| /* |
| * linux/fs/jbd2/journal.c |
| * |
| * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 |
| * |
| * Copyright 1998 Red Hat corp --- All Rights Reserved |
| * |
| * This file is part of the Linux kernel and is made available under |
| * the terms of the GNU General Public License, version 2, or at your |
| * option, any later version, incorporated herein by reference. |
| * |
| * Generic filesystem journal-writing code; part of the ext2fs |
| * journaling system. |
| * |
| * This file manages journals: areas of disk reserved for logging |
| * transactional updates. This includes the kernel journaling thread |
| * which is responsible for scheduling updates to the log. |
| * |
| * We do not actually manage the physical storage of the journal in this |
| * file: that is left to a per-journal policy function, which allows us |
| * to store the journal within a filesystem-specified area for ext2 |
| * journaling (ext2 can use a reserved inode for storing the log). |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/time.h> |
| #include <linux/fs.h> |
| #include <linux/jbd2.h> |
| #include <linux/errno.h> |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| #include <linux/mm.h> |
| #include <linux/freezer.h> |
| #include <linux/pagemap.h> |
| #include <linux/kthread.h> |
| #include <linux/poison.h> |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/math64.h> |
| #include <linux/hash.h> |
| #include <linux/log2.h> |
| #include <linux/vmalloc.h> |
| #include <linux/backing-dev.h> |
| #include <linux/bitops.h> |
| #include <linux/ratelimit.h> |
| |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/jbd2.h> |
| |
| #include <asm/uaccess.h> |
| #include <asm/page.h> |
| |
| #ifdef CONFIG_JBD2_DEBUG |
| ushort jbd2_journal_enable_debug __read_mostly; |
| EXPORT_SYMBOL(jbd2_journal_enable_debug); |
| |
| module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644); |
| MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2"); |
| #endif |
| |
| EXPORT_SYMBOL(jbd2_journal_extend); |
| EXPORT_SYMBOL(jbd2_journal_stop); |
| EXPORT_SYMBOL(jbd2_journal_lock_updates); |
| EXPORT_SYMBOL(jbd2_journal_unlock_updates); |
| EXPORT_SYMBOL(jbd2_journal_get_write_access); |
| EXPORT_SYMBOL(jbd2_journal_get_create_access); |
| EXPORT_SYMBOL(jbd2_journal_get_undo_access); |
| EXPORT_SYMBOL(jbd2_journal_set_triggers); |
| EXPORT_SYMBOL(jbd2_journal_dirty_metadata); |
| EXPORT_SYMBOL(jbd2_journal_forget); |
| #if 0 |
| EXPORT_SYMBOL(journal_sync_buffer); |
| #endif |
| EXPORT_SYMBOL(jbd2_journal_flush); |
| EXPORT_SYMBOL(jbd2_journal_revoke); |
| |
| EXPORT_SYMBOL(jbd2_journal_init_dev); |
| EXPORT_SYMBOL(jbd2_journal_init_inode); |
| EXPORT_SYMBOL(jbd2_journal_check_used_features); |
| EXPORT_SYMBOL(jbd2_journal_check_available_features); |
| EXPORT_SYMBOL(jbd2_journal_set_features); |
| EXPORT_SYMBOL(jbd2_journal_load); |
| EXPORT_SYMBOL(jbd2_journal_destroy); |
| EXPORT_SYMBOL(jbd2_journal_abort); |
| EXPORT_SYMBOL(jbd2_journal_errno); |
| EXPORT_SYMBOL(jbd2_journal_ack_err); |
| EXPORT_SYMBOL(jbd2_journal_clear_err); |
| EXPORT_SYMBOL(jbd2_log_wait_commit); |
| EXPORT_SYMBOL(jbd2_log_start_commit); |
| EXPORT_SYMBOL(jbd2_journal_start_commit); |
| EXPORT_SYMBOL(jbd2_journal_force_commit_nested); |
| EXPORT_SYMBOL(jbd2_journal_wipe); |
| EXPORT_SYMBOL(jbd2_journal_blocks_per_page); |
| EXPORT_SYMBOL(jbd2_journal_invalidatepage); |
| EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); |
| EXPORT_SYMBOL(jbd2_journal_force_commit); |
| EXPORT_SYMBOL(jbd2_journal_file_inode); |
| EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); |
| EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); |
| EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); |
