| /* |
| * Copyright (C) Ericsson AB 2007-2008 |
| * Copyright (C) ST-Ericsson SA 2008-2010 |
| * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson |
| * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson |
| * License terms: GNU General Public License (GPL) version 2 |
| */ |
| |
| #include <linux/dma-mapping.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/export.h> |
| #include <linux/dmaengine.h> |
| #include <linux/platform_device.h> |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/log2.h> |
| #include <linux/pm.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/err.h> |
| #include <linux/of.h> |
| #include <linux/of_dma.h> |
| #include <linux/amba/bus.h> |
| #include <linux/regulator/consumer.h> |
| #include <linux/platform_data/dma-ste-dma40.h> |
| |
| #include "dmaengine.h" |
| #include "ste_dma40_ll.h" |
| |
| #define D40_NAME "dma40" |
| |
| #define D40_PHY_CHAN -1 |
| |
| /* For masking out/in 2 bit channel positions */ |
| #define D40_CHAN_POS(chan) (2 * (chan / 2)) |
| #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan)) |
| |
| /* Maximum iterations taken before giving up suspending a channel */ |
| #define D40_SUSPEND_MAX_IT 500 |
| |
| /* Milliseconds */ |
| #define DMA40_AUTOSUSPEND_DELAY 100 |
| |
| /* Hardware requirement on LCLA alignment */ |
| #define LCLA_ALIGNMENT 0x40000 |
| |
| /* Max number of links per event group */ |
| #define D40_LCLA_LINK_PER_EVENT_GRP 128 |
| #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP |
| |
| /* Max number of logical channels per physical channel */ |
| #define D40_MAX_LOG_CHAN_PER_PHY 32 |
| |
| /* Attempts before giving up to trying to get pages that are aligned */ |
| #define MAX_LCLA_ALLOC_ATTEMPTS 256 |
| |
| /* Bit markings for allocation map */ |
| #define D40_ALLOC_FREE BIT(31) |
| #define D40_ALLOC_PHY BIT(30) |
| #define D40_ALLOC_LOG_FREE 0 |
| |
| #define D40_MEMCPY_MAX_CHANS 8 |
| |
| /* Reserved event lines for memcpy only. */ |
| #define DB8500_DMA_MEMCPY_EV_0 51 |
| #define DB8500_DMA_MEMCPY_EV_1 56 |
| #define DB8500_DMA_MEMCPY_EV_2 57 |
| #define DB8500_DMA_MEMCPY_EV_3 58 |
| #define DB8500_DMA_MEMCPY_EV_4 59 |
| #define DB8500_DMA_MEMCPY_EV_5 60 |
| |
| static int dma40_memcpy_channels[] = { |
| DB8500_DMA_MEMCPY_EV_0, |
| DB8500_DMA_MEMCPY_EV_1, |
| DB8500_DMA_MEMCPY_EV_2, |
| DB8500_DMA_MEMCPY_EV_3, |
| DB8500_DMA_MEMCPY_EV_4, |
| DB8500_DMA_MEMCPY_EV_5, |
| }; |
| |
| /* Default configuration for physcial memcpy */ |
| static struct stedma40_chan_cfg dma40_memcpy_conf_phy = { |
| .mode = STEDMA40_MODE_PHYSICAL, |
| .dir = DMA_MEM_TO_MEM, |
| |
| .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE, |
| .src_info.psize = STEDMA40_PSIZE_PHY_1, |
| .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL, |
| |
| .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE, |
| .dst_info.psize = STEDMA40_PSIZE_PHY_1, |
| .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL, |
| }; |
| |
| /* Default configuration for logical memcpy */ |
| static struct stedma40_chan_cfg dma40_memcpy_conf_log = { |
| .mode = STEDMA40_MODE_LOGICAL, |
| .dir = DMA_MEM_TO_MEM, |
| |
| .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE, |
| .src_info.psize = STEDMA40_PSIZE_LOG_1, |
| .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL, |
| |
| .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE, |
| .dst_info.psize = STEDMA40_PSIZE_LOG_1, |
| .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL, |
| }; |
| |
| /** |
| * enum 40_command - The different commands and/or statuses. |
| * |
| * @D40_DMA_STOP: DMA channel command STOP or status STOPPED, |
| * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN. |
| * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible. |
| * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED. |
| */ |
| enum d40_command { |
| D40_DMA_STOP = 0, |
| D40_DMA_RUN = 1, |
| D40_DMA_SUSPEND_REQ = 2, |
| D40_DMA_SUSPENDED = 3 |
| }; |
| |
| /* |
| * enum d40_events - The different Event Enables for the event lines. |
| * |
| * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan. |
| * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan. |
| * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line. |
| * @D40_ROUND_EVENTLINE: Status check for event line. |
| */ |
| |
| enum d40_events { |
| D40_DEACTIVATE_EVENTLINE = 0, |
| D40_ACTIVATE_EVENTLINE = 1, |
| D40_SUSPEND_REQ_EVENTLINE = 2, |
| D40_ROUND_EVENTLINE = 3 |
| }; |
| |
| /* |
| * These are the registers that has to be saved and later restored |
| * when the DMA hw is powered off. |
| * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works. |
| */ |
| static u32 d40_backup_regs[] = { |
| D40_DREG_LCPA, |
| D40_DREG_LCLA, |
| D40_DREG_PRMSE, |
| D40_DREG_PRMSO, |
| D40_DREG_PRMOE, |
| D40_DREG_PRMOO, |
| }; |
| |
| #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs) |
| |
| /* |
| * since 9540 and 8540 has the same HW revision |
| * use v4a for 9540 or ealier |
| * use v4b for 8540 or later |
| * HW revision: |
| * DB8500ed has revision 0 |
| * DB8500v1 has revision 2 |
| * DB8500v2 has revision 3 |
| * AP9540v1 has revision 4 |
| * DB8540v1 has revision 4 |
| * TODO: Check if all these registers have to be saved/restored on dma40 v4a |
| */ |
| static u32 d40_backup_regs_v4a[] = { |
| D40_DREG_PSEG1, |
| D40_DREG_PSEG2, |
| D40_DREG_PSEG3, |
| D40_DREG_PSEG4, |
| D40_DREG_PCEG1, |
| D40_DREG_PCEG2, |
| D40_DREG_PCEG3, |
| D40_DREG_PCEG4, |
| D40_DREG_RSEG1, |
| D40_DREG_RSEG2, |
| D40_DREG_RSEG3, |
| D40_DREG_RSEG4, |
| D40_DREG_RCEG1, |
| D40_DREG_RCEG2, |
| D40_DREG_RCEG3, |
| D40_DREG_RCEG4, |
| }; |
| |
| #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a) |
| |
| static u32 d40_backup_regs_v4b[] = { |
| D40_DREG_CPSEG1, |
| D40_DREG_CPSEG2, |
| D40_DREG_CPSEG3, |
| D40_DREG_CPSEG4, |
| D40_DREG_CPSEG5, |
| D40_DREG_CPCEG1, |
| D40_DREG_CPCEG2, |
| D40_DREG_CPCEG3, |
| D40_DREG_CPCEG4, |
| D40_DREG_CPCEG5, |
| D40_DREG_CRSEG1, |
| D40_DREG_CRSEG2, |
| D40_DREG_CRSEG3, |
| D40_DREG_CRSEG4, |
| D40_DREG_CRSEG5, |
| D40_DREG_CRCEG1, |
| D40_DREG_CRCEG2, |
| D40_DREG_CRCEG3, |
| D40_DREG_CRCEG4, |
| D40_DREG_CRCEG5, |
| }; |
| |
| #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b) |
| |
| static u32 d40_backup_regs_chan[] = { |
| D40_CHAN_REG_SSCFG, |
| D40_CHAN_REG_SSELT, |
| D40_CHAN_REG_SSPTR, |
| D40_CHAN_REG_SSLNK, |
| D40_CHAN_REG_SDCFG, |
| D40_CHAN_REG_SDELT, |
| D40_CHAN_REG_SDPTR, |
| D40_CHAN_REG_SDLNK, |
| }; |
| |
| #define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \ |
| BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B) |
| |
| /** |
| * struct d40_interrupt_lookup - lookup table for interrupt handler |
| * |
| * @src: Interrupt mask register. |
| * @clr: Interrupt clear register. |
| * @is_error: true if this is an error interrupt. |
| * @offset: start delta in the lookup_log_chans in d40_base. If equals to |
| * D40_PHY_CHAN, the lookup_phy_chans shall be used instead. |
| */ |
| struct d40_interrupt_lookup { |
| u32 src; |
| u32 clr; |
| bool is_error; |
| int offset; |
| }; |
| |
| |
| static struct d40_interrupt_lookup il_v4a[] = { |
| {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0}, |
| {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32}, |
| {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64}, |
| {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96}, |
| {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0}, |
| {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32}, |
| {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64}, |
| {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96}, |
| {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN}, |
| {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN}, |
| }; |
| |
| static struct d40_interrupt_lookup il_v4b[] = { |
| {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false, 0}, |
| {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32}, |
| {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64}, |
| {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96}, |
| {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128}, |
| {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true, 0}, |
| {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true, 32}, |
| {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true, 64}, |
| {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true, 96}, |
| {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true, 128}, |
| {D40_DREG_CPCTIS, D40_DREG_CPCICR, false, D40_PHY_CHAN}, |
| {D40_DREG_CPCEIS, D40_DREG_CPCICR, true, D40_PHY_CHAN}, |
| }; |
| |
| /** |
| * struct d40_reg_val - simple lookup struct |
| * |
| * @reg: The register. |
| * @val: The value that belongs to the register in reg. |
| */ |
| struct d40_reg_val { |
| unsigned int reg; |
| unsigned int val; |
| }; |
| |
| static __initdata struct d40_reg_val dma_init_reg_v4a[] = { |
| /* Clock every part of the DMA block from start */ |
| { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL}, |
| |
| /* Interrupts on all logical channels */ |
| { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF} |
| }; |
| static __initdata struct d40_reg_val dma_init_reg_v4b[] = { |
| /* Clock every part of the DMA block from start */ |
| { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL}, |
| |
| /* Interrupts on all logical channels */ |
| { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF} |
| }; |
| |
| /** |
| * struct d40_lli_pool - Structure for keeping LLIs in memory |
| * |
| * @base: Pointer to memory area when the pre_alloc_lli's are not large |
| * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if |
| * pre_alloc_lli is used. |
| * @dma_addr: DMA address, if mapped |
| * @size: The size in bytes of the memory at base or the size of pre_alloc_lli. |
| * @pre_alloc_lli: Pre allocated area for the most common case of transfers, |
| * one buffer to one buffer. |
| */ |
| struct d40_lli_pool { |
| void *base; |
| int size; |
| dma_addr_t dma_addr; |
| /* Space for dst and src, plus an extra for padding */ |
| u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)]; |
| }; |
| |
| /** |
| * struct d40_desc - A descriptor is one DMA job. |
| * |
| * @lli_phy: LLI settings for physical channel. Both src and dst= |
| * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if |
| * lli_len equals one. |
| * @lli_log: Same as above but for logical channels. |
| * @lli_pool: The pool with two entries pre-allocated. |
| * @lli_len: Number of llis of current descriptor. |
| * @lli_current: Number of transferred llis. |
| * @lcla_alloc: Number of LCLA entries allocated. |
| * @txd: DMA engine struct. Used for among other things for communication |
| * during a transfer. |
| * @node: List entry. |
| * @is_in_client_list: true if the client owns this descriptor. |
| * @cyclic: true if this is a cyclic job |
| * |
| * This descriptor is used for both logical and physical transfers. |
| */ |
| struct d40_desc { |
| /* LLI physical */ |
| struct d40_phy_lli_bidir lli_phy; |
| /* LLI logical */ |
| struct d40_log_lli_bidir lli_log; |
| |
| struct d40_lli_pool lli_pool; |
| int lli_len; |
| int lli_current; |
| int lcla_alloc; |
| |
| struct dma_async_tx_descriptor txd; |
| struct list_head node; |
| |
| bool is_in_client_list; |
| bool cyclic; |
| }; |
| |
| /** |
| * struct d40_lcla_pool - LCLA pool settings and data. |
| * |
| * @base: The virtual address of LCLA. 18 bit aligned. |
| * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used. |
| * This pointer is only there for clean-up on error. |
| * @pages: The number of pages needed for all physical channels. |
| * Only used later for clean-up on error |
| * @lock: Lock to protect the content in this struct. |
| * @alloc_map: big map over which LCLA entry is own by which job. |
| */ |
| struct d40_lcla_pool { |
| void *base; |
| dma_addr_t dma_addr; |
| void *base_unaligned; |
| int pages; |
| spinlock_t lock; |
| struct d40_desc **alloc_map; |
| }; |
| |
| /** |
| * struct d40_phy_res - struct for handling eventlines mapped to physical |
| * channels. |
| * |
| * @lock: A lock protection this entity. |
| * @reserved: True if used by secure world or otherwise. |
| * @num: The physical channel number of this entity. |
| * @allocated_src: Bit mapped to show which src event line's are mapped to |
| * this physical channel. Can also be free or physically allocated. |
| * @allocated_dst: Same as for src but is dst. |
| * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as |
| * event line number. |
| * @use_soft_lli: To mark if the linked lists of channel are managed by SW. |
| */ |
| struct d40_phy_res { |
| spinlock_t lock; |
| bool reserved; |
| int num; |
| u32 allocated_src; |
| u32 allocated_dst; |
| bool use_soft_lli; |
| }; |
| |
| struct d40_base; |
| |
| /** |
| * struct d40_chan - Struct that describes a channel. |
| * |
| * @lock: A spinlock to protect this struct. |
| * @log_num: The logical number, if any of this channel. |
| * @pending_tx: The number of pending transfers. Used between interrupt handler |
| * and tasklet. |
| * @busy: Set to true when transfer is ongoing on this channel. |
| * @phy_chan: Pointer to physical channel which this instance runs on. If this |
