| /* |
| * Some of the code in this file has been gleaned from the 64 bit |
| * discontigmem support code base. |
| * |
| * Copyright (C) 2002, IBM Corp. |
| * |
| * All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| * NON INFRINGEMENT. See the GNU General Public License for more |
| * details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| * |
| * Send feedback to Pat Gaughen <gone@us.ibm.com> |
| */ |
| #include <linux/mm.h> |
| #include <linux/bootmem.h> |
| #include <linux/mmzone.h> |
| #include <linux/acpi.h> |
| #include <linux/nodemask.h> |
| #include <asm/srat.h> |
| #include <asm/topology.h> |
| |
| /* |
| * proximity macros and definitions |
| */ |
| #define NODE_ARRAY_INDEX(x) ((x) / 8) /* 8 bits/char */ |
| #define NODE_ARRAY_OFFSET(x) ((x) % 8) /* 8 bits/char */ |
| #define BMAP_SET(bmap, bit) ((bmap)[NODE_ARRAY_INDEX(bit)] |= 1 << NODE_ARRAY_OFFSET(bit)) |
| #define BMAP_TEST(bmap, bit) ((bmap)[NODE_ARRAY_INDEX(bit)] & (1 << NODE_ARRAY_OFFSET(bit))) |
| /* bitmap length; _PXM is at most 255 */ |
| #define PXM_BITMAP_LEN (MAX_PXM_DOMAINS / 8) |
| static u8 pxm_bitmap[PXM_BITMAP_LEN]; /* bitmap of proximity domains */ |
| |
| #define MAX_CHUNKS_PER_NODE 4 |
| #define MAXCHUNKS (MAX_CHUNKS_PER_NODE * MAX_NUMNODES) |
| struct node_memory_chunk_s { |
| unsigned long start_pfn; |
| unsigned long end_pfn; |
| u8 pxm; // proximity domain of node |
| u8 nid; // which cnode contains this chunk? |
| u8 bank; // which mem bank on this node |
| }; |
| static struct node_memory_chunk_s node_memory_chunk[MAXCHUNKS]; |
| |
| static int num_memory_chunks; /* total number of memory chunks */ |
| static int zholes_size_init; |
| static unsigned long zholes_size[MAX_NUMNODES * MAX_NR_ZONES]; |
| |
| extern void * boot_ioremap(unsigned long, unsigned long); |
| |
| /* Identify CPU proximity domains */ |
| static void __init parse_cpu_affinity_structure(char *p) |
| { |
| struct acpi_table_processor_affinity *cpu_affinity = |
| (struct acpi_table_processor_affinity *) p; |
| |
| if (!cpu_affinity->flags.enabled) |
| return; /* empty entry */ |
| |
| /* mark this node as "seen" in node bitmap */ |
| BMAP_SET(pxm_bitmap, cpu_affinity->proximity_domain); |
| |
| printk("CPU 0x%02X in proximity domain 0x%02X\n", |
| cpu_affinity->apic_id, cpu_affinity->proximity_domain); |
| } |
| |
| /* |
| * Identify memory proximity domains and hot-remove capabilities. |
| * Fill node memory chunk list structure. |
| */ |
| static void __init parse_memory_affinity_structure (char *sratp) |
| { |
| unsigned long long paddr, size; |
| unsigned long start_pfn, end_pfn; |
| u8 pxm; |
| struct node_memory_chunk_s *p, *q, *pend; |
| struct acpi_table_memory_affinity *memory_affinity = |
| (struct acpi_table_memory_affinity *) sratp; |
| |
| if (!memory_affinity->flags.enabled) |
| return; /* empty entry */ |
| |
| /* mark this node as "seen" in node bitmap */ |
| BMAP_SET(pxm_bitmap, memory_affinity->proximity_domain); |
| |
| /* calculate info for memory chunk structure */ |
| paddr = memory_affinity->base_addr_hi; |
| paddr = (paddr << 32) | memory_affinity->base_addr_lo; |
| size = memory_affinity->length_hi; |
| size = (size << 32) | memory_affinity->length_lo; |
| |
| start_pfn = paddr >> PAGE_SHIFT; |
| end_pfn = (paddr + size) >> PAGE_SHIFT; |
| |
| pxm = memory_affinity->proximity_domain; |
| |
| if (num_memory_chunks >= MAXCHUNKS) { |
| printk("Too many mem chunks in SRAT. Ignoring %lld MBytes at %llx\n", |
