_energy_a); |
| statis.beacon_energy_b = |
| le32_to_cpu(rx_info->beacon_energy_b); |
| statis.beacon_energy_c = |
| le32_to_cpu(rx_info->beacon_energy_c); |
| |
| spin_unlock_bh(&priv->statistics.lock); |
| |
| IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time); |
| |
| if (!rx_enable_time) { |
| IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n"); |
| return; |
| } |
| |
| /* These statistics increase monotonically, and do not reset |
| * at each beacon. Calculate difference from last value, or just |
| * use the new statistics value if it has reset or wrapped around. */ |
| if (data->last_bad_plcp_cnt_cck > bad_plcp_cck) |
| data->last_bad_plcp_cnt_cck = bad_plcp_cck; |
| else { |
| bad_plcp_cck -= data->last_bad_plcp_cnt_cck; |
| data->last_bad_plcp_cnt_cck += bad_plcp_cck; |
| } |
| |
| if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm) |
| data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm; |
| else { |
| bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm; |
| data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm; |
| } |
| |
| if (data->last_fa_cnt_ofdm > fa_ofdm) |
| data->last_fa_cnt_ofdm = fa_ofdm; |
| else { |
| fa_ofdm -= data->last_fa_cnt_ofdm; |
| data->last_fa_cnt_ofdm += fa_ofdm; |
| } |
| |
| if (data->last_fa_cnt_cck > fa_cck) |
| data->last_fa_cnt_cck = fa_cck; |
| else { |
| fa_cck -= data->last_fa_cnt_cck; |
| data->last_fa_cnt_cck += fa_cck; |
| } |
| |
| /* Total aborted signal locks */ |
| norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm; |
| norm_fa_cck = fa_cck + bad_plcp_cck; |
| |
| IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck, |
| bad_plcp_cck, fa_ofdm, bad_plcp_ofdm); |
| |
| iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time); |
| iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis); |
| if (priv->fw->enhance_sensitivity_table) |
| iwl_enhance_sensitivity_write(priv); |
| else |
| iwl_sensitivity_write(priv); |
| } |
| |
| static inline u8 find_first_chain(u8 mask) |
| { |
| if (mask & ANT_A) |
| return CHAIN_A; |
| if (mask & ANT_B) |
| return CHAIN_B; |
| return CHAIN_C; |
| } |
| |
| /** |
| * Run disconnected antenna algorithm to find out which antennas are |
| * disconnected. |
| */ |
| static void iwl_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig, |
| struct iwl_chain_noise_data *data) |
| { |
| u32 active_chains = 0; |
| u32 max_average_sig; |
| u16 max_average_sig_antenna_i; |
| u8 num_tx_chains; |
| u8 first_chain; |
| u16 i = 0; |
| |
| average_sig[0] = data->chain_signal_a / IWL_CAL_NUM_BEACONS; |
| average_sig[1] = data->chain_signal_b / IWL_CAL_NUM_BEACONS; |
| average_sig[2] = data->chain_signal_c / IWL_CAL_NUM_BEACONS; |
| |
| if (average_sig[0] >= average_sig[1]) { |
| max_average_sig = average_sig[0]; |
| max_average_sig_antenna_i = 0; |
| active_chains = (1 << max_average_sig_antenna_i); |
| } else { |
| max_average_sig = average_sig[1]; |
| max_average_sig_antenna_i = 1; |
| active_chains = (1 << max_average_sig_antenna_i); |
| } |
| |
| if (average_sig[2] >= max_average_sig) { |
| max_average_sig = average_sig[2]; |
| max_average_sig_antenna_i = 2; |
| active_chains = (1 << max_average_sig_antenna_i); |
| } |
| |
| IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n", |
| average_sig[0], average_sig[1], average_sig[2]); |
| IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n", |
| max_average_sig, max_average_sig_antenna_i); |
| |
| /* Compare signal strengths for all 3 receivers. */ |
| for (i = 0; i < NUM_RX_CHAINS; i++) { |
| if (i != max_average_sig_antenna_i) { |
| s32 rssi_delta = (max_average_sig - average_sig[i]); |
| |
| /* If signal is very weak, compared with |
| * strongest, mark it as disconnected. */ |
| if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS) |
| data->disconn_array[i] = 1; |
| else |
| active_chains |= (1 << i); |
| IWL_DEBUG_CALIB(priv, "i = %d rssiDelta = %d " |
| "disconn_array[i] = %d\n", |
| i, rssi_delta, data->disconn_array[i]); |
| } |
| } |
| |
| /* |
| * The above algorithm sometimes fails when the ucode |
| * reports 0 for all chains. It's not clear why that |
| * happens to start with, but it is then causing trouble |
| * because this can make us enable more chains than the |
| * hardware really has. |
| * |
| * To be safe, simply mask out any chains that we know |
| * are not on the device. |
| */ |
| active_chains &= priv->nvm_data->valid_rx_ant; |
| |
| num_tx_chains = 0; |
| for (i = 0; i < NUM_RX_CHAINS; i++) { |
| /* loops on all the bits of |
| * priv->hw_setting.valid_tx_ant */ |