| * point is NULL, then the channel is not allocated. |
| * @chan: DMA engine handle. |
| * @tasklet: Tasklet that gets scheduled from interrupt context to complete a |
| * transfer and call client callback. |
| * @client: Cliented owned descriptor list. |
| * @pending_queue: Submitted jobs, to be issued by issue_pending() |
| * @active: Active descriptor. |
| * @done: Completed jobs |
| * @queue: Queued jobs. |
| * @prepare_queue: Prepared jobs. |
| * @dma_cfg: The client configuration of this dma channel. |
| * @configured: whether the dma_cfg configuration is valid |
| * @base: Pointer to the device instance struct. |
| * @src_def_cfg: Default cfg register setting for src. |
| * @dst_def_cfg: Default cfg register setting for dst. |
| * @log_def: Default logical channel settings. |
| * @lcpa: Pointer to dst and src lcpa settings. |
| * @runtime_addr: runtime configured address. |
| * @runtime_direction: runtime configured direction. |
| * |
| * This struct can either "be" a logical or a physical channel. |
| */ |
| struct d40_chan { |
| spinlock_t lock; |
| int log_num; |
| int pending_tx; |
| bool busy; |
| struct d40_phy_res *phy_chan; |
| struct dma_chan chan; |
| struct tasklet_struct tasklet; |
| struct list_head client; |
| struct list_head pending_queue; |
| struct list_head active; |
| struct list_head done; |
| struct list_head queue; |
| struct list_head prepare_queue; |
| struct stedma40_chan_cfg dma_cfg; |
| bool configured; |
| struct d40_base *base; |
| /* Default register configurations */ |
| u32 src_def_cfg; |
| u32 dst_def_cfg; |
| struct d40_def_lcsp log_def; |
| struct d40_log_lli_full *lcpa; |
| /* Runtime reconfiguration */ |
| dma_addr_t runtime_addr; |
| enum dma_transfer_direction runtime_direction; |
| }; |
| |
| /** |
| * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA |
| * controller |
| * |
| * @backup: the pointer to the registers address array for backup |
| * @backup_size: the size of the registers address array for backup |
| * @realtime_en: the realtime enable register |
| * @realtime_clear: the realtime clear register |
| * @high_prio_en: the high priority enable register |
| * @high_prio_clear: the high priority clear register |
| * @interrupt_en: the interrupt enable register |
| * @interrupt_clear: the interrupt clear register |
| * @il: the pointer to struct d40_interrupt_lookup |
| * @il_size: the size of d40_interrupt_lookup array |
| * @init_reg: the pointer to the struct d40_reg_val |
| * @init_reg_size: the size of d40_reg_val array |
| */ |
| struct d40_gen_dmac { |
| u32 *backup; |
| u32 backup_size; |
| u32 realtime_en; |
| u32 realtime_clear; |
| u32 high_prio_en; |
| u32 high_prio_clear; |
| u32 interrupt_en; |
| u32 interrupt_clear; |
| struct d40_interrupt_lookup *il; |
| u32 il_size; |
| struct d40_reg_val *init_reg; |
| u32 init_reg_size; |
| }; |
| |
| /** |
| * struct d40_base - The big global struct, one for each probe'd instance. |
| * |
| * @interrupt_lock: Lock used to make sure one interrupt is handle a time. |
| * @execmd_lock: Lock for execute command usage since several channels share |
| * the same physical register. |
| * @dev: The device structure. |
| * @virtbase: The virtual base address of the DMA's register. |
| * @rev: silicon revision detected. |
| * @clk: Pointer to the DMA clock structure. |
| * @phy_start: Physical memory start of the DMA registers. |
| * @phy_size: Size of the DMA register map. |
| * @irq: The IRQ number. |
| * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem |
| * transfers). |
| * @num_phy_chans: The number of physical channels. Read from HW. This |
| * is the number of available channels for this driver, not counting "Secure |
| * mode" allocated physical channels. |
| * @num_log_chans: The number of logical channels. Calculated from |
| * num_phy_chans. |
| * @dma_both: dma_device channels that can do both memcpy and slave transfers. |
| * @dma_slave: dma_device channels that can do only do slave transfers. |
| * @dma_memcpy: dma_device channels that can do only do memcpy transfers. |
| * @phy_chans: Room for all possible physical channels in system. |
| * @log_chans: Room for all possible logical channels in system. |
| * @lookup_log_chans: Used to map interrupt number to logical channel. Points |
| * to log_chans entries. |
| * @lookup_phy_chans: Used to map interrupt number to physical channel. Points |
| * to phy_chans entries. |
| * @plat_data: Pointer to provided platform_data which is the driver |
| * configuration. |
| * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla. |
| * @phy_res: Vector containing all physical channels. |
| * @lcla_pool: lcla pool settings and data. |
| * @lcpa_base: The virtual mapped address of LCPA. |
| * @phy_lcpa: The physical address of the LCPA. |
| * @lcpa_size: The size of the LCPA area. |
| * @desc_slab: cache for descriptors. |
| * @reg_val_backup: Here the values of some hardware registers are stored |
| * before the DMA is powered off. They are restored when the power is back on. |
| * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and |
| * later |
| * @reg_val_backup_chan: Backup data for standard channel parameter registers. |
| * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off. |
| * @gen_dmac: the struct for generic registers values to represent u8500/8540 |
| * DMA controller |
| */ |
| struct d40_base { |
| spinlock_t interrupt_lock; |
| spinlock_t execmd_lock; |
| struct device *dev; |
| void __iomem *virtbase; |
| u8 rev:4; |
| struct clk *clk; |
| phys_addr_t phy_start; |
| resource_size_t phy_size; |
| int irq; |
| int num_memcpy_chans; |
| int num_phy_chans; |
| int num_log_chans; |
| struct device_dma_parameters dma_parms; |
| struct dma_device dma_both; |
| struct dma_device dma_slave; |
| struct dma_device dma_memcpy; |
| struct d40_chan *phy_chans; |
| struct d40_chan *log_chans; |
| struct d40_chan **lookup_log_chans; |
| struct d40_chan **lookup_phy_chans; |
| struct stedma40_platform_data *plat_data; |
| struct regulator *lcpa_regulator; |
| /* Physical half channels */ |
| struct d40_phy_res *phy_res; |
| struct d40_lcla_pool lcla_pool; |
| void *lcpa_base; |
| dma_addr_t phy_lcpa; |
| resource_size_t lcpa_size; |
| struct kmem_cache *desc_slab; |
| u32 reg_val_backup[BACKUP_REGS_SZ]; |
| u32 reg_val_backup_v4[BACKUP_REGS_SZ_MAX]; |
| u32 *reg_val_backup_chan; |
| u16 gcc_pwr_off_mask; |
| struct d40_gen_dmac gen_dmac; |
| }; |
| |
| static struct device *chan2dev(struct d40_chan *d40c) |
| { |
| return &d40c->chan.dev->device; |
| } |
| |
| static bool chan_is_physical(struct d40_chan *chan) |
| { |
| return chan->log_num == D40_PHY_CHAN; |
| } |
| |
| static bool chan_is_logical(struct d40_chan *chan) |
| { |
| return !chan_is_physical(chan); |
| } |
| |
| static void __iomem *chan_base(struct d40_chan *chan) |
| { |
| return chan->base->virtbase + D40_DREG_PCBASE + |
| chan->phy_chan->num * D40_DREG_PCDELTA; |
| } |
| |
| #define d40_err(dev, format, arg...) \ |
| dev_err(dev, "[%s] " format, __func__, ## arg) |
| |
| #define chan_err(d40c, format, arg...) \ |
| d40_err(chan2dev(d40c), format, ## arg) |
| |
| static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d, |
| int lli_len) |
| { |
| bool is_log = chan_is_logical(d40c); |
| u32 align; |
| void *base; |
| |
| if (is_log) |
| align = sizeof(struct d40_log_lli); |
| else |
| align = sizeof(struct d40_phy_lli); |
| |
| if (lli_len == 1) { |
| base = d40d->lli_pool.pre_alloc_lli; |
| d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli); |
| d40d->lli_pool.base = NULL; |
| } else { |
| d40d->lli_pool.size = lli_len * 2 * align; |
| |
| base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT); |
| d40d->lli_pool.base = base; |
| |
| if (d40d->lli_pool.base == NULL) |
| return -ENOMEM; |
| } |
| |
| if (is_log) { |
| d40d->lli_log.src = PTR_ALIGN(base, align); |
| d40d->lli_log.dst = d40d->lli_log.src + lli_len; |
| |
| d40d->lli_pool.dma_addr = 0; |
| } else { |
| d40d->lli_phy.src = PTR_ALIGN(base, align); |
| d40d->lli_phy.dst = d40d->lli_phy.src + lli_len; |
| |
| d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev, |
| d40d->lli_phy.src, |
| d40d->lli_pool.size, |
| DMA_TO_DEVICE); |
| |
| if (dma_mapping_error(d40c->base->dev, |
| d40d->lli_pool.dma_addr)) { |
| kfree(d40d->lli_pool.base); |
| d40d->lli_pool.base = NULL; |
| d40d->lli_pool.dma_addr = 0; |
| return -ENOMEM; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d) |
| { |
| if (d40d->lli_pool.dma_addr) |
| dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr, |
| d40d->lli_pool.size, DMA_TO_DEVICE); |
| |
| kfree(d40d->lli_pool.base); |
| d40d->lli_pool.base = NULL; |
| d40d->lli_pool.size = 0; |
| d40d->lli_log.src = NULL; |
| d40d->lli_log.dst = NULL; |
| d40d->lli_phy.src = NULL; |
| d40d->lli_phy.dst = NULL; |
| } |
| |
| static int d40_lcla_alloc_one(struct d40_chan *d40c, |
| struct d40_desc *d40d) |
| { |
| unsigned long flags; |
| int i; |
| int ret = -EINVAL; |
| |
| spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags); |
| |
| /* |
| * Allocate both src and dst at the same time, therefore the half |
| * start on 1 since 0 can't be used since zero is used as end marker. |
| */ |
| for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) { |
| int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i; |
| |
| if (!d40c->base->lcla_pool.alloc_map[idx]) { |
| d40c->base->lcla_pool.alloc_map[idx] = d40d; |
| d40d->lcla_alloc++; |
| ret = i; |
| break; |
| } |
| } |
| |
| spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags); |
| |
| return ret; |
| } |
| |
| static int d40_lcla_free_all(struct d40_chan *d40c, |
| struct d40_desc *d40d) |
| { |
| unsigned long flags; |
| int i; |
| int ret = -EINVAL; |
| |
| if (chan_is_physical(d40c)) |
| return 0; |
| |
| spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags); |
| |
| for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) { |
| int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i; |
| |
| if (d40c->base->lcla_pool.alloc_map[idx] == d40d) { |
| d40c->base->lcla_pool.alloc_map[idx] = NULL; |
| d40d->lcla_alloc--; |
| if (d40d->lcla_alloc == 0) { |
| ret = 0; |
| break; |
| } |
| } |
| } |
| |
| spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags); |
| |
| return ret; |
| |
| } |
| |
| static void d40_desc_remove(struct d40_desc *d40d) |
| { |
| list_del(&d40d->node); |
| } |
| |
| static struct d40_desc *d40_desc_get(struct d40_chan *d40c) |
| { |
| struct d40_desc *desc = NULL; |
| |
| if (!list_empty(&d40c->client)) { |
| struct d40_desc *d; |
| struct d40_desc *_d; |
| |
| list_for_each_entry_safe(d, _d, &d40c->client, node) { |
| if (async_tx_test_ack(&d->txd)) { |
| d40_desc_remove(d); |
| desc = d; |
| memset(desc, 0, sizeof(*desc)); |
| break; |
| } |
| } |
| } |
| |
| if (!desc) |
| desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT); |
| |
| if (desc) |
| INIT_LIST_HEAD(&desc->node); |
| |
| return desc; |
| } |
| |
| static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d) |
| { |
| |
| d40_pool_lli_free(d40c, d40d); |
| d40_lcla_free_all(d40c, d40d); |
| kmem_cache_free(d40c->base->desc_slab, d40d); |
| } |
| |
| static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc) |
| { |
| list_add_tail(&desc->node, &d40c->active); |
| } |
| |
| static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc) |
| { |
| struct d40_phy_lli *lli_dst = desc->lli_phy.dst; |
| struct d40_phy_lli *lli_src = desc->lli_phy.src; |
| void __iomem *base = chan_base(chan); |
| |
| writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG); |
| writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT); |
| writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR); |
| writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK); |
| |
| writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG); |
| writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT); |
| writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR); |
| writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK); |
| } |
| |
| static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc) |
| { |
| list_add_tail(&desc->node, &d40c->done); |
| } |
| |
| static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc) |
| { |
| struct d40_lcla_pool *pool = &chan->base->lcla_pool; |
| struct d40_log_lli_bidir *lli = &desc->lli_log; |
| int lli_current = desc->lli_current; |
| int lli_len = desc->lli_len; |
| bool cyclic = desc->cyclic; |
| int curr_lcla = -EINVAL; |
| int first_lcla = 0; |
| bool use_esram_lcla = chan->base->plat_data->use_esram_lcla; |
| bool linkback; |
| |
| /* |
| * We may have partially running cyclic transfers, in case we did't get |
| * enough LCLA entries. |
| */ |
| linkback = cyclic && lli_current == 0; |
| |
| /* |
| * For linkback, we need one LCLA even with only one link, because we |
| * can't link back to the one in LCPA space |
| */ |
| if (linkback || (lli_len - lli_current > 1)) { |
| /* |
| * If the channel is expected to use only soft_lli don't |
| * allocate a lcla. This is to avoid a HW issue that exists |
| * in some controller during a peripheral to memory transfer |
| * that uses linked lists. |
| */ |
| if (!(chan->phy_chan->use_soft_lli && |
| chan->dma_cfg.dir == DMA_DEV_TO_MEM)) |