| size/(1024*1024), paddr); |
| return; |
| } |
| |
| /* Insertion sort based on base address */ |
| pend = &node_memory_chunk[num_memory_chunks]; |
| for (p = &node_memory_chunk[0]; p < pend; p++) { |
| if (start_pfn < p->start_pfn) |
| break; |
| } |
| if (p < pend) { |
| for (q = pend; q >= p; q--) |
| *(q + 1) = *q; |
| } |
| p->start_pfn = start_pfn; |
| p->end_pfn = end_pfn; |
| p->pxm = pxm; |
| |
| num_memory_chunks++; |
| |
| printk("Memory range 0x%lX to 0x%lX (type 0x%X) in proximity domain 0x%02X %s\n", |
| start_pfn, end_pfn, |
| memory_affinity->memory_type, |
| memory_affinity->proximity_domain, |
| (memory_affinity->flags.hot_pluggable ? |
| "enabled and removable" : "enabled" ) ); |
| } |
| |
| #if MAX_NR_ZONES != 4 |
| #error "MAX_NR_ZONES != 4, chunk_to_zone requires review" |
| #endif |
| /* Take a chunk of pages from page frame cstart to cend and count the number |
| * of pages in each zone, returned via zones[]. |
| */ |
| static __init void chunk_to_zones(unsigned long cstart, unsigned long cend, |
| unsigned long *zones) |
| { |
| unsigned long max_dma; |
| extern unsigned long max_low_pfn; |
| |
| int z; |
| unsigned long rend; |
| |
| /* FIXME: MAX_DMA_ADDRESS and max_low_pfn are trying to provide |
| * similarly scoped information and should be handled in a consistant |
| * manner. |
| */ |
| max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT; |
| |
| /* Split the hole into the zones in which it falls. Repeatedly |
| * take the segment in which the remaining hole starts, round it |
| * to the end of that zone. |
| */ |
| memset(zones, 0, MAX_NR_ZONES * sizeof(long)); |
| while (cstart < cend) { |
| if (cstart < max_dma) { |
| z = ZONE_DMA; |
| rend = (cend < max_dma)? cend : max_dma; |
| |
| } else if (cstart < max_low_pfn) { |
| z = ZONE_NORMAL; |
| rend = (cend < max_low_pfn)? cend : max_low_pfn; |
| |
| } else { |
| z = ZONE_HIGHMEM; |
| rend = cend; |
| } |
| zones[z] += rend - cstart; |
| cstart = rend; |
| } |
| } |
| |
| /* |
| * The SRAT table always lists ascending addresses, so can always |
| * assume that the first "start" address that you see is the real |
| * start of the node, and that the current "end" address is after |
| * the previous one. |
| */ |
| static __init void node_read_chunk(int nid, struct node_memory_chunk_s *memory_chunk) |
| { |
| /* |
| * Only add present memory as told by the e820. |
| * There is no guarantee from the SRAT that the memory it |
| * enumerates is present at boot time because it represents |
| * *possible* memory hotplug areas the same as normal RAM. |
| */ |
| if (memory_chunk->start_pfn >= max_pfn) { |
| printk (KERN_INFO "Ignoring SRAT pfns: 0x%08lx -> %08lx\n", |
| memory_chunk->start_pfn, memory_chunk->end_pfn); |
| return; |
| } |
| if (memory_chunk->nid != nid) |
| return; |
| |
| if (!node_has_online_mem(nid)) |
| node_start_pfn[nid] = memory_chunk->start_pfn; |
| |
| if (node_start_pfn[nid] > memory_chunk->start_pfn) |
| node_start_pfn[nid] = memory_chunk->start_pfn; |
| |
| if (node_end_pfn[nid] < memory_chunk->end_pfn) |
| node_end_pfn[nid] = memory_chunk->end_pfn; |
| } |
| |
| /* Parse the ACPI Static Resource Affinity Table */ |
| static int __init acpi20_parse_srat(struct acpi_table_srat *sratp) |
| { |
| u8 *start, *end, *p; |
| int i, j, nid; |
| |
| start = (u8 *)(&(sratp->reserved) + 1); /* skip header */ |
| p = start; |
| end = (u8 *)sratp + sratp->header.length; |