| u8 ant_msk = (1 << i); |
| if (!(priv->nvm_data->valid_tx_ant & ant_msk)) |
| continue; |
| |
| num_tx_chains++; |
| if (data->disconn_array[i] == 0) |
| /* there is a Tx antenna connected */ |
| break; |
| if (num_tx_chains == priv->hw_params.tx_chains_num && |
| data->disconn_array[i]) { |
| /* |
| * If all chains are disconnected |
| * connect the first valid tx chain |
| */ |
| first_chain = |
| find_first_chain(priv->nvm_data->valid_tx_ant); |
| data->disconn_array[first_chain] = 0; |
| active_chains |= BIT(first_chain); |
| IWL_DEBUG_CALIB(priv, |
| "All Tx chains are disconnected W/A - declare %d as connected\n", |
| first_chain); |
| break; |
| } |
| } |
| |
| if (active_chains != priv->nvm_data->valid_rx_ant && |
| active_chains != priv->chain_noise_data.active_chains) |
| IWL_DEBUG_CALIB(priv, |
| "Detected that not all antennas are connected! " |
| "Connected: %#x, valid: %#x.\n", |
| active_chains, |
| priv->nvm_data->valid_rx_ant); |
| |
| /* Save for use within RXON, TX, SCAN commands, etc. */ |
| data->active_chains = active_chains; |
| IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n", |
| active_chains); |
| } |
| |
| static void iwlagn_gain_computation(struct iwl_priv *priv, |
| u32 average_noise[NUM_RX_CHAINS], |
| u8 default_chain) |
| { |
| int i; |
| s32 delta_g; |
| struct iwl_chain_noise_data *data = &priv->chain_noise_data; |
| |
| /* |
| * Find Gain Code for the chains based on "default chain" |
| */ |
| for (i = default_chain + 1; i < NUM_RX_CHAINS; i++) { |
| if ((data->disconn_array[i])) { |
| data->delta_gain_code[i] = 0; |
| continue; |
| } |
| |
| delta_g = (priv->lib->chain_noise_scale * |
| ((s32)average_noise[default_chain] - |
| (s32)average_noise[i])) / 1500; |
| |
| /* bound gain by 2 bits value max, 3rd bit is sign */ |
| data->delta_gain_code[i] = |
| min(abs(delta_g), |
| (s32) CHAIN_NOISE_MAX_DELTA_GAIN_CODE); |
| |
| if (delta_g < 0) |
| /* |
| * set negative sign ... |
| * note to Intel developers: This is uCode API format, |
| * not the format of any internal device registers. |
| * Do not change this format for e.g. 6050 or similar |
| * devices. Change format only if more resolution |
| * (i.e. more than 2 bits magnitude) is needed. |
| */ |
| data->delta_gain_code[i] |= (1 << 2); |
| } |
| |
| IWL_DEBUG_CALIB(priv, "Delta gains: ANT_B = %d ANT_C = %d\n", |
| data->delta_gain_code[1], data->delta_gain_code[2]); |
| |
| if (!data->radio_write) { |
| struct iwl_calib_chain_noise_gain_cmd cmd; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| |
| iwl_set_calib_hdr(&cmd.hdr, |
| priv->phy_calib_chain_noise_gain_cmd); |
| cmd.delta_gain_1 = data->delta_gain_code[1]; |
| cmd.delta_gain_2 = data->delta_gain_code[2]; |
| iwl_dvm_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD, |
| CMD_ASYNC, sizeof(cmd), &cmd); |
| |
| data->radio_write = 1; |
| data->state = IWL_CHAIN_NOISE_CALIBRATED; |
| } |
| } |
| |
| /* |
| * Accumulate 16 beacons of signal and noise statistics for each of |
| * 3 receivers/antennas/rx-chains, then figure out: |
| * 1) Which antennas are connected. |
| * 2) Differential rx gain settings to balance the 3 receivers. |
| */ |
| void iwl_chain_noise_calibration(struct iwl_priv *priv) |
| { |
| struct iwl_chain_noise_data *data = NULL; |
| |
| u32 chain_noise_a; |
| u32 chain_noise_b; |
| u32 chain_noise_c; |
| u32 chain_sig_a; |
| u32 chain_sig_b; |
| u32 chain_sig_c; |
| u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE}; |
| u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE}; |
| u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE; |
| u16 min_average_noise_antenna_i = INITIALIZATION_VALUE; |
| u16 i = 0; |
| u16 rxon_chnum = INITIALIZATION_VALUE; |
| u16 stat_chnum = INITIALIZATION_VALUE; |
| u8 rxon_band24; |
| u8 stat_band24; |
| struct statistics_rx_non_phy *rx_info; |
| |
| /* |
| * MULTI-FIXME: |
| * When we support multiple interfaces on different channels, |
| * this must be modified/fixed. |
| */ |
| struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS]; |
| |
| if (priv->calib_disabled & IWL_CHAIN_NOISE_CALIB_DISABLED) |
| return; |
| |
| data = &(priv->chain_noise_data); |
| |
| /* |
| * Accumulate just the first "chain_noise_num_beacons" after |
| * the first association, then we're done forever. |
| */ |
| if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) { |
| if (data->state == IWL_CHAIN_NOISE_ALIVE) |
| IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n"); |
| return; |
| } |
| |
| spin_lock_bh(&priv->statistics.lock); |
| |
| rx_info = &priv->statistics.rx_non_phy; |