| curr_lcla = d40_lcla_alloc_one(chan, desc); |
| |
| first_lcla = curr_lcla; |
| } |
| |
| /* |
| * For linkback, we normally load the LCPA in the loop since we need to |
| * link it to the second LCLA and not the first. However, if we |
| * couldn't even get a first LCLA, then we have to run in LCPA and |
| * reload manually. |
| */ |
| if (!linkback || curr_lcla == -EINVAL) { |
| unsigned int flags = 0; |
| |
| if (curr_lcla == -EINVAL) |
| flags |= LLI_TERM_INT; |
| |
| d40_log_lli_lcpa_write(chan->lcpa, |
| &lli->dst[lli_current], |
| &lli->src[lli_current], |
| curr_lcla, |
| flags); |
| lli_current++; |
| } |
| |
| if (curr_lcla < 0) |
| goto out; |
| |
| for (; lli_current < lli_len; lli_current++) { |
| unsigned int lcla_offset = chan->phy_chan->num * 1024 + |
| 8 * curr_lcla * 2; |
| struct d40_log_lli *lcla = pool->base + lcla_offset; |
| unsigned int flags = 0; |
| int next_lcla; |
| |
| if (lli_current + 1 < lli_len) |
| next_lcla = d40_lcla_alloc_one(chan, desc); |
| else |
| next_lcla = linkback ? first_lcla : -EINVAL; |
| |
| if (cyclic || next_lcla == -EINVAL) |
| flags |= LLI_TERM_INT; |
| |
| if (linkback && curr_lcla == first_lcla) { |
| /* First link goes in both LCPA and LCLA */ |
| d40_log_lli_lcpa_write(chan->lcpa, |
| &lli->dst[lli_current], |
| &lli->src[lli_current], |
| next_lcla, flags); |
| } |
| |
| /* |
| * One unused LCLA in the cyclic case if the very first |
| * next_lcla fails... |
| */ |
| d40_log_lli_lcla_write(lcla, |
| &lli->dst[lli_current], |
| &lli->src[lli_current], |
| next_lcla, flags); |
| |
| /* |
| * Cache maintenance is not needed if lcla is |
| * mapped in esram |
| */ |
| if (!use_esram_lcla) { |
| dma_sync_single_range_for_device(chan->base->dev, |
| pool->dma_addr, lcla_offset, |
| 2 * sizeof(struct d40_log_lli), |
| DMA_TO_DEVICE); |
| } |
| curr_lcla = next_lcla; |
| |
| if (curr_lcla == -EINVAL || curr_lcla == first_lcla) { |
| lli_current++; |
| break; |
| } |
| } |
| |
| out: |
| desc->lli_current = lli_current; |
| } |
| |
| static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d) |
| { |
| if (chan_is_physical(d40c)) { |
| d40_phy_lli_load(d40c, d40d); |
| d40d->lli_current = d40d->lli_len; |
| } else |
| d40_log_lli_to_lcxa(d40c, d40d); |
| } |
| |
| static struct d40_desc *d40_first_active_get(struct d40_chan *d40c) |
| { |
| struct d40_desc *d; |
| |
| if (list_empty(&d40c->active)) |
| return NULL; |
| |
| d = list_first_entry(&d40c->active, |
| struct d40_desc, |
| node); |
| return d; |
| } |
| |
| /* remove desc from current queue and add it to the pending_queue */ |
| static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc) |
| { |
| d40_desc_remove(desc); |
| desc->is_in_client_list = false; |
| list_add_tail(&desc->node, &d40c->pending_queue); |
| } |
| |
| static struct d40_desc *d40_first_pending(struct d40_chan *d40c) |
| { |
| struct d40_desc *d; |
| |
| if (list_empty(&d40c->pending_queue)) |
| return NULL; |
| |
| d = list_first_entry(&d40c->pending_queue, |
| struct d40_desc, |
| node); |
| return d; |
| } |
| |
| static struct d40_desc *d40_first_queued(struct d40_chan *d40c) |
| { |
| struct d40_desc *d; |
| |
| if (list_empty(&d40c->queue)) |
| return NULL; |
| |
| d = list_first_entry(&d40c->queue, |
| struct d40_desc, |
| node); |
| return d; |
| } |
| |
| static struct d40_desc *d40_first_done(struct d40_chan *d40c) |
| { |
| if (list_empty(&d40c->done)) |
| return NULL; |
| |
| return list_first_entry(&d40c->done, struct d40_desc, node); |
| } |
| |
| static int d40_psize_2_burst_size(bool is_log, int psize) |
| { |
| if (is_log) { |
| if (psize == STEDMA40_PSIZE_LOG_1) |
| return 1; |
| } else { |
| if (psize == STEDMA40_PSIZE_PHY_1) |
| return 1; |
| } |
| |
| return 2 << psize; |
| } |
| |
| /* |
| * The dma only supports transmitting packages up to |
| * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes. |
| * |
| * Calculate the total number of dma elements required to send the entire sg list. |
| */ |
| static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2) |
| { |
| int dmalen; |
| u32 max_w = max(data_width1, data_width2); |
| u32 min_w = min(data_width1, data_width2); |
| u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w); |
| |
| if (seg_max > STEDMA40_MAX_SEG_SIZE) |
| seg_max -= max_w; |
| |
| if (!IS_ALIGNED(size, max_w)) |
| return -EINVAL; |
| |
| if (size <= seg_max) |
| dmalen = 1; |
| else { |
| dmalen = size / seg_max; |
| if (dmalen * seg_max < size) |
| dmalen++; |
| } |
| return dmalen; |
| } |
| |
| static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len, |
| u32 data_width1, u32 data_width2) |
| { |
| struct scatterlist *sg; |
| int i; |
| int len = 0; |
| int ret; |
| |
| for_each_sg(sgl, sg, sg_len, i) { |
| ret = d40_size_2_dmalen(sg_dma_len(sg), |
| data_width1, data_width2); |
| if (ret < 0) |
| return ret; |
| len += ret; |
| } |
| return len; |
| } |
| |
| static int __d40_execute_command_phy(struct d40_chan *d40c, |
| enum d40_command command) |
| { |
| u32 status; |
| int i; |
| void __iomem *active_reg; |
| int ret = 0; |
| unsigned long flags; |
| u32 wmask; |
| |
| if (command == D40_DMA_STOP) { |
| ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ); |
| if (ret) |
| return ret; |
| } |
| |
| spin_lock_irqsave(&d40c->base->execmd_lock, flags); |
| |
| if (d40c->phy_chan->num % 2 == 0) |
| active_reg = d40c->base->virtbase + D40_DREG_ACTIVE; |
| else |
| active_reg = d40c->base->virtbase + D40_DREG_ACTIVO; |
| |
| if (command == D40_DMA_SUSPEND_REQ) { |
| status = (readl(active_reg) & |
| D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> |
| D40_CHAN_POS(d40c->phy_chan->num); |
| |
| if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP) |
| goto done; |
| } |
| |
| wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num)); |
| writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)), |
| active_reg); |
| |
| if (command == D40_DMA_SUSPEND_REQ) { |
| |
| for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) { |
| status = (readl(active_reg) & |
| D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> |
| D40_CHAN_POS(d40c->phy_chan->num); |
| |
| cpu_relax(); |
| /* |
| * Reduce the number of bus accesses while |
| * waiting for the DMA to suspend. |
| */ |
| udelay(3); |
| |
| if (status == D40_DMA_STOP || |
| status == D40_DMA_SUSPENDED) |
| break; |
| } |
| |
| if (i == D40_SUSPEND_MAX_IT) { |
| chan_err(d40c, |
| "unable to suspend the chl %d (log: %d) status %x\n", |
| d40c->phy_chan->num, d40c->log_num, |
| status); |
| dump_stack(); |
| ret = -EBUSY; |
| } |
| |
| } |
| done: |
| spin_unlock_irqrestore(&d40c->base->execmd_lock, flags); |
| return ret; |
| } |
| |
| static void d40_term_all(struct d40_chan *d40c) |
| { |
| struct d40_desc *d40d; |
| struct d40_desc *_d; |
| |
| /* Release completed descriptors */ |
| while ((d40d = d40_first_done(d40c))) { |
| d40_desc_remove(d40d); |
| d40_desc_free(d40c, d40d); |
| } |
| |
| /* Release active descriptors */ |
| while ((d40d = d40_first_active_get(d40c))) { |
| d40_desc_remove(d40d); |
| d40_desc_free(d40c, d40d); |
| } |
| |
| /* Release queued descriptors waiting for transfer */ |
| while ((d40d = d40_first_queued(d40c))) { |
| d40_desc_remove(d40d); |
| d40_desc_free(d40c, d40d); |
| } |
| |
| /* Release pending descriptors */ |
| while ((d40d = d40_first_pending(d40c))) { |
| d40_desc_remove(d40d); |
| d40_desc_free(d40c, d40d); |
| } |
| |
| /* Release client owned descriptors */ |
| if (!list_empty(&d40c->client)) |
| list_for_each_entry_safe(d40d, _d, &d40c->client, node) { |
| d40_desc_remove(d40d); |
| d40_desc_free(d40c, d40d); |
| } |
| |
| /* Release descriptors in prepare queue */ |
| if (!list_empty(&d40c->prepare_queue)) |
| list_for_each_entry_safe(d40d, _d, |
| &d40c->prepare_queue, node) { |
| d40_desc_remove(d40d); |
| d40_desc_free(d40c, d40d); |
| } |
| |
| d40c->pending_tx = 0; |
| } |
| |
| static void __d40_config_set_event(struct d40_chan *d40c, |
| enum d40_events event_type, u32 event, |
| int reg) |
| { |
| void __iomem *addr = chan_base(d40c) + reg; |
| int tries; |
| u32 status; |
| |
| switch (event_type) { |
| |
| case D40_DEACTIVATE_EVENTLINE: |
| |
| writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event)) |
| | ~D40_EVENTLINE_MASK(event), addr); |
| break; |
| |
| case D40_SUSPEND_REQ_EVENTLINE: |
| status = (readl(addr) & D40_EVENTLINE_MASK(event)) >> |
| D40_EVENTLINE_POS(event); |
| |
| if (status == D40_DEACTIVATE_EVENTLINE || |
| status == D40_SUSPEND_REQ_EVENTLINE) |
| break; |
| |
| writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event)) |
| | ~D40_EVENTLINE_MASK(event), addr); |
| |
| for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) { |
| |
| status = (readl(addr) & D40_EVENTLINE_MASK(event)) >> |
| D40_EVENTLINE_POS(event); |
| |
| cpu_relax(); |
| /* |
| * Reduce the number of bus accesses while |
| * waiting for the DMA to suspend. |
| */ |
| udelay(3); |
| |
| if (status == D40_DEACTIVATE_EVENTLINE) |
| break; |
| } |
| |
| if (tries == D40_SUSPEND_MAX_IT) { |
| chan_err(d40c, |
| "unable to stop the event_line chl %d (log: %d)" |
| "status %x\n", d40c->phy_chan->num, |
| d40c->log_num, status); |
| } |
| break; |
| |
| case D40_ACTIVATE_EVENTLINE: |
| /* |
| * The hardware sometimes doesn't register the enable when src and dst |
| * event lines are active on the same logical channel. Retry to ensure |
| * it does. Usually only one retry is sufficient. |
| */ |
| tries = 100; |
| while (--tries) { |
| writel((D40_ACTIVATE_EVENTLINE << |
| D40_EVENTLINE_POS(event)) | |
| ~D40_EVENTLINE_MASK(event), addr); |
| |
| if (readl(addr) & D40_EVENTLINE_MASK(event)) |
| break; |
| } |
| |
| if (tries != 99) |
| dev_dbg(chan2dev(d40c), |
| "[%s] workaround enable S%cLNK (%d tries)\n", |
| __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D', |
| 100 - tries); |
| |
| WARN_ON(!tries); |
| break; |
| |
| case D40_ROUND_EVENTLINE: |
| BUG(); |
| break; |
| |
| } |
| } |
| |
| static void d40_config_set_event(struct d40_chan *d40c, |
| enum d40_events event_type) |
| { |
| u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type); |
| |
| /* Enable event line connected to device (or memcpy) */ |
| if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) || |
| (d40c->dma_cfg.dir == DMA_DEV_TO_DEV)) |
| __d40_config_set_event(d40c, event_type, event, |
| D40_CHAN_REG_SSLNK); |
| |
| if (d40c->dma_cfg.dir != DMA_DEV_TO_MEM) |
| __d40_config_set_event(d40c, event_type, event, |
| D40_CHAN_REG_SDLNK); |
| } |
| |
| static u32 d40_chan_has_events(struct d40_chan *d40c) |
| { |
| void __iomem *chanbase = chan_base(d40c); |
| u32 val; |
| |
| val = readl(chanbase + D40_CHAN_REG_SSLNK); |
| val |= readl(chanbase + D40_CHAN_REG_SDLNK); |
| |
| return val; |
| } |
| |
| static int |
| __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command) |
| { |
| unsigned long flags; |
| int ret = 0; |
| u32 active_status; |
| void __iomem *active_reg; |
| |
| if (d40c->phy_chan->num % 2 == 0) |
| active_reg = d40c->base->virtbase + D40_DREG_ACTIVE; |
| else |
| active_reg = d40c->base->virtbase + D40_DREG_ACTIVO; |
| |
| |
| spin_lock_irqsave(&d40c->phy_chan->lock, flags); |
| |
| switch (command) { |
| case D40_DMA_STOP: |
| case D40_DMA_SUSPEND_REQ: |
| |
| active_status = (readl(active_reg) & |
| D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> |
| D40_CHAN_POS(d40c->phy_chan->num); |
| |
| if (active_status == D40_DMA_RUN) |
| d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE); |
| else |
| d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE); |
| |
| if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP)) |
| ret = __d40_execute_command_phy(d40c, command); |
| |
| break; |
| |
| case D40_DMA_RUN: |
| |
| d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE); |
| ret = __d40_execute_command_phy(d40c, command); |
| break; |
| |
| case D40_DMA_SUSPENDED: |
| BUG(); |
| break; |
| } |
| |
| spin_unlock_irqrestore(&d40c->phy_chan->lock, flags); |
| return ret; |
| } |
| |
| static int d40_channel_execute_command(struct d40_chan *d40c, |
| enum d40_command command) |
| { |
| if (chan_is_logical(d40c)) |
| return __d40_execute_command_log(d40c, command); |
| else |
| return __d40_execute_command_phy(d40c, command); |
| } |
| |
| static u32 d40_get_prmo(struct d40_chan *d40c) |
| { |
| static const unsigned int phy_map[] = { |
| [STEDMA40_PCHAN_BASIC_MODE] |
| = D40_DREG_PRMO_PCHAN_BASIC, |
| [STEDMA40_PCHAN_MODULO_MODE] |
| = D40_DREG_PRMO_PCHAN_MODULO, |
| [STEDMA40_PCHAN_DOUBLE_DST_MODE] |
| = D40_DREG_PRMO_PCHAN_DOUBLE_DST, |
| }; |
| static const unsigned int log_map[] = { |
| [STEDMA40_LCHAN_SRC_PHY_DST_LOG] |
| = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG, |
| [STEDMA40_LCHAN_SRC_LOG_DST_PHY] |
| = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY, |
| [STEDMA40_LCHAN_SRC_LOG_DST_LOG] |
| = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG, |
| }; |
| |
| if (chan_is_physical(d40c)) |
| return phy_map[d40c->dma_cfg.mode_opt]; |
| else |
| return log_map[d40c->dma_cfg.mode_opt]; |
| } |
| |
| static void d40_config_write(struct d40_chan *d40c) |
| { |
| u32 addr_base; |
| u32 var; |
| |
| /* Odd addresses are even addresses + 4 */ |
| addr_base = (d40c->phy_chan->num % 2) * 4; |