| |
| memset(pxm_bitmap, 0, sizeof(pxm_bitmap)); /* init proximity domain bitmap */ |
| memset(node_memory_chunk, 0, sizeof(node_memory_chunk)); |
| memset(zholes_size, 0, sizeof(zholes_size)); |
| |
| num_memory_chunks = 0; |
| while (p < end) { |
| switch (*p) { |
| case ACPI_SRAT_PROCESSOR_AFFINITY: |
| parse_cpu_affinity_structure(p); |
| break; |
| case ACPI_SRAT_MEMORY_AFFINITY: |
| parse_memory_affinity_structure(p); |
| break; |
| default: |
| printk("ACPI 2.0 SRAT: unknown entry skipped: type=0x%02X, len=%d\n", p[0], p[1]); |
| break; |
| } |
| p += p[1]; |
| if (p[1] == 0) { |
| printk("acpi20_parse_srat: Entry length value is zero;" |
| " can't parse any further!\n"); |
| break; |
| } |
| } |
| |
| if (num_memory_chunks == 0) { |
| printk("could not finy any ACPI SRAT memory areas.\n"); |
| goto out_fail; |
| } |
| |
| /* Calculate total number of nodes in system from PXM bitmap and create |
| * a set of sequential node IDs starting at zero. (ACPI doesn't seem |
| * to specify the range of _PXM values.) |
| */ |
| /* |
| * MCD - we no longer HAVE to number nodes sequentially. PXM domain |
| * numbers could go as high as 256, and MAX_NUMNODES for i386 is typically |
| * 32, so we will continue numbering them in this manner until MAX_NUMNODES |
| * approaches MAX_PXM_DOMAINS for i386. |
| */ |
| nodes_clear(node_online_map); |
| for (i = 0; i < MAX_PXM_DOMAINS; i++) { |
| if (BMAP_TEST(pxm_bitmap, i)) { |
| int nid = acpi_map_pxm_to_node(i); |
| node_set_online(nid); |
| } |
| } |
| BUG_ON(num_online_nodes() == 0); |
| |
| /* set cnode id in memory chunk structure */ |
| for (i = 0; i < num_memory_chunks; i++) |
| node_memory_chunk[i].nid = pxm_to_node(node_memory_chunk[i].pxm); |
| |
| printk("pxm bitmap: "); |
| for (i = 0; i < sizeof(pxm_bitmap); i++) { |
| printk("%02X ", pxm_bitmap[i]); |
| } |
| printk("\n"); |
| printk("Number of logical nodes in system = %d\n", num_online_nodes()); |
| printk("Number of memory chunks in system = %d\n", num_memory_chunks); |
| |
| for (j = 0; j < num_memory_chunks; j++){ |
| struct node_memory_chunk_s * chunk = &node_memory_chunk[j]; |
| printk("chunk %d nid %d start_pfn %08lx end_pfn %08lx\n", |
| j, chunk->nid, chunk->start_pfn, chunk->end_pfn); |
| node_read_chunk(chunk->nid, chunk); |
| } |
| |
| for_each_online_node(nid) { |
| unsigned long start = node_start_pfn[nid]; |
| unsigned long end = node_end_pfn[nid]; |
| |
| memory_present(nid, start, end); |
| node_remap_size[nid] = node_memmap_size_bytes(nid, start, end); |
| } |
| return 1; |
| out_fail: |
| return 0; |
| } |
| |
| int __init get_memcfg_from_srat(void) |
| { |
| struct acpi_table_header *header = NULL; |
| struct acpi_table_rsdp *rsdp = NULL; |
| struct acpi_table_rsdt *rsdt = NULL; |
| struct acpi_pointer *rsdp_address = NULL; |
| struct acpi_table_rsdt saved_rsdt; |
| int tables = 0; |
| int i = 0; |
| |
| if (ACPI_FAILURE(acpi_find_root_pointer(ACPI_PHYSICAL_ADDRESSING, |
| rsdp_address))) { |
| printk("%s: System description tables not found\n", |
| __FUNCTION__); |
| goto out_err; |
| } |
| |
| if (rsdp_address->pointer_type == ACPI_PHYSICAL_POINTER) { |
| printk("%s: assigning address to rsdp\n", __FUNCTION__); |
| rsdp = (struct acpi_table_rsdp *) |
| (u32)rsdp_address->pointer.physical; |
| } else { |
| printk("%s: rsdp_address is not a physical pointer\n", __FUNCTION__); |
| goto out_err; |
| } |
| if (!rsdp) { |
| printk("%s: Didn't find ACPI root!\n", __FUNCTION__); |