| EXPORT_SYMBOL(jbd2_inode_cache); |
| |
| static void __journal_abort_soft (journal_t *journal, int errno); |
| static int jbd2_journal_create_slab(size_t slab_size); |
| |
| #ifdef CONFIG_JBD2_DEBUG |
| void __jbd2_debug(int level, const char *file, const char *func, |
| unsigned int line, const char *fmt, ...) |
| { |
| struct va_format vaf; |
| va_list args; |
| |
| if (level > jbd2_journal_enable_debug) |
| return; |
| va_start(args, fmt); |
| vaf.fmt = fmt; |
| vaf.va = &args; |
| printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf); |
| va_end(args); |
| } |
| EXPORT_SYMBOL(__jbd2_debug); |
| #endif |
| |
| /* Checksumming functions */ |
| static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb) |
| { |
| if (!jbd2_journal_has_csum_v2or3_feature(j)) |
| return 1; |
| |
| return sb->s_checksum_type == JBD2_CRC32C_CHKSUM; |
| } |
| |
| static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb) |
| { |
| __u32 csum; |
| __be32 old_csum; |
| |
| old_csum = sb->s_checksum; |
| sb->s_checksum = 0; |
| csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t)); |
| sb->s_checksum = old_csum; |
| |
| return cpu_to_be32(csum); |
| } |
| |
| static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb) |
| { |
| if (!jbd2_journal_has_csum_v2or3(j)) |
| return 1; |
| |
| return sb->s_checksum == jbd2_superblock_csum(j, sb); |
| } |
| |
| static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb) |
| { |
| if (!jbd2_journal_has_csum_v2or3(j)) |
| return; |
| |
| sb->s_checksum = jbd2_superblock_csum(j, sb); |
| } |
| |
| /* |
| * Helper function used to manage commit timeouts |
| */ |
| |
| static void commit_timeout(unsigned long __data) |
| { |
| struct task_struct * p = (struct task_struct *) __data; |
| |
| wake_up_process(p); |
| } |
| |
| /* |
| * kjournald2: The main thread function used to manage a logging device |
| * journal. |
| * |
| * This kernel thread is responsible for two things: |
| * |
| * 1) COMMIT: Every so often we need to commit the current state of the |
| * filesystem to disk. The journal thread is responsible for writing |
| * all of the metadata buffers to disk. |
| * |
| * 2) CHECKPOINT: We cannot reuse a used section of the log file until all |
| * of the data in that part of the log has been rewritten elsewhere on |
| * the disk. Flushing these old buffers to reclaim space in the log is |
| * known as checkpointing, and this thread is responsible for that job. |
| */ |
| |
| static int kjournald2(void *arg) |
| { |
| journal_t *journal = arg; |
| transaction_t *transaction; |
| |
| /* |
| * Set up an interval timer which can be used to trigger a commit wakeup |
| * after the commit interval expires |
| */ |
| setup_timer(&journal->j_commit_timer, commit_timeout, |
| (unsigned long)current); |
| |
| set_freezable(); |
| |
| /* Record that the journal thread is running */ |
| journal->j_task = current; |
| wake_up(&journal->j_wait_done_commit); |
| |
| /* |
| * And now, wait forever for commit wakeup events. |
| */ |
| write_lock(&journal->j_state_lock); |
| |
| loop: |
| if (journal->j_flags & JBD2_UNMOUNT) |
| goto end_loop; |
| |
| jbd_debug(1, "commit_sequence=%d, commit_request=%d\n", |
| journal->j_commit_sequence, journal->j_commit_request); |
| |
| if (journal->j_commit_sequence != journal->j_commit_request) { |
| jbd_debug(1, "OK, requests differ\n"); |
| write_unlock(&journal->j_state_lock); |
| del_timer_sync(&journal->j_commit_timer); |
| jbd2_journal_commit_transaction(journal); |
| write_lock(&journal->j_state_lock); |
| goto loop; |
| } |
| |
| wake_up(&journal->j_wait_done_commit); |
| if (freezing(current)) { |
| /* |
| * The simpler the better. Flushing journal isn't a |
| * good idea, because that depends on threads that may