| /* Setup channel mode to logical or physical */ |
| var = ((u32)(chan_is_logical(d40c)) + 1) << |
| D40_CHAN_POS(d40c->phy_chan->num); |
| writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base); |
| |
| /* Setup operational mode option register */ |
| var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num); |
| |
| writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base); |
| |
| if (chan_is_logical(d40c)) { |
| int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) |
| & D40_SREG_ELEM_LOG_LIDX_MASK; |
| void __iomem *chanbase = chan_base(d40c); |
| |
| /* Set default config for CFG reg */ |
| writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG); |
| writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG); |
| |
| /* Set LIDX for lcla */ |
| writel(lidx, chanbase + D40_CHAN_REG_SSELT); |
| writel(lidx, chanbase + D40_CHAN_REG_SDELT); |
| |
| /* Clear LNK which will be used by d40_chan_has_events() */ |
| writel(0, chanbase + D40_CHAN_REG_SSLNK); |
| writel(0, chanbase + D40_CHAN_REG_SDLNK); |
| } |
| } |
| |
| static u32 d40_residue(struct d40_chan *d40c) |
| { |
| u32 num_elt; |
| |
| if (chan_is_logical(d40c)) |
| num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK) |
| >> D40_MEM_LCSP2_ECNT_POS; |
| else { |
| u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT); |
| num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK) |
| >> D40_SREG_ELEM_PHY_ECNT_POS; |
| } |
| |
| return num_elt * d40c->dma_cfg.dst_info.data_width; |
| } |
| |
| static bool d40_tx_is_linked(struct d40_chan *d40c) |
| { |
| bool is_link; |
| |
| if (chan_is_logical(d40c)) |
| is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK; |
| else |
| is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK) |
| & D40_SREG_LNK_PHYS_LNK_MASK; |
| |
| return is_link; |
| } |
| |
| static int d40_pause(struct dma_chan *chan) |
| { |
| struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); |
| int res = 0; |
| unsigned long flags; |
| |
| if (d40c->phy_chan == NULL) { |
| chan_err(d40c, "Channel is not allocated!\n"); |
| return -EINVAL; |
| } |
| |
| if (!d40c->busy) |
| return 0; |
| |
| spin_lock_irqsave(&d40c->lock, flags); |
| pm_runtime_get_sync(d40c->base->dev); |
| |
| res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ); |
| |
| pm_runtime_mark_last_busy(d40c->base->dev); |
| pm_runtime_put_autosuspend(d40c->base->dev); |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| return res; |
| } |
| |
| static int d40_resume(struct dma_chan *chan) |
| { |
| struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); |
| int res = 0; |
| unsigned long flags; |
| |
| if (d40c->phy_chan == NULL) { |
| chan_err(d40c, "Channel is not allocated!\n"); |
| return -EINVAL; |
| } |
| |
| if (!d40c->busy) |
| return 0; |
| |
| spin_lock_irqsave(&d40c->lock, flags); |
| pm_runtime_get_sync(d40c->base->dev); |
| |
| /* If bytes left to transfer or linked tx resume job */ |
| if (d40_residue(d40c) || d40_tx_is_linked(d40c)) |
| res = d40_channel_execute_command(d40c, D40_DMA_RUN); |
| |
| pm_runtime_mark_last_busy(d40c->base->dev); |
| pm_runtime_put_autosuspend(d40c->base->dev); |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| return res; |
| } |
| |
| static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx) |
| { |
| struct d40_chan *d40c = container_of(tx->chan, |
| struct d40_chan, |
| chan); |
| struct d40_desc *d40d = container_of(tx, struct d40_desc, txd); |
| unsigned long flags; |
| dma_cookie_t cookie; |
| |
| spin_lock_irqsave(&d40c->lock, flags); |
| cookie = dma_cookie_assign(tx); |
| d40_desc_queue(d40c, d40d); |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| |
| return cookie; |
| } |
| |
| static int d40_start(struct d40_chan *d40c) |
| { |
| return d40_channel_execute_command(d40c, D40_DMA_RUN); |
| } |
| |
| static struct d40_desc *d40_queue_start(struct d40_chan *d40c) |
| { |
| struct d40_desc *d40d; |
| int err; |
| |
| /* Start queued jobs, if any */ |
| d40d = d40_first_queued(d40c); |
| |
| if (d40d != NULL) { |
| if (!d40c->busy) { |
| d40c->busy = true; |
| pm_runtime_get_sync(d40c->base->dev); |
| } |
| |
| /* Remove from queue */ |
| d40_desc_remove(d40d); |
| |
| /* Add to active queue */ |
| d40_desc_submit(d40c, d40d); |
| |
| /* Initiate DMA job */ |
| d40_desc_load(d40c, d40d); |
| |
| /* Start dma job */ |
| err = d40_start(d40c); |
| |
| if (err) |
| return NULL; |
| } |
| |
| return d40d; |
| } |
| |
| /* called from interrupt context */ |
| static void dma_tc_handle(struct d40_chan *d40c) |
| { |
| struct d40_desc *d40d; |
| |
| /* Get first active entry from list */ |
| d40d = d40_first_active_get(d40c); |
| |
| if (d40d == NULL) |
| return; |
| |
| if (d40d->cyclic) { |
| /* |
| * If this was a paritially loaded list, we need to reloaded |
| * it, and only when the list is completed. We need to check |
| * for done because the interrupt will hit for every link, and |
| * not just the last one. |
| */ |
| if (d40d->lli_current < d40d->lli_len |
| && !d40_tx_is_linked(d40c) |
| && !d40_residue(d40c)) { |
| d40_lcla_free_all(d40c, d40d); |
| d40_desc_load(d40c, d40d); |
| (void) d40_start(d40c); |
| |
| if (d40d->lli_current == d40d->lli_len) |
| d40d->lli_current = 0; |
| } |
| } else { |
| d40_lcla_free_all(d40c, d40d); |
| |
| if (d40d->lli_current < d40d->lli_len) { |
| d40_desc_load(d40c, d40d); |
| /* Start dma job */ |
| (void) d40_start(d40c); |
| return; |
| } |
| |
| if (d40_queue_start(d40c) == NULL) { |
| d40c->busy = false; |
| |
| pm_runtime_mark_last_busy(d40c->base->dev); |
| pm_runtime_put_autosuspend(d40c->base->dev); |
| } |
| |
| d40_desc_remove(d40d); |
| d40_desc_done(d40c, d40d); |
| } |
| |
| d40c->pending_tx++; |
| tasklet_schedule(&d40c->tasklet); |
| |
| } |
| |
| static void dma_tasklet(unsigned long data) |
| { |
| struct d40_chan *d40c = (struct d40_chan *) data; |
| struct d40_desc *d40d; |
| unsigned long flags; |
| bool callback_active; |
| dma_async_tx_callback callback; |
| void *callback_param; |
| |
| spin_lock_irqsave(&d40c->lock, flags); |
| |
| /* Get first entry from the done list */ |
| d40d = d40_first_done(d40c); |
| if (d40d == NULL) { |
| /* Check if we have reached here for cyclic job */ |
| d40d = d40_first_active_get(d40c); |
| if (d40d == NULL || !d40d->cyclic) |
| goto err; |
| } |
| |
| if (!d40d->cyclic) |
| dma_cookie_complete(&d40d->txd); |
| |
| /* |
| * If terminating a channel pending_tx is set to zero. |
| * This prevents any finished active jobs to return to the client. |
| */ |
| if (d40c->pending_tx == 0) { |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| return; |
| } |
| |
| /* Callback to client */ |
| callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT); |
| callback = d40d->txd.callback; |
| callback_param = d40d->txd.callback_param; |
| |
| if (!d40d->cyclic) { |
| if (async_tx_test_ack(&d40d->txd)) { |
| d40_desc_remove(d40d); |
| d40_desc_free(d40c, d40d); |
| } else if (!d40d->is_in_client_list) { |
| d40_desc_remove(d40d); |
| d40_lcla_free_all(d40c, d40d); |
| list_add_tail(&d40d->node, &d40c->client); |
| d40d->is_in_client_list = true; |
| } |
| } |
| |
| d40c->pending_tx--; |
| |
| if (d40c->pending_tx) |
| tasklet_schedule(&d40c->tasklet); |
| |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| |
| if (callback_active && callback) |
| callback(callback_param); |
| |
| return; |
| |
| err: |
| /* Rescue manouver if receiving double interrupts */ |
| if (d40c->pending_tx > 0) |
| d40c->pending_tx--; |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| } |
| |
| static irqreturn_t d40_handle_interrupt(int irq, void *data) |
| { |
| int i; |
| u32 idx; |
| u32 row; |
| long chan = -1; |
| struct d40_chan *d40c; |
| unsigned long flags; |
| struct d40_base *base = data; |
| u32 regs[base->gen_dmac.il_size]; |
| struct d40_interrupt_lookup *il = base->gen_dmac.il; |
| u32 il_size = base->gen_dmac.il_size; |
| |
| spin_lock_irqsave(&base->interrupt_lock, flags); |
| |
| /* Read interrupt status of both logical and physical channels */ |
| for (i = 0; i < il_size; i++) |
| regs[i] = readl(base->virtbase + il[i].src); |
| |
| for (;;) { |
| |
| chan = find_next_bit((unsigned long *)regs, |
| BITS_PER_LONG * il_size, chan + 1); |
| |
| /* No more set bits found? */ |
| if (chan == BITS_PER_LONG * il_size) |
| break; |
| |
| row = chan / BITS_PER_LONG; |
| idx = chan & (BITS_PER_LONG - 1); |
| |
| if (il[row].offset == D40_PHY_CHAN) |
| d40c = base->lookup_phy_chans[idx]; |
| else |
| d40c = base->lookup_log_chans[il[row].offset + idx]; |
| |
| if (!d40c) { |
| /* |
| * No error because this can happen if something else |
| * in the system is using the channel. |
| */ |
| continue; |
| } |
| |
| /* ACK interrupt */ |
| writel(BIT(idx), base->virtbase + il[row].clr); |
| |
| spin_lock(&d40c->lock); |
| |
| if (!il[row].is_error) |
| dma_tc_handle(d40c); |
| else |
| d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n", |
| chan, il[row].offset, idx); |
| |
| spin_unlock(&d40c->lock); |
| } |
| |
| spin_unlock_irqrestore(&base->interrupt_lock, flags); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int d40_validate_conf(struct d40_chan *d40c, |
| struct stedma40_chan_cfg *conf) |
| { |
| int res = 0; |
| bool is_log = conf->mode == STEDMA40_MODE_LOGICAL; |
| |
| if (!conf->dir) { |
| chan_err(d40c, "Invalid direction.\n"); |
| res = -EINVAL; |
| } |
| |
| if ((is_log && conf->dev_type > d40c->base->num_log_chans) || |
| (!is_log && conf->dev_type > d40c->base->num_phy_chans) || |
| (conf->dev_type < 0)) { |
| chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type); |
| res = -EINVAL; |
| } |
| |
| if (conf->dir == DMA_DEV_TO_DEV) { |
| /* |
| * DMAC HW supports it. Will be added to this driver, |
| * in case any dma client requires it. |
| */ |
| chan_err(d40c, "periph to periph not supported\n"); |
| res = -EINVAL; |
| } |
| |
| if (d40_psize_2_burst_size(is_log, conf->src_info.psize) * |
| conf->src_info.data_width != |
| d40_psize_2_burst_size(is_log, conf->dst_info.psize) * |
| conf->dst_info.data_width) { |
| /* |
| * The DMAC hardware only supports |
| * src (burst x width) == dst (burst x width) |
| */ |
| |
| chan_err(d40c, "src (burst x width) != dst (burst x width)\n"); |
| res = -EINVAL; |
| } |
| |
| return res; |
| } |
| |
| static bool d40_alloc_mask_set(struct d40_phy_res *phy, |
| bool is_src, int log_event_line, bool is_log, |
| bool *first_user) |
| { |
| unsigned long flags; |
| spin_lock_irqsave(&phy->lock, flags); |
| |
| *first_user = ((phy->allocated_src | phy->allocated_dst) |
| == D40_ALLOC_FREE); |
| |
| if (!is_log) { |
| /* Physical interrupts are masked per physical full channel */ |
| if (phy->allocated_src == D40_ALLOC_FREE && |
| phy->allocated_dst == D40_ALLOC_FREE) { |
| phy->allocated_dst = D40_ALLOC_PHY; |
| phy->allocated_src = D40_ALLOC_PHY; |
| goto found; |
| } else |
| goto not_found; |
| } |
| |
| /* Logical channel */ |
| if (is_src) { |
| if (phy->allocated_src == D40_ALLOC_PHY) |
| goto not_found; |
| |
| if (phy->allocated_src == D40_ALLOC_FREE) |
| phy->allocated_src = D40_ALLOC_LOG_FREE; |
| |
| if (!(phy->allocated_src & BIT(log_event_line))) { |
| phy->allocated_src |= BIT(log_event_line); |
| goto found; |
| } else |
| goto not_found; |
| } else { |
| if (phy->allocated_dst == D40_ALLOC_PHY) |
| goto not_found; |
| |
| if (phy->allocated_dst == D40_ALLOC_FREE) |
| phy->allocated_dst = D40_ALLOC_LOG_FREE; |
| |
| if (!(phy->allocated_dst & BIT(log_event_line))) { |
| phy->allocated_dst |= BIT(log_event_line); |
| goto found; |
| } else |
| goto not_found; |
| } |
| |
| not_found: |
| spin_unlock_irqrestore(&phy->lock, flags); |
| return false; |
| found: |
| spin_unlock_irqrestore(&phy->lock, flags); |
| return true; |
| } |
| |
| static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src, |
| int log_event_line) |
| { |
| unsigned long flags; |
| bool is_free = false; |
| |
| spin_lock_irqsave(&phy->lock, flags); |
| if (!log_event_line) { |
| phy->allocated_dst = D40_ALLOC_FREE; |
| phy->allocated_src = D40_ALLOC_FREE; |
| is_free = true; |
| goto out; |
| } |
| |
| /* Logical channel */ |
| if (is_src) { |
| phy->allocated_src &= ~BIT(log_event_line); |
| if (phy->allocated_src == D40_ALLOC_LOG_FREE) |
| phy->allocated_src = D40_ALLOC_FREE; |
| } else { |
| phy->allocated_dst &= ~BIT(log_event_line); |
| if (phy->allocated_dst == D40_ALLOC_LOG_FREE) |
| phy->allocated_dst = D40_ALLOC_FREE; |
| } |
| |
| is_free = ((phy->allocated_src | phy->allocated_dst) == |
| D40_ALLOC_FREE); |
| |
| out: |
| spin_unlock_irqrestore(&phy->lock, flags); |
| |
| return is_free; |
| } |
| |
| static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user) |
| { |
| int dev_type = d40c->dma_cfg.dev_type; |
| int event_group; |
| int event_line; |
| struct d40_phy_res *phys; |
| int i; |
| int j; |
| int log_num; |
| int num_phy_chans; |
| bool is_src; |
| bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL; |
| |
| phys = d40c->base->phy_res; |
| num_phy_chans = d40c->base->num_phy_chans; |
| |
| if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) { |
| log_num = 2 * dev_type; |
| is_src = true; |
| } else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV || |
| d40c->dma_cfg.dir == DMA_MEM_TO_MEM) { |