| goto out_err; |
| } |
| |
| printk(KERN_INFO "%.8s v%d [%.6s]\n", rsdp->signature, rsdp->revision, |
| rsdp->oem_id); |
| |
| if (strncmp(rsdp->signature, RSDP_SIG,strlen(RSDP_SIG))) { |
| printk(KERN_WARNING "%s: RSDP table signature incorrect\n", __FUNCTION__); |
| goto out_err; |
| } |
| |
| rsdt = (struct acpi_table_rsdt *) |
| boot_ioremap(rsdp->rsdt_address, sizeof(struct acpi_table_rsdt)); |
| |
| if (!rsdt) { |
| printk(KERN_WARNING |
| "%s: ACPI: Invalid root system description tables (RSDT)\n", |
| __FUNCTION__); |
| goto out_err; |
| } |
| |
| header = & rsdt->header; |
| |
| if (strncmp(header->signature, RSDT_SIG, strlen(RSDT_SIG))) { |
| printk(KERN_WARNING "ACPI: RSDT signature incorrect\n"); |
| goto out_err; |
| } |
| |
| /* |
| * The number of tables is computed by taking the |
| * size of all entries (header size minus total |
| * size of RSDT) divided by the size of each entry |
| * (4-byte table pointers). |
| */ |
| tables = (header->length - sizeof(struct acpi_table_header)) / 4; |
| |
| if (!tables) |
| goto out_err; |
| |
| memcpy(&saved_rsdt, rsdt, sizeof(saved_rsdt)); |
| |
| if (saved_rsdt.header.length > sizeof(saved_rsdt)) { |
| printk(KERN_WARNING "ACPI: Too big length in RSDT: %d\n", |
| saved_rsdt.header.length); |
| goto out_err; |
| } |
| |
| printk("Begin SRAT table scan....\n"); |
| |
| for (i = 0; i < tables; i++) { |
| /* Map in header, then map in full table length. */ |
| header = (struct acpi_table_header *) |
| boot_ioremap(saved_rsdt.entry[i], sizeof(struct acpi_table_header)); |
| if (!header) |
| break; |
| header = (struct acpi_table_header *) |
| boot_ioremap(saved_rsdt.entry[i], header->length); |
| if (!header) |
| break; |
| |
| if (strncmp((char *) &header->signature, "SRAT", 4)) |
| continue; |
| |
| /* we've found the srat table. don't need to look at any more tables */ |
| return acpi20_parse_srat((struct acpi_table_srat *)header); |
| } |
| out_err: |
| printk("failed to get NUMA memory information from SRAT table\n"); |
| return 0; |
| } |
| |
| /* For each node run the memory list to determine whether there are |
| * any memory holes. For each hole determine which ZONE they fall |
| * into. |
| * |
| * NOTE#1: this requires knowledge of the zone boundries and so |
| * _cannot_ be performed before those are calculated in setup_memory. |
| * |
| * NOTE#2: we rely on the fact that the memory chunks are ordered by |
| * start pfn number during setup. |
| */ |
| static void __init get_zholes_init(void) |
| { |
| int nid; |
| int c; |
| int first; |
| unsigned long end = 0; |
| |
| for_each_online_node(nid) { |
| first = 1; |
| for (c = 0; c < num_memory_chunks; c++){ |
| if (node_memory_chunk[c].nid == nid) { |
| if (first) { |
| end = node_memory_chunk[c].end_pfn; |
| first = 0; |
| |
| } else { |
| /* Record any gap between this chunk |
| * and the previous chunk on this node |
| * against the zones it spans. |
| */ |
| chunk_to_zones(end, |
| node_memory_chunk[c].start_pfn, |
| &zholes_size[nid * MAX_NR_ZONES]); |
| } |
| } |
| } |
| } |
| } |
| |
| unsigned long * __init get_zholes_size(int nid) |
| { |
| if (!zholes_size_init) { |
| zholes_size_init++; |
| get_zholes_init(); |
| } |
| if (nid >= MAX_NUMNODES || !node_online(nid)) |
| printk("%s: nid = %d is invalid/offline. num_online_nodes = %d", |
| __FUNCTION__, nid, num_online_nodes()); |
| return &zholes_size[nid * MAX_NR_ZONES]; |
| } |