| |
| if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) { |
| IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n"); |
| spin_unlock_bh(&priv->statistics.lock); |
| return; |
| } |
| |
| rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK); |
| rxon_chnum = le16_to_cpu(ctx->staging.channel); |
| stat_band24 = |
| !!(priv->statistics.flag & STATISTICS_REPLY_FLG_BAND_24G_MSK); |
| stat_chnum = le32_to_cpu(priv->statistics.flag) >> 16; |
| |
| /* Make sure we accumulate data for just the associated channel |
| * (even if scanning). */ |
| if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) { |
| IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n", |
| rxon_chnum, rxon_band24); |
| spin_unlock_bh(&priv->statistics.lock); |
| return; |
| } |
| |
| /* |
| * Accumulate beacon statistics values across |
| * "chain_noise_num_beacons" |
| */ |
| chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) & |
| IN_BAND_FILTER; |
| chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) & |
| IN_BAND_FILTER; |
| chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) & |
| IN_BAND_FILTER; |
| |
| chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER; |
| chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER; |
| chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER; |
| |
| spin_unlock_bh(&priv->statistics.lock); |
| |
| data->beacon_count++; |
| |
| data->chain_noise_a = (chain_noise_a + data->chain_noise_a); |
| data->chain_noise_b = (chain_noise_b + data->chain_noise_b); |
| data->chain_noise_c = (chain_noise_c + data->chain_noise_c); |
| |
| data->chain_signal_a = (chain_sig_a + data->chain_signal_a); |
| data->chain_signal_b = (chain_sig_b + data->chain_signal_b); |
| data->chain_signal_c = (chain_sig_c + data->chain_signal_c); |
| |
| IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n", |
| rxon_chnum, rxon_band24, data->beacon_count); |
| IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n", |
| chain_sig_a, chain_sig_b, chain_sig_c); |
| IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n", |
| chain_noise_a, chain_noise_b, chain_noise_c); |
| |
| /* If this is the "chain_noise_num_beacons", determine: |
| * 1) Disconnected antennas (using signal strengths) |
| * 2) Differential gain (using silence noise) to balance receivers */ |
| if (data->beacon_count != IWL_CAL_NUM_BEACONS) |
| return; |
| |
| /* Analyze signal for disconnected antenna */ |
| if (priv->lib->bt_params && |
| priv->lib->bt_params->advanced_bt_coexist) { |
| /* Disable disconnected antenna algorithm for advanced |
| bt coex, assuming valid antennas are connected */ |
| data->active_chains = priv->nvm_data->valid_rx_ant; |
| for (i = 0; i < NUM_RX_CHAINS; i++) |
| if (!(data->active_chains & (1<<i))) |
| data->disconn_array[i] = 1; |
| } else |
| iwl_find_disconn_antenna(priv, average_sig, data); |
| |
| /* Analyze noise for rx balance */ |
| average_noise[0] = data->chain_noise_a / IWL_CAL_NUM_BEACONS; |
| average_noise[1] = data->chain_noise_b / IWL_CAL_NUM_BEACONS; |
| average_noise[2] = data->chain_noise_c / IWL_CAL_NUM_BEACONS; |
| |
| for (i = 0; i < NUM_RX_CHAINS; i++) { |
| if (!(data->disconn_array[i]) && |
| (average_noise[i] <= min_average_noise)) { |
| /* This means that chain i is active and has |
| * lower noise values so far: */ |
| min_average_noise = average_noise[i]; |
| min_average_noise_antenna_i = i; |
| } |
| } |
| |
| IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n", |
| average_noise[0], average_noise[1], |
| average_noise[2]); |
| |
| IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n", |
| min_average_noise, min_average_noise_antenna_i); |
| |
| iwlagn_gain_computation( |
| priv, average_noise, |
| find_first_chain(priv->nvm_data->valid_rx_ant)); |
| |
| /* Some power changes may have been made during the calibration. |
| * Update and commit the RXON |
| */ |
| iwl_update_chain_flags(priv); |
| |
| data->state = IWL_CHAIN_NOISE_DONE; |
| iwl_power_update_mode(priv, false); |
| } |
| |
| void iwl_reset_run_time_calib(struct iwl_priv *priv) |
| { |
| int i; |
| memset(&(priv->sensitivity_data), 0, |
| sizeof(struct iwl_sensitivity_data)); |
| memset(&(priv->chain_noise_data), 0, |
| sizeof(struct iwl_chain_noise_data)); |
| for (i = 0; i < NUM_RX_CHAINS; i++) |
| priv->chain_noise_data.delta_gain_code[i] = |
| CHAIN_NOISE_DELTA_GAIN_INIT_VAL; |
| |
| /* Ask for statistics now, the uCode will send notification |
| * periodically after association */ |
| iwl_send_statistics_request(priv, CMD_ASYNC, true); |
| } |