| /* dst event lines are used for logical memcpy */ |
| log_num = 2 * dev_type + 1; |
| is_src = false; |
| } else |
| return -EINVAL; |
| |
| event_group = D40_TYPE_TO_GROUP(dev_type); |
| event_line = D40_TYPE_TO_EVENT(dev_type); |
| |
| if (!is_log) { |
| if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) { |
| /* Find physical half channel */ |
| if (d40c->dma_cfg.use_fixed_channel) { |
| i = d40c->dma_cfg.phy_channel; |
| if (d40_alloc_mask_set(&phys[i], is_src, |
| 0, is_log, |
| first_phy_user)) |
| goto found_phy; |
| } else { |
| for (i = 0; i < num_phy_chans; i++) { |
| if (d40_alloc_mask_set(&phys[i], is_src, |
| 0, is_log, |
| first_phy_user)) |
| goto found_phy; |
| } |
| } |
| } else |
| for (j = 0; j < d40c->base->num_phy_chans; j += 8) { |
| int phy_num = j + event_group * 2; |
| for (i = phy_num; i < phy_num + 2; i++) { |
| if (d40_alloc_mask_set(&phys[i], |
| is_src, |
| 0, |
| is_log, |
| first_phy_user)) |
| goto found_phy; |
| } |
| } |
| return -EINVAL; |
| found_phy: |
| d40c->phy_chan = &phys[i]; |
| d40c->log_num = D40_PHY_CHAN; |
| goto out; |
| } |
| if (dev_type == -1) |
| return -EINVAL; |
| |
| /* Find logical channel */ |
| for (j = 0; j < d40c->base->num_phy_chans; j += 8) { |
| int phy_num = j + event_group * 2; |
| |
| if (d40c->dma_cfg.use_fixed_channel) { |
| i = d40c->dma_cfg.phy_channel; |
| |
| if ((i != phy_num) && (i != phy_num + 1)) { |
| dev_err(chan2dev(d40c), |
| "invalid fixed phy channel %d\n", i); |
| return -EINVAL; |
| } |
| |
| if (d40_alloc_mask_set(&phys[i], is_src, event_line, |
| is_log, first_phy_user)) |
| goto found_log; |
| |
| dev_err(chan2dev(d40c), |
| "could not allocate fixed phy channel %d\n", i); |
| return -EINVAL; |
| } |
| |
| /* |
| * Spread logical channels across all available physical rather |
| * than pack every logical channel at the first available phy |
| * channels. |
| */ |
| if (is_src) { |
| for (i = phy_num; i < phy_num + 2; i++) { |
| if (d40_alloc_mask_set(&phys[i], is_src, |
| event_line, is_log, |
| first_phy_user)) |
| goto found_log; |
| } |
| } else { |
| for (i = phy_num + 1; i >= phy_num; i--) { |
| if (d40_alloc_mask_set(&phys[i], is_src, |
| event_line, is_log, |
| first_phy_user)) |
| goto found_log; |
| } |
| } |
| } |
| return -EINVAL; |
| |
| found_log: |
| d40c->phy_chan = &phys[i]; |
| d40c->log_num = log_num; |
| out: |
| |
| if (is_log) |
| d40c->base->lookup_log_chans[d40c->log_num] = d40c; |
| else |
| d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c; |
| |
| return 0; |
| |
| } |
| |
| static int d40_config_memcpy(struct d40_chan *d40c) |
| { |
| dma_cap_mask_t cap = d40c->chan.device->cap_mask; |
| |
| if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) { |
| d40c->dma_cfg = dma40_memcpy_conf_log; |
| d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id]; |
| |
| d40_log_cfg(&d40c->dma_cfg, |
| &d40c->log_def.lcsp1, &d40c->log_def.lcsp3); |
| |
| } else if (dma_has_cap(DMA_MEMCPY, cap) && |
| dma_has_cap(DMA_SLAVE, cap)) { |
| d40c->dma_cfg = dma40_memcpy_conf_phy; |
| |
| /* Generate interrrupt at end of transfer or relink. */ |
| d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS); |
| |
| /* Generate interrupt on error. */ |
| d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS); |
| d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS); |
| |
| } else { |
| chan_err(d40c, "No memcpy\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int d40_free_dma(struct d40_chan *d40c) |
| { |
| |
| int res = 0; |
| u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type); |
| struct d40_phy_res *phy = d40c->phy_chan; |
| bool is_src; |
| |
| /* Terminate all queued and active transfers */ |
| d40_term_all(d40c); |
| |
| if (phy == NULL) { |
| chan_err(d40c, "phy == null\n"); |
| return -EINVAL; |
| } |
| |
| if (phy->allocated_src == D40_ALLOC_FREE && |
| phy->allocated_dst == D40_ALLOC_FREE) { |
| chan_err(d40c, "channel already free\n"); |
| return -EINVAL; |
| } |
| |
| if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV || |
| d40c->dma_cfg.dir == DMA_MEM_TO_MEM) |
| is_src = false; |
| else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) |
| is_src = true; |
| else { |
| chan_err(d40c, "Unknown direction\n"); |
| return -EINVAL; |
| } |
| |
| pm_runtime_get_sync(d40c->base->dev); |
| res = d40_channel_execute_command(d40c, D40_DMA_STOP); |
| if (res) { |
| chan_err(d40c, "stop failed\n"); |
| goto out; |
| } |
| |
| d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0); |
| |
| if (chan_is_logical(d40c)) |
| d40c->base->lookup_log_chans[d40c->log_num] = NULL; |
| else |
| d40c->base->lookup_phy_chans[phy->num] = NULL; |
| |
| if (d40c->busy) { |
| pm_runtime_mark_last_busy(d40c->base->dev); |
| pm_runtime_put_autosuspend(d40c->base->dev); |
| } |
| |
| d40c->busy = false; |
| d40c->phy_chan = NULL; |
| d40c->configured = false; |
| out: |
| |
| pm_runtime_mark_last_busy(d40c->base->dev); |
| pm_runtime_put_autosuspend(d40c->base->dev); |
| return res; |
| } |
| |
| static bool d40_is_paused(struct d40_chan *d40c) |
| { |
| void __iomem *chanbase = chan_base(d40c); |
| bool is_paused = false; |
| unsigned long flags; |
| void __iomem *active_reg; |
| u32 status; |
| u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type); |
| |
| spin_lock_irqsave(&d40c->lock, flags); |
| |
| if (chan_is_physical(d40c)) { |
| if (d40c->phy_chan->num % 2 == 0) |
| active_reg = d40c->base->virtbase + D40_DREG_ACTIVE; |
| else |
| active_reg = d40c->base->virtbase + D40_DREG_ACTIVO; |
| |
| status = (readl(active_reg) & |
| D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> |
| D40_CHAN_POS(d40c->phy_chan->num); |
| if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP) |
| is_paused = true; |
| |
| goto _exit; |
| } |
| |
| if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV || |
| d40c->dma_cfg.dir == DMA_MEM_TO_MEM) { |
| status = readl(chanbase + D40_CHAN_REG_SDLNK); |
| } else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) { |
| status = readl(chanbase + D40_CHAN_REG_SSLNK); |
| } else { |
| chan_err(d40c, "Unknown direction\n"); |
| goto _exit; |
| } |
| |
| status = (status & D40_EVENTLINE_MASK(event)) >> |
| D40_EVENTLINE_POS(event); |
| |
| if (status != D40_DMA_RUN) |
| is_paused = true; |
| _exit: |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| return is_paused; |
| |
| } |
| |
| static u32 stedma40_residue(struct dma_chan *chan) |
| { |
| struct d40_chan *d40c = |
| container_of(chan, struct d40_chan, chan); |
| u32 bytes_left; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&d40c->lock, flags); |
| bytes_left = d40_residue(d40c); |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| |
| return bytes_left; |
| } |
| |
| static int |
| d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc, |
| struct scatterlist *sg_src, struct scatterlist *sg_dst, |
| unsigned int sg_len, dma_addr_t src_dev_addr, |
| dma_addr_t dst_dev_addr) |
| { |
| struct stedma40_chan_cfg *cfg = &chan->dma_cfg; |
| struct stedma40_half_channel_info *src_info = &cfg->src_info; |
| struct stedma40_half_channel_info *dst_info = &cfg->dst_info; |
| int ret; |
| |
| ret = d40_log_sg_to_lli(sg_src, sg_len, |
| src_dev_addr, |
| desc->lli_log.src, |
| chan->log_def.lcsp1, |
| src_info->data_width, |
| dst_info->data_width); |
| |
| ret = d40_log_sg_to_lli(sg_dst, sg_len, |
| dst_dev_addr, |
| desc->lli_log.dst, |
| chan->log_def.lcsp3, |
| dst_info->data_width, |
| src_info->data_width); |
| |
| return ret < 0 ? ret : 0; |
| } |
| |
| static int |
| d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc, |
| struct scatterlist *sg_src, struct scatterlist *sg_dst, |
| unsigned int sg_len, dma_addr_t src_dev_addr, |
| dma_addr_t dst_dev_addr) |
| { |
| struct stedma40_chan_cfg *cfg = &chan->dma_cfg; |
| struct stedma40_half_channel_info *src_info = &cfg->src_info; |
| struct stedma40_half_channel_info *dst_info = &cfg->dst_info; |
| unsigned long flags = 0; |
| int ret; |
| |
| if (desc->cyclic) |
| flags |= LLI_CYCLIC | LLI_TERM_INT; |
| |
| ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr, |
| desc->lli_phy.src, |
| virt_to_phys(desc->lli_phy.src), |
| chan->src_def_cfg, |
| src_info, dst_info, flags); |
| |
| ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr, |
| desc->lli_phy.dst, |
| virt_to_phys(desc->lli_phy.dst), |
| chan->dst_def_cfg, |
| dst_info, src_info, flags); |
| |
| dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr, |
| desc->lli_pool.size, DMA_TO_DEVICE); |
| |
| return ret < 0 ? ret : 0; |
| } |
| |
| static struct d40_desc * |
| d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg, |
| unsigned int sg_len, unsigned long dma_flags) |
| { |
| struct stedma40_chan_cfg *cfg = &chan->dma_cfg; |
| struct d40_desc *desc; |
| int ret; |
| |
| desc = d40_desc_get(chan); |
| if (!desc) |
| return NULL; |
| |
| desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width, |
| cfg->dst_info.data_width); |
| if (desc->lli_len < 0) { |
| chan_err(chan, "Unaligned size\n"); |
| goto err; |
| } |
| |
| ret = d40_pool_lli_alloc(chan, desc, desc->lli_len); |
| if (ret < 0) { |
| chan_err(chan, "Could not allocate lli\n"); |
| goto err; |
| } |
| |
| desc->lli_current = 0; |
| desc->txd.flags = dma_flags; |
| desc->txd.tx_submit = d40_tx_submit; |
| |
| dma_async_tx_descriptor_init(&desc->txd, &chan->chan); |
| |
| return desc; |
| |
| err: |
| d40_desc_free(chan, desc); |
| return NULL; |
| } |
| |
| static struct dma_async_tx_descriptor * |
| d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src, |
| struct scatterlist *sg_dst, unsigned int sg_len, |
| enum dma_transfer_direction direction, unsigned long dma_flags) |
| { |
| struct d40_chan *chan = container_of(dchan, struct d40_chan, chan); |
| dma_addr_t src_dev_addr = 0; |
| dma_addr_t dst_dev_addr = 0; |
| struct d40_desc *desc; |
| unsigned long flags; |
| int ret; |
| |
| if (!chan->phy_chan) { |
| chan_err(chan, "Cannot prepare unallocated channel\n"); |
| return NULL; |
| } |
| |
| spin_lock_irqsave(&chan->lock, flags); |
| |
| desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags); |
| if (desc == NULL) |
| goto err; |
| |
| if (sg_next(&sg_src[sg_len - 1]) == sg_src) |
| desc->cyclic = true; |
| |
| if (direction == DMA_DEV_TO_MEM) |
| src_dev_addr = chan->runtime_addr; |
| else if (direction == DMA_MEM_TO_DEV) |
| dst_dev_addr = chan->runtime_addr; |
| |
| if (chan_is_logical(chan)) |
| ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst, |
| sg_len, src_dev_addr, dst_dev_addr); |
| else |
| ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst, |
| sg_len, src_dev_addr, dst_dev_addr); |
| |
| if (ret) { |
| chan_err(chan, "Failed to prepare %s sg job: %d\n", |
| chan_is_logical(chan) ? "log" : "phy", ret); |
| goto err; |
| } |
| |
| /* |
| * add descriptor to the prepare queue in order to be able |
| * to free them later in terminate_all |
| */ |
| list_add_tail(&desc->node, &chan->prepare_queue); |
| |
| spin_unlock_irqrestore(&chan->lock, flags); |
| |
| return &desc->txd; |
| |
| err: |
| if (desc) |
| d40_desc_free(chan, desc); |
| spin_unlock_irqrestore(&chan->lock, flags); |
| return NULL; |
| } |
| |
| bool stedma40_filter(struct dma_chan *chan, void *data) |
| { |
| struct stedma40_chan_cfg *info = data; |
| struct d40_chan *d40c = |
| container_of(chan, struct d40_chan, chan); |
| int err; |
| |
| if (data) { |
| err = d40_validate_conf(d40c, info); |
| if (!err) |
| d40c->dma_cfg = *info; |
| } else |
| err = d40_config_memcpy(d40c); |
| |
| if (!err) |
| d40c->configured = true; |
| |
| return err == 0; |
| } |
| EXPORT_SYMBOL(stedma40_filter); |
| |
| static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src) |
| { |
| bool realtime = d40c->dma_cfg.realtime; |
| bool highprio = d40c->dma_cfg.high_priority; |
| u32 rtreg; |
| u32 event = D40_TYPE_TO_EVENT(dev_type); |
| u32 group = D40_TYPE_TO_GROUP(dev_type); |
| u32 bit = BIT(event); |
| u32 prioreg; |
| struct d40_gen_dmac *dmac = &d40c->base->gen_dmac; |
| |
| rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear; |
| /* |
| * Due to a hardware bug, in some cases a logical channel triggered by |
| * a high priority destination event line can generate extra packet |
| * transactions. |
| * |
| * The workaround is to not set the high priority level for the |
| * destination event lines that trigger logical channels. |
| */ |
| if (!src && chan_is_logical(d40c)) |
| highprio = false; |
| |
| prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear; |
| |
| /* Destination event lines are stored in the upper halfword */ |
| if (!src) |
| bit <<= 16; |
| |
| writel(bit, d40c->base->virtbase + prioreg + group * 4); |
| writel(bit, d40c->base->virtbase + rtreg + group * 4); |
| } |
| |
| static void d40_set_prio_realtime(struct d40_chan *d40c) |
| { |
| if (d40c->base->rev < 3) |
| return; |
| |
| if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) || |
| (d40c->dma_cfg.dir == DMA_DEV_TO_DEV)) |
| __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true); |
| |
| if ((d40c->dma_cfg.dir == DMA_MEM_TO_DEV) || |
| (d40c->dma_cfg.dir == DMA_DEV_TO_DEV)) |
| __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false); |
| } |
| |
| #define D40_DT_FLAGS_MODE(flags) ((flags >> 0) & 0x1) |
| #define D40_DT_FLAGS_DIR(flags) ((flags >> 1) & 0x1) |
| #define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1) |
| #define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1) |
| #define D40_DT_FLAGS_HIGH_PRIO(flags) ((flags >> 4) & 0x1) |
| |
| static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec, |
| struct of_dma *ofdma) |
| { |
| struct stedma40_chan_cfg cfg; |
| dma_cap_mask_t cap; |
| u32 flags; |
| |
| memset(&cfg, 0, sizeof(struct stedma40_chan_cfg)); |
| |
| dma_cap_zero(cap); |
| dma_cap_set(DMA_SLAVE, cap); |
| |
| cfg.dev_type = dma_spec->args[0]; |
| flags = dma_spec->args[2]; |
| |
| switch (D40_DT_FLAGS_MODE(flags)) { |
| case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break; |
| case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break; |
| } |
| |
| switch (D40_DT_FLAGS_DIR(flags)) { |
| case 0: |
| cfg.dir = DMA_MEM_TO_DEV; |
| cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags); |
| break; |
| case 1: |
| cfg.dir = DMA_DEV_TO_MEM; |
| cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags); |
| break; |
| } |
| |
| if (D40_DT_FLAGS_FIXED_CHAN(flags)) { |
| cfg.phy_channel = dma_spec->args[1]; |
| cfg.use_fixed_channel = true; |
| } |
| |
| if (D40_DT_FLAGS_HIGH_PRIO(flags)) |
| cfg.high_priority = true; |
| |
| return dma_request_channel(cap, stedma40_filter, &cfg); |
| } |
| |
| /* DMA ENGINE functions */ |
| static int d40_alloc_chan_resources(struct dma_chan *chan) |
| { |
| int err; |
| unsigned long flags; |
| struct d40_chan *d40c = |
| container_of(chan, struct d40_chan, chan); |
| bool is_free_phy; |
| spin_lock_irqsave(&d40c->lock, flags); |
| |
| dma_cookie_init(chan); |
| |
| /* If no dma configuration is set use default configuration (memcpy) */ |
| if (!d40c->configured) { |
| err = d40_config_memcpy(d40c); |
| if (err) { |
| chan_err(d40c, "Failed to configure memcpy channel\n"); |
| goto fail; |
| } |
| } |
| |
| err = d40_allocate_channel(d40c, &is_free_phy); |
| if (err) { |
| chan_err(d40c, "Failed to allocate channel\n"); |
| d40c->configured = false; |
| goto fail; |
| } |
| |
| pm_runtime_get_sync(d40c->base->dev); |
| |
| d40_set_prio_realtime(d40c); |
| |
| if (chan_is_logical(d40c)) { |
| if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) |
| d40c->lcpa = d40c->base->lcpa_base + |
| d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE; |
| else |
| d40c->lcpa = d40c->base->lcpa_base + |
| d40c->dma_cfg.dev_type * |
| D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA; |
| |
| /* Unmask the Global Interrupt Mask. */ |
| d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS); |
| d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS); |
| } |
| |
| dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n", |
| chan_is_logical(d40c) ? "logical" : "physical", |
| d40c->phy_chan->num, |
| d40c->dma_cfg.use_fixed_channel ? ", fixed" : ""); |
| |
| |
| /* |
| * Only write channel configuration to the DMA if the physical |
| * resource is free. In case of multiple logical channels |
| * on the same physical resource, only the first write is necessary. |
| */ |
| if (is_free_phy) |
| d40_config_write(d40c); |
| fail: |
| pm_runtime_mark_last_busy(d40c->base->dev); |
| pm_runtime_put_autosuspend(d40c->base->dev); |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| return err; |
| } |
| |
| static void d40_free_chan_resources(struct dma_chan *chan) |
| { |
| struct d40_chan *d40c = |
| container_of(chan, struct d40_chan, chan); |
| int err; |
| unsigned long flags; |
| |
| if (d40c->phy_chan == NULL) { |
| chan_err(d40c, "Cannot free unallocated channel\n"); |
| return; |
| } |
| |
| spin_lock_irqsave(&d40c->lock, flags); |
| |
| err = d40_free_dma(d40c); |
| |
| if (err) |
| chan_err(d40c, "Failed to free channel\n"); |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| } |
| |
| static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan, |
| dma_addr_t dst, |
| dma_addr_t src, |
| size_t size, |
| unsigned long dma_flags) |
| { |
| struct scatterlist dst_sg; |
| struct scatterlist src_sg; |
| |
| sg_init_table(&dst_sg, 1); |
| sg_init_table(&src_sg, 1); |
| |
| sg_dma_address(&dst_sg) = dst; |
| sg_dma_address(&src_sg) = src; |
| |
| sg_dma_len(&dst_sg) = size; |
| sg_dma_len(&src_sg) = size; |
| |
| return d40_prep_sg(chan, &src_sg, &dst_sg, 1, |
| DMA_MEM_TO_MEM, dma_flags); |
| } |
| |
| static struct dma_async_tx_descriptor * |
| d40_prep_memcpy_sg(struct dma_chan *chan, |
| struct scatterlist *dst_sg, unsigned int dst_nents, |
| struct scatterlist *src_sg, unsigned int src_nents, |
| unsigned long dma_flags) |
| { |
| if (dst_nents != src_nents) |
| return NULL; |
| |
| return d40_prep_sg(chan, src_sg, dst_sg, src_nents, |
| DMA_MEM_TO_MEM, dma_flags); |
| } |
| |
| static struct dma_async_tx_descriptor * |
| d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, |
| unsigned int sg_len, enum dma_transfer_direction direction, |
| unsigned long dma_flags, void *context) |
| { |
| if (!is_slave_direction(direction)) |
| return NULL; |
| |
| return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags); |
| } |
| |
| static struct dma_async_tx_descriptor * |
| dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr, |
| size_t buf_len, size_t period_len, |
| enum dma_transfer_direction direction, unsigned long flags, |
| void *context) |
| { |
| unsigned int periods = buf_len / period_len; |
| struct dma_async_tx_descriptor *txd; |
| struct scatterlist *sg; |
| int i; |
| |
| sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT); |
| if (!sg) |
| return NULL; |
| |
| for (i = 0; i < periods; i++) { |
| sg_dma_address(&sg[i]) = dma_addr; |
| sg_dma_len(&sg[i]) = period_len; |
| dma_addr += period_len; |
| } |
| |
| sg[periods].offset = 0; |
| sg_dma_len(&sg[periods]) = 0; |
| sg[periods].page_link = |
| ((unsigned long)sg | 0x01) & ~0x02; |
| |
| txd = d40_prep_sg(chan, sg, sg, periods, direction, |
| DMA_PREP_INTERRUPT); |
| |
| kfree(sg); |
| |
| return txd; |
| } |
| |
| static enum dma_status d40_tx_status(struct dma_chan *chan, |
| dma_cookie_t cookie, |
| struct dma_tx_state *txstate) |
| { |
| struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); |
| enum dma_status ret; |
| |
| if (d40c->phy_chan == NULL) { |
| chan_err(d40c, "Cannot read status of unallocated channel\n"); |
| return -EINVAL; |
| } |
| |
| ret = dma_cookie_status(chan, cookie, txstate); |
| if (ret != DMA_COMPLETE) |
| dma_set_residue(txstate, stedma40_residue(chan)); |
| |
| if (d40_is_paused(d40c)) |
| ret = DMA_PAUSED; |
| |
| return ret; |
| } |
| |
| static void d40_issue_pending(struct dma_chan *chan) |
| { |
| struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); |
| unsigned long flags; |
| |
| if (d40c->phy_chan == NULL) { |
| chan_err(d40c, "Channel is not allocated!\n"); |
| return; |
| } |
| |
| spin_lock_irqsave(&d40c->lock, flags); |
| |
| list_splice_tail_init(&d40c->pending_queue, &d40c->queue); |
| |
| /* Busy means that queued jobs are already being processed */ |
| if (!d40c->busy) |
| (void) d40_queue_start(d40c); |
| |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| } |
| |
| static int d40_terminate_all(struct dma_chan *chan) |
| { |
| unsigned long flags; |
| struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); |
| int ret; |
| |
| if (d40c->phy_chan == NULL) { |
| chan_err(d40c, "Channel is not allocated!\n"); |
| return -EINVAL; |
| } |
| |
| spin_lock_irqsave(&d40c->lock, flags); |
| |
| pm_runtime_get_sync(d40c->base->dev); |
| ret = d40_channel_execute_command(d40c, D40_DMA_STOP); |
| if (ret) |
| chan_err(d40c, "Failed to stop channel\n"); |
| |
| d40_term_all(d40c); |
| pm_runtime_mark_last_busy(d40c->base->dev); |
| pm_runtime_put_autosuspend(d40c->base->dev); |
| if (d40c->busy) { |
| pm_runtime_mark_last_busy(d40c->base->dev); |
| pm_runtime_put_autosuspend(d40c->base->dev); |
| } |
| d40c->busy = false; |
| |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| return 0; |
| } |
| |
| static int |
| dma40_config_to_halfchannel(struct d40_chan *d40c, |
| struct stedma40_half_channel_info *info, |
| u32 maxburst) |
| { |
| int psize; |
| |
| if (chan_is_logical(d40c)) { |
| if (maxburst >= 16) |
| psize = STEDMA40_PSIZE_LOG_16; |
| else if (maxburst >= 8) |
| psize = STEDMA40_PSIZE_LOG_8; |
| else if (maxburst >= 4) |
| psize = STEDMA40_PSIZE_LOG_4; |
| else |
| psize = STEDMA40_PSIZE_LOG_1; |
| } else { |
| if (maxburst >= 16) |
| psize = STEDMA40_PSIZE_PHY_16; |
| else if (maxburst >= 8) |
| psize = STEDMA40_PSIZE_PHY_8; |
| else if (maxburst >= 4) |
| psize = STEDMA40_PSIZE_PHY_4; |
| else |
| psize = STEDMA40_PSIZE_PHY_1; |
| } |
| |
| info->psize = psize; |
| info->flow_ctrl = STEDMA40_NO_FLOW_CTRL; |
| |
| return 0; |
| } |
| |
| /* Runtime reconfiguration extension */ |
| static int d40_set_runtime_config(struct dma_chan *chan, |
| struct dma_slave_config *config) |
| { |
| struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); |
| struct stedma40_chan_cfg *cfg = &d40c->dma_cfg; |
| enum dma_slave_buswidth src_addr_width, dst_addr_width; |
| dma_addr_t config_addr; |
| u32 src_maxburst, dst_maxburst; |
| int ret; |
| |
| if (d40c->phy_chan == NULL) { |
| chan_err(d40c, "Channel is not allocated!\n"); |
| return -EINVAL; |
| } |
| |
| src_addr_width = config->src_addr_width; |
| src_maxburst = config->src_maxburst; |
| dst_addr_width = config->dst_addr_width; |
| dst_maxburst = config->dst_maxburst; |
| |
| if (config->direction == DMA_DEV_TO_MEM) { |
| config_addr = config->src_addr; |
| |
| if (cfg->dir != DMA_DEV_TO_MEM) |
| dev_dbg(d40c->base->dev, |
| "channel was not configured for peripheral " |
| "to memory transfer (%d) overriding\n", |
| cfg->dir); |
| cfg->dir = DMA_DEV_TO_MEM; |
| |
| /* Configure the memory side */ |
| if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) |
| dst_addr_width = src_addr_width; |
| if (dst_maxburst == 0) |
| dst_maxburst = src_maxburst; |
| |
| } else if (config->direction == DMA_MEM_TO_DEV) { |
| config_addr = config->dst_addr; |
| |
| if (cfg->dir != DMA_MEM_TO_DEV) |
| dev_dbg(d40c->base->dev, |
| "channel was not configured for memory " |
| "to peripheral transfer (%d) overriding\n", |
| cfg->dir); |
| cfg->dir = DMA_MEM_TO_DEV; |
| |
| /* Configure the memory side */ |
| if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) |
| src_addr_width = dst_addr_width; |
| if (src_maxburst == 0) |
| src_maxburst = dst_maxburst; |
| } else { |
| dev_err(d40c->base->dev, |
| "unrecognized channel direction %d\n", |
| config->direction); |
| return -EINVAL; |
| } |
| |
| if (config_addr <= 0) { |
| dev_err(d40c->base->dev, "no address supplied\n"); |
| return -EINVAL; |
| } |
| |
| if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) { |
| dev_err(d40c->base->dev, |
| "src/dst width/maxburst mismatch: %d*%d != %d*%d\n", |
| src_maxburst, |
| src_addr_width, |
| dst_maxburst, |
| dst_addr_width); |
| return -EINVAL; |
| } |
| |
| if (src_maxburst > 16) { |
| src_maxburst = 16; |
| dst_maxburst = src_maxburst * src_addr_width / dst_addr_width; |
| } else if (dst_maxburst > 16) { |
| dst_maxburst = 16; |
| src_maxburst = dst_maxburst * dst_addr_width / src_addr_width; |
| } |
| |
| /* Only valid widths are; 1, 2, 4 and 8. */ |
| if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED || |
| src_addr_width > DMA_SLAVE_BUSWIDTH_8_BYTES || |
| dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED || |
| dst_addr_width > DMA_SLAVE_BUSWIDTH_8_BYTES || |
| !is_power_of_2(src_addr_width) || |
| !is_power_of_2(dst_addr_width)) |
| return -EINVAL; |
| |
| cfg->src_info.data_width = src_addr_width; |
| cfg->dst_info.data_width = dst_addr_width; |
| |
| ret = dma40_config_to_halfchannel(d40c, &cfg->src_info, |
| src_maxburst); |
| if (ret) |
| return ret; |
| |
| ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info, |
| dst_maxburst); |
| if (ret) |
| return ret; |
| |
| /* Fill in register values */ |
| if (chan_is_logical(d40c)) |
| d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3); |
| else |
| d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg); |
| |
| /* These settings will take precedence later */ |
| d40c->runtime_addr = config_addr; |
| d40c->runtime_direction = config->direction; |
| dev_dbg(d40c->base->dev, |
| "configured channel %s for %s, data width %d/%d, " |
| "maxburst %d/%d elements, LE, no flow control\n", |
| dma_chan_name(chan), |
| (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX", |
| src_addr_width, dst_addr_width, |
| src_maxburst, dst_maxburst); |
| |
| return 0; |
| } |
| |
| /* Initialization functions */ |
| |
| static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma, |
| struct d40_chan *chans, int offset, |
| int num_chans) |
| { |
| int i = 0; |
| struct d40_chan *d40c; |
| |
| INIT_LIST_HEAD(&dma->channels); |
| |
| for (i = offset; i < offset + num_chans; i++) { |
| d40c = &chans[i]; |
| d40c->base = base; |
| d40c->chan.device = dma; |
| |
| spin_lock_init(&d40c->lock); |
| |
| d40c->log_num = D40_PHY_CHAN; |
| |
| INIT_LIST_HEAD(&d40c->done); |
| INIT_LIST_HEAD(&d40c->active); |
| INIT_LIST_HEAD(&d40c->queue); |
| INIT_LIST_HEAD(&d40c->pending_queue); |
| INIT_LIST_HEAD(&d40c->client); |
| INIT_LIST_HEAD(&d40c->prepare_queue); |
| |
| tasklet_init(&d40c->tasklet, dma_tasklet, |
| (unsigned long) d40c); |
| |
| list_add_tail(&d40c->chan.device_node, |
| &dma->channels); |
| } |
| } |
| |
| static void d40_ops_init(struct d40_base *base, struct dma_device *dev) |
| { |
| if (dma_has_cap(DMA_SLAVE, dev->cap_mask)) |
| dev->device_prep_slave_sg = d40_prep_slave_sg; |
| |
| if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) { |
| dev->device_prep_dma_memcpy = d40_prep_memcpy; |
| |
| /* |
| * This controller can only access address at even |
| * 32bit boundaries, i.e. 2^2 |
| */ |
| dev->copy_align = DMAENGINE_ALIGN_4_BYTES; |
| } |
| |
| if (dma_has_cap(DMA_SG, dev->cap_mask)) |
| dev->device_prep_dma_sg = d40_prep_memcpy_sg; |
| |
| if (dma_has_cap(DMA_CYCLIC, dev->cap_mask)) |
| dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic; |
| |
| dev->device_alloc_chan_resources = d40_alloc_chan_resources; |
| dev->device_free_chan_resources = d40_free_chan_resources; |
| dev->device_issue_pending = d40_issue_pending; |
| dev->device_tx_status = d40_tx_status; |
| dev->device_config = d40_set_runtime_config; |
| dev->device_pause = d40_pause; |
| dev->device_resume = d40_resume; |
| dev->device_terminate_all = d40_terminate_all; |
| dev->dev = base->dev; |
| } |
| |
| static int __init d40_dmaengine_init(struct d40_base *base, |
| int num_reserved_chans) |
| { |
| int err ; |
| |
| d40_chan_init(base, &base->dma_slave, base->log_chans, |
| 0, base->num_log_chans); |
| |
| dma_cap_zero(base->dma_slave.cap_mask); |
| dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask); |
| dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask); |
| |
| d40_ops_init(base, &base->dma_slave); |
| |
| err = dma_async_device_register(&base->dma_slave); |
| |
| if (err) { |
| d40_err(base->dev, "Failed to register slave channels\n"); |
| goto failure1; |
| } |
| |
| d40_chan_init(base, &base->dma_memcpy, base->log_chans, |
| base->num_log_chans, base->num_memcpy_chans); |
| |
| dma_cap_zero(base->dma_memcpy.cap_mask); |
| dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask); |
| dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask); |
| |
| d40_ops_init(base, &base->dma_memcpy); |
| |
| err = dma_async_device_register(&base->dma_memcpy); |
| |
| if (err) { |
| d40_err(base->dev, |
| "Failed to register memcpy only channels\n"); |
| goto failure2; |
| } |
| |
| d40_chan_init(base, &base->dma_both, base->phy_chans, |
| 0, num_reserved_chans); |
| |
| dma_cap_zero(base->dma_both.cap_mask); |
| dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask); |
| dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask); |
| dma_cap_set(DMA_SG, base->dma_both.cap_mask); |
| dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask); |
| |
| d40_ops_init(base, &base->dma_both); |
| err = dma_async_device_register(&base->dma_both); |
| |
| if (err) { |
| d40_err(base->dev, |
| "Failed to register logical and physical capable channels\n"); |
| goto failure3; |
| } |
| return 0; |
| failure3: |
| dma_async_device_unregister(&base->dma_memcpy); |
| failure2: |
| dma_async_device_unregister(&base->dma_slave); |
| failure1: |
| return err; |
| } |
| |
| /* Suspend resume functionality */ |
| #ifdef CONFIG_PM_SLEEP |
| static int dma40_suspend(struct device *dev) |
| { |
| struct platform_device *pdev = to_platform_device(dev); |
| struct d40_base *base = platform_get_drvdata(pdev); |
| int ret; |
| |
| ret = pm_runtime_force_suspend(dev); |
| if (ret) |
| return ret; |
| |
| if (base->lcpa_regulator) |
| ret = regulator_disable(base->lcpa_regulator); |
| return ret; |
| } |
| |
| static int dma40_resume(struct device *dev) |
| { |
| struct platform_device *pdev = to_platform_device(dev); |
| struct d40_base *base = platform_get_drvdata(pdev); |
| int ret = 0; |
| |
| if (base->lcpa_regulator) { |
| ret = regulator_enable(base->lcpa_regulator); |
| if (ret) |
| return ret; |
| } |
| |
| return pm_runtime_force_resume(dev); |
| } |
| #endif |
| |
| #ifdef CONFIG_PM |
| static void dma40_backup(void __iomem *baseaddr, u32 *backup, |
| u32 *regaddr, int num, bool save) |
| { |
| int i; |
| |
| for (i = 0; i < num; i++) { |
| void __iomem *addr = baseaddr + regaddr[i]; |
| |
| if (save) |
| backup[i] = readl_relaxed(addr); |
| else |
| writel_relaxed(backup[i], addr); |
| } |
| } |
| |
| static void d40_save_restore_registers(struct d40_base *base, bool save) |
| { |
| int i; |
| |
| /* Save/Restore channel specific registers */ |
| for (i = 0; i < base->num_phy_chans; i++) { |
| void __iomem *addr; |
| int idx; |
| |
| if (base->phy_res[i].reserved) |
| continue; |
| |
| addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA; |
| idx = i * ARRAY_SIZE(d40_backup_regs_chan); |
| |
| dma40_backup(addr, &base->reg_val_backup_chan[idx], |
| d40_backup_regs_chan, |
| ARRAY_SIZE(d40_backup_regs_chan), |
| save); |
| } |
| |
| /* Save/Restore global registers */ |
| dma40_backup(base->virtbase, base->reg_val_backup, |
| d40_backup_regs, ARRAY_SIZE(d40_backup_regs), |
| save); |
| |
| /* Save/Restore registers only existing on dma40 v3 and later */ |
| if (base->gen_dmac.backup) |
| dma40_backup(base->virtbase, base->reg_val_backup_v4, |
| base->gen_dmac.backup, |
| base->gen_dmac.backup_size, |
| save); |
| } |
| |
| static int dma40_runtime_suspend(struct device *dev) |
| { |
| struct platform_device *pdev = to_platform_device(dev); |
| struct d40_base *base = platform_get_drvdata(pdev); |
| |
| d40_save_restore_registers(base, true); |
| |
| /* Don't disable/enable clocks for v1 due to HW bugs */ |
| if (base->rev != 1) |
| writel_relaxed(base->gcc_pwr_off_mask, |
| base->virtbase + D40_DREG_GCC); |
| |
| return 0; |
| } |
| |
| static int dma40_runtime_resume(struct device *dev) |
| { |
| struct platform_device *pdev = to_platform_device(dev); |
| struct d40_base *base = platform_get_drvdata(pdev); |
| |
| d40_save_restore_registers(base, false); |
| |
| writel_relaxed(D40_DREG_GCC_ENABLE_ALL, |
| base->virtbase + D40_DREG_GCC); |
| return 0; |
| } |
| #endif |
| |
| static const struct dev_pm_ops dma40_pm_ops = { |
| SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume) |
| SET_RUNTIME_PM_OPS(dma40_runtime_suspend, |
| dma40_runtime_resume, |
| NULL) |
| }; |
| |
| /* Initialization functions. */ |
| |
| static int __init d40_phy_res_init(struct d40_base *base) |
| { |
| int i; |
| int num_phy_chans_avail = 0; |
| u32 val[2]; |
| int odd_even_bit = -2; |
| int gcc = D40_DREG_GCC_ENA; |
| |
| val[0] = readl(base->virtbase + D40_DREG_PRSME); |
| val[1] = readl(base->virtbase + D40_DREG_PRSMO); |
| |
| for (i = 0; i < base->num_phy_chans; i++) { |
| base->phy_res[i].num = i; |
| odd_even_bit += 2 * ((i % 2) == 0); |
| if (((val[i % 2] >> odd_even_bit) & 3) == 1) { |
| /* Mark security only channels as occupied */ |
| base->phy_res[i].allocated_src = D40_ALLOC_PHY; |
| base->phy_res[i].allocated_dst = D40_ALLOC_PHY; |
| base->phy_res[i].reserved = true; |
| gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i), |
| D40_DREG_GCC_SRC); |
| gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i), |
| D40_DREG_GCC_DST); |
| |
| |
| } else { |
| base->phy_res[i].allocated_src = D40_ALLOC_FREE; |
| base->phy_res[i].allocated_dst = D40_ALLOC_FREE; |
| base->phy_res[i].reserved = false; |
| num_phy_chans_avail++; |
| } |
| spin_lock_init(&base->phy_res[i].lock); |
| } |
| |
| /* Mark disabled channels as occupied */ |
| for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) { |
| int chan = base->plat_data->disabled_channels[i]; |
| |
| base->phy_res[chan].allocated_src = D40_ALLOC_PHY; |
| base->phy_res[chan].allocated_dst = D40_ALLOC_PHY; |
| base->phy_res[chan].reserved = true; |
| gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan), |
| D40_DREG_GCC_SRC); |
| gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan), |
| D40_DREG_GCC_DST); |
| num_phy_chans_avail--; |
| } |
| |
| /* Mark soft_lli channels */ |
| for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) { |
| int chan = base->plat_data->soft_lli_chans[i]; |
| |
| base->phy_res[chan].use_soft_lli = true; |
| } |
| |
| dev_info(base->dev, "%d of %d physical DMA channels available\n", |
| num_phy_chans_avail, base->num_phy_chans); |
| |
| /* Verify settings extended vs standard */ |
| val[0] = readl(base->virtbase + D40_DREG_PRTYP); |
| |
| for (i = 0; i < base->num_phy_chans; i++) { |
| |
| if (base->phy_res[i].allocated_src == D40_ALLOC_FREE && |
| (val[0] & 0x3) != 1) |
| dev_info(base->dev, |
| "[%s] INFO: channel %d is misconfigured (%d)\n", |
| __func__, i, val[0] & 0x3); |
| |
| val[0] = val[0] >> 2; |
| } |
| |
| /* |
| * To keep things simple, Enable all clocks initially. |
| * The clocks will get managed later post channel allocation. |
| * The clocks for the event lines on which reserved channels exists |
| * are not managed here. |
| */ |
| writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC); |
| base->gcc_pwr_off_mask = gcc; |
| |
| return num_phy_chans_avail; |
| } |
| |
| static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev) |
| { |
| struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev); |
| struct clk *clk = NULL; |
| void __iomem *virtbase = NULL; |
| struct resource *res = NULL; |
| struct d40_base *base = NULL; |
| int num_log_chans = 0; |
| int num_phy_chans; |
| int num_memcpy_chans; |
| int clk_ret = -EINVAL; |
| int i; |
| u32 pid; |
| u32 cid; |
| u8 rev; |
| |
| clk = clk_get(&pdev->dev, NULL); |
| if (IS_ERR(clk)) { |
| d40_err(&pdev->dev, "No matching clock found\n"); |
| goto failure; |
| } |
| |
| clk_ret = clk_prepare_enable(clk); |
| if (clk_ret) { |
| d40_err(&pdev->dev, "Failed to prepare/enable clock\n"); |
| goto failure; |
| } |
| |
| /* Get IO for DMAC base address */ |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base"); |
| if (!res) |
| goto failure; |
| |
| if (request_mem_region(res->start, resource_size(res), |
| D40_NAME " I/O base") == NULL) |
| goto failure; |
| |
| virtbase = ioremap(res->start, resource_size(res)); |
| if (!virtbase) |
| goto failure; |
| |
| /* This is just a regular AMBA PrimeCell ID actually */ |
| for (pid = 0, i = 0; i < 4; i++) |
| pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i) |
| & 255) << (i * 8); |
| for (cid = 0, i = 0; i < 4; i++) |
| cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i) |
| & 255) << (i * 8); |
| |
| if (cid != AMBA_CID) { |
| d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n"); |
| goto failure; |
| } |
| if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) { |
| d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n", |
| AMBA_MANF_BITS(pid), |
| AMBA_VENDOR_ST); |
| goto failure; |
| } |
| /* |
| * HW revision: |
| * DB8500ed has revision 0 |
| * ? has revision 1 |
| * DB8500v1 has revision 2 |
| * DB8500v2 has revision 3 |
| * AP9540v1 has revision 4 |
| * DB8540v1 has revision 4 |
| */ |
| rev = AMBA_REV_BITS(pid); |
| if (rev < 2) { |
| d40_err(&pdev->dev, "hardware revision: %d is not supported", rev); |
| goto failure; |
| } |
| |
| /* The number of physical channels on this HW */ |
| if (plat_data->num_of_phy_chans) |
| num_phy_chans = plat_data->num_of_phy_chans; |
| else |
| num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4; |
| |
| /* The number of channels used for memcpy */ |
| if (plat_data->num_of_memcpy_chans) |
| num_memcpy_chans = plat_data->num_of_memcpy_chans; |
| else |
| num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels); |
| |
| num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY; |
| |
| dev_info(&pdev->dev, |
| "hardware rev: %d @ %pa with %d physical and %d logical channels\n", |
| rev, &res->start, num_phy_chans, num_log_chans); |
| |
| base = kzalloc(ALIGN(sizeof(struct d40_base), 4) + |
| (num_phy_chans + num_log_chans + num_memcpy_chans) * |
| sizeof(struct d40_chan), GFP_KERNEL); |
| |
| if (base == NULL) { |
| d40_err(&pdev->dev, "Out of memory\n"); |
| goto failure; |
| } |
| |
| base->rev = rev; |
| base->clk = clk; |
| base->num_memcpy_chans = num_memcpy_chans; |
| base->num_phy_chans = num_phy_chans; |
| base->num_log_chans = num_log_chans; |
| base->phy_start = res->start; |
| base->phy_size = resource_size(res); |
| base->virtbase = virtbase; |
| base->plat_data = plat_data; |
| base->dev = &pdev->dev; |
| base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4); |
| base->log_chans = &base->phy_chans[num_phy_chans]; |
| |
| if (base->plat_data->num_of_phy_chans == 14) { |
| base->gen_dmac.backup = d40_backup_regs_v4b; |
| base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B; |
| base->gen_dmac.interrupt_en = D40_DREG_CPCMIS; |
| base->gen_dmac.interrupt_clear = D40_DREG_CPCICR; |
| base->gen_dmac.realtime_en = D40_DREG_CRSEG1; |
| base->gen_dmac.realtime_clear = D40_DREG_CRCEG1; |
| base->gen_dmac.high_prio_en = D40_DREG_CPSEG1; |
| base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1; |
| base->gen_dmac.il = il_v4b; |
| base->gen_dmac.il_size = ARRAY_SIZE(il_v4b); |
| base->gen_dmac.init_reg = dma_init_reg_v4b; |
| base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b); |
| } else { |
| if (base->rev >= 3) { |
| base->gen_dmac.backup = d40_backup_regs_v4a; |
| base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A; |
| } |
| base->gen_dmac.interrupt_en = D40_DREG_PCMIS; |
| base->gen_dmac.interrupt_clear = D40_DREG_PCICR; |
| base->gen_dmac.realtime_en = D40_DREG_RSEG1; |
| base->gen_dmac.realtime_clear = D40_DREG_RCEG1; |
| base->gen_dmac.high_prio_en = D40_DREG_PSEG1; |
| base->gen_dmac.high_prio_clear = D40_DREG_PCEG1; |
| base->gen_dmac.il = il_v4a; |
| base->gen_dmac.il_size = ARRAY_SIZE(il_v4a); |
| base->gen_dmac.init_reg = dma_init_reg_v4a; |
| base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a); |
| } |
| |
| base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res), |
| GFP_KERNEL); |
| if (!base->phy_res) |
| goto failure; |
| |
| base->lookup_phy_chans = kzalloc(num_phy_chans * |
| sizeof(struct d40_chan *), |
| GFP_KERNEL); |
| if (!base->lookup_phy_chans) |
| goto failure; |
| |
| base->lookup_log_chans = kzalloc(num_log_chans * |
| sizeof(struct d40_chan *), |
| GFP_KERNEL); |
| if (!base->lookup_log_chans) |
| goto failure; |
| |
| base->reg_val_backup_chan = kmalloc(base->num_phy_chans * |
| sizeof(d40_backup_regs_chan), |
| GFP_KERNEL); |
| if (!base->reg_val_backup_chan) |
| goto failure; |
| |
| base->lcla_pool.alloc_map = |
| kzalloc(num_phy_chans * sizeof(struct d40_desc *) |
| * D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL); |
| if (!base->lcla_pool.alloc_map) |
| goto failure; |
| |
| base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc), |
| 0, SLAB_HWCACHE_ALIGN, |
| NULL); |
| if (base->desc_slab == NULL) |
| goto failure; |
| |
| return base; |
| |
| failure: |
| if (!clk_ret) |
| clk_disable_unprepare(clk); |
| if (!IS_ERR(clk)) |
| clk_put(clk); |
| if (virtbase) |
| iounmap(virtbase); |
| if (res) |
| release_mem_region(res->start, |
| resource_size(res)); |
| if (virtbase) |
| iounmap(virtbase); |
| |
| if (base) { |
| kfree(base->lcla_pool.alloc_map); |
| kfree(base->reg_val_backup_chan); |
| kfree(base->lookup_log_chans); |
| kfree(base->lookup_phy_chans); |
| kfree(base->phy_res); |
| kfree(base); |
| } |
| |
| return NULL; |
| } |
| |
| static void __init d40_hw_init(struct d40_base *base) |
| { |
| |
| int i; |
| u32 prmseo[2] = {0, 0}; |
| u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF}; |
| u32 pcmis = 0; |
| u32 pcicr = 0; |
| struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg; |
| u32 reg_size = base->gen_dmac.init_reg_size; |
| |
| for (i = 0; i < reg_size; i++) |
| writel(dma_init_reg[i].val, |
| base->virtbase + dma_init_reg[i].reg); |
| |
| /* Configure all our dma channels to default settings */ |
| for (i = 0; i < base->num_phy_chans; i++) { |
| |
| activeo[i % 2] = activeo[i % 2] << 2; |
| |
| if (base->phy_res[base->num_phy_chans - i - 1].allocated_src |
| == D40_ALLOC_PHY) { |
| activeo[i % 2] |= 3; |
| continue; |
| } |
| |
| /* Enable interrupt # */ |
| pcmis = (pcmis << 1) | 1; |
| |
| /* Clear interrupt # */ |
| pcicr = (pcicr << 1) | 1; |
| |
| /* Set channel to physical mode */ |
| prmseo[i % 2] = prmseo[i % 2] << 2; |
| prmseo[i % 2] |= 1; |
| |
| } |
| |
| writel(prmseo[1], base->virtbase + D40_DREG_PRMSE); |
| writel(prmseo[0], base->virtbase + D40_DREG_PRMSO); |
| writel(activeo[1], base->virtbase + D40_DREG_ACTIVE); |
| writel(activeo[0], base->virtbase + D40_DREG_ACTIVO); |
| |
| /* Write which interrupt to enable */ |
| writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en); |
| |
| /* Write which interrupt to clear */ |
| writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear); |
| |
| /* These are __initdata and cannot be accessed after init */ |
| base->gen_dmac.init_reg = NULL; |
| base->gen_dmac.init_reg_size = 0; |
| } |
| |
| static int __init d40_lcla_allocate(struct d40_base *base) |
| { |
| struct d40_lcla_pool *pool = &base->lcla_pool; |
| unsigned long *page_list; |
| int i, j; |
| int ret = 0; |
| |
| /* |
| * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned, |
| * To full fill this hardware requirement without wasting 256 kb |
| * we allocate pages until we get an aligned one. |
| */ |
| page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS, |
| GFP_KERNEL); |
| |
| if (!page_list) { |
| ret = -ENOMEM; |
| goto failure; |
| } |
| |
| /* Calculating how many pages that are required */ |
| base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE; |
| |
| for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) { |
| page_list[i] = __get_free_pages(GFP_KERNEL, |
| base->lcla_pool.pages); |
| if (!page_list[i]) { |
| |
| d40_err(base->dev, "Failed to allocate %d pages.\n", |
| base->lcla_pool.pages); |
| ret = -ENOMEM; |
| |
| for (j = 0; j < i; j++) |
| free_pages(page_list[j], base->lcla_pool.pages); |
| goto failure; |
| } |
| |
| if ((virt_to_phys((void *)page_list[i]) & |
| (LCLA_ALIGNMENT - 1)) == 0) |
| break; |
| } |
| |
| for (j = 0; j < i; j++) |
| free_pages(page_list[j], base->lcla_pool.pages); |
| |
| if (i < MAX_LCLA_ALLOC_ATTEMPTS) { |
| base->lcla_pool.base = (void *)page_list[i]; |
| } else { |
| /* |
| * After many attempts and no succees with finding the correct |
| * alignment, try with allocating a big buffer. |
| */ |
| dev_warn(base->dev, |
| "[%s] Failed to get %d pages @ 18 bit align.\n", |
| __func__, base->lcla_pool.pages); |
| base->lcla_pool.base_unaligned = kmalloc(SZ_1K * |
| base->num_phy_chans + |
| LCLA_ALIGNMENT, |
| GFP_KERNEL); |
| if (!base->lcla_pool.base_unaligned) { |
| ret = -ENOMEM; |
| goto failure; |
| } |
| |
| base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned, |
| LCLA_ALIGNMENT); |
| } |
| |
| pool->dma_addr = dma_map_single(base->dev, pool->base, |
| SZ_1K * base->num_phy_chans, |
| DMA_TO_DEVICE); |
| if (dma_mapping_error(base->dev, pool->dma_addr)) { |
| pool->dma_addr = 0; |
| ret = -ENOMEM; |
| goto failure; |
| } |
| |
| writel(virt_to_phys(base->lcla_pool.base), |
| base->virtbase + D40_DREG_LCLA); |
| failure: |
| kfree(page_list); |
| return ret; |
| } |
| |
| static int __init d40_of_probe(struct platform_device *pdev, |
| struct device_node *np) |
| { |
| struct stedma40_platform_data *pdata; |
| int num_phy = 0, num_memcpy = 0, num_disabled = 0; |
| const __be32 *list; |
| |
| pdata = devm_kzalloc(&pdev->dev, |
| sizeof(struct stedma40_platform_data), |
| GFP_KERNEL); |
| if (!pdata) |
| return -ENOMEM; |
| |
| /* If absent this value will be obtained from h/w. */ |
| of_property_read_u32(np, "dma-channels", &num_phy); |
| if (num_phy > 0) |
| pdata->num_of_phy_chans = num_phy; |
| |
| list = of_get_property(np, "memcpy-channels", &num_memcpy); |
| num_memcpy /= sizeof(*list); |
| |
| if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) { |
| d40_err(&pdev->dev, |
| "Invalid number of memcpy channels specified (%d)\n", |
| num_memcpy); |
| return -EINVAL; |
| } |
| pdata->num_of_memcpy_chans = num_memcpy; |
| |
| of_property_read_u32_array(np, "memcpy-channels", |
| dma40_memcpy_channels, |
| num_memcpy); |
| |
| list = of_get_property(np, "disabled-channels", &num_disabled); |
| num_disabled /= sizeof(*list); |
| |
| if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) { |
| d40_err(&pdev->dev, |
| "Invalid number of disabled channels specified (%d)\n", |
| num_disabled); |
| return -EINVAL; |
| } |
| |
| of_property_read_u32_array(np, "disabled-channels", |
| pdata->disabled_channels, |
| num_disabled); |
| pdata->disabled_channels[num_disabled] = -1; |
| |
| pdev->dev.platform_data = pdata; |
| |
| return 0; |
| } |
| |
| static int __init d40_probe(struct platform_device *pdev) |
| { |
| struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev); |
| struct device_node *np = pdev->dev.of_node; |
| int ret = -ENOENT; |
| struct d40_base *base = NULL; |
| struct resource *res = NULL; |
| int num_reserved_chans; |
| u32 val; |
| |
| if (!plat_data) { |
| if (np) { |
| if (d40_of_probe(pdev, np)) { |
| ret = -ENOMEM; |
| goto failure; |
| } |
| } else { |
| d40_err(&pdev->dev, "No pdata or Device Tree provided\n"); |
| goto failure; |
| } |
| } |
| |
| base = d40_hw_detect_init(pdev); |
| if (!base) |
| goto failure; |
| |
| num_reserved_chans = d40_phy_res_init(base); |
| |
| platform_set_drvdata(pdev, base); |
| |
| spin_lock_init(&base->interrupt_lock); |
| spin_lock_init(&base->execmd_lock); |
| |
| /* Get IO for logical channel parameter address */ |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa"); |
| if (!res) { |
| ret = -ENOENT; |
| d40_err(&pdev->dev, "No \"lcpa\" memory resource\n"); |
| goto failure; |
| } |
| base->lcpa_size = resource_size(res); |
| base->phy_lcpa = res->start; |
| |
| if (request_mem_region(res->start, resource_size(res), |
| D40_NAME " I/O lcpa") == NULL) { |
| ret = -EBUSY; |
| d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res); |
| goto failure; |
| } |
| |
| /* We make use of ESRAM memory for this. */ |
| val = readl(base->virtbase + D40_DREG_LCPA); |
| if (res->start != val && val != 0) { |
| dev_warn(&pdev->dev, |
| "[%s] Mismatch LCPA dma 0x%x, def %pa\n", |
| __func__, val, &res->start); |
| } else |
| writel(res->start, base->virtbase + D40_DREG_LCPA); |
| |
| base->lcpa_base = ioremap(res->start, resource_size(res)); |
| if (!base->lcpa_base) { |
| ret = -ENOMEM; |
| d40_err(&pdev->dev, "Failed to ioremap LCPA region\n"); |
| goto failure; |
| } |
| /* If lcla has to be located in ESRAM we don't need to allocate */ |
| if (base->plat_data->use_esram_lcla) { |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, |
| "lcla_esram"); |
| if (!res) { |
| ret = -ENOENT; |
| d40_err(&pdev->dev, |
| "No \"lcla_esram\" memory resource\n"); |
| goto failure; |
| } |
| base->lcla_pool.base = ioremap(res->start, |
| resource_size(res)); |
| if (!base->lcla_pool.base) { |
| ret = -ENOMEM; |
| d40_err(&pdev->dev, "Failed to ioremap LCLA region\n"); |
| goto failure; |
| } |
| writel(res->start, base->virtbase + D40_DREG_LCLA); |
| |
| } else { |
| ret = d40_lcla_allocate(base); |
| if (ret) { |
| d40_err(&pdev->dev, "Failed to allocate LCLA area\n"); |
| goto failure; |
| } |
| } |
| |
| spin_lock_init(&base->lcla_pool.lock); |
| |
| base->irq = platform_get_irq(pdev, 0); |
| |
| ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base); |
| if (ret) { |
| d40_err(&pdev->dev, "No IRQ defined\n"); |
| goto failure; |
| } |
| |
| if (base->plat_data->use_esram_lcla) { |
| |
| base->lcpa_regulator = regulator_get(base->dev, "lcla_esram"); |
| if (IS_ERR(base->lcpa_regulator)) { |
| d40_err(&pdev->dev, "Failed to get lcpa_regulator\n"); |
| ret = PTR_ERR(base->lcpa_regulator); |
| base->lcpa_regulator = NULL; |
| goto failure; |
| } |
| |
| ret = regulator_enable(base->lcpa_regulator); |
| if (ret) { |
| d40_err(&pdev->dev, |
| "Failed to enable lcpa_regulator\n"); |
| regulator_put(base->lcpa_regulator); |
| base->lcpa_regulator = NULL; |
| goto failure; |
| } |
| } |
| |
| writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC); |
| |
| pm_runtime_irq_safe(base->dev); |
| pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY); |
| pm_runtime_use_autosuspend(base->dev); |
| pm_runtime_mark_last_busy(base->dev); |
| pm_runtime_set_active(base->dev); |
| pm_runtime_enable(base->dev); |
| |
| ret = d40_dmaengine_init(base, num_reserved_chans); |
| if (ret) |
| goto failure; |
| |
| base->dev->dma_parms = &base->dma_parms; |
| ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE); |
| if (ret) { |
| d40_err(&pdev->dev, "Failed to set dma max seg size\n"); |
| goto failure; |
| } |
| |
| d40_hw_init(base); |
| |
| if (np) { |
| ret = of_dma_controller_register(np, d40_xlate, NULL); |
| if (ret) |
| dev_err(&pdev->dev, |
| "could not register of_dma_controller\n"); |
| } |
| |
| dev_info(base->dev, "initialized\n"); |
| return 0; |
| |
| failure: |
| if (base) { |
| if (base->desc_slab) |
| kmem_cache_destroy(base->desc_slab); |
| if (base->virtbase) |
| iounmap(base->virtbase); |
| |
| if (base->lcla_pool.base && base->plat_data->use_esram_lcla) { |
| iounmap(base->lcla_pool.base); |
| base->lcla_pool.base = NULL; |
| } |
| |
| if (base->lcla_pool.dma_addr) |
| dma_unmap_single(base->dev, base->lcla_pool.dma_addr, |
| SZ_1K * base->num_phy_chans, |
| DMA_TO_DEVICE); |
| |
| if (!base->lcla_pool.base_unaligned && base->lcla_pool.base) |
| free_pages((unsigned long)base->lcla_pool.base, |
| base->lcla_pool.pages); |
| |
| kfree(base->lcla_pool.base_unaligned); |
| |
| if (base->phy_lcpa) |
| release_mem_region(base->phy_lcpa, |
| base->lcpa_size); |
| if (base->phy_start) |
| release_mem_region(base->phy_start, |
| base->phy_size); |
| if (base->clk) { |
| clk_disable_unprepare(base->clk); |
| clk_put(base->clk); |
| } |
| |
| if (base->lcpa_regulator) { |
| regulator_disable(base->lcpa_regulator); |
| regulator_put(base->lcpa_regulator); |
| } |
| |
| kfree(base->lcla_pool.alloc_map); |
| kfree(base->lookup_log_chans); |
| kfree(base->lookup_phy_chans); |
| kfree(base->phy_res); |
| kfree(base); |
| } |
| |
| d40_err(&pdev->dev, "probe failed\n"); |
| return ret; |
| } |
| |
| static const struct of_device_id d40_match[] = { |
| { .compatible = "stericsson,dma40", }, |
| {} |
| }; |
| |
| static struct platform_driver d40_driver = { |
| .driver = { |
| .name = D40_NAME, |
| .pm = &dma40_pm_ops, |
| .of_match_table = d40_match, |
| }, |
| }; |
| |
| static int __init stedma40_init(void) |
| { |
| return platform_driver_probe(&d40_driver, d40_probe); |
| } |
| subsys_initcall(stedma40_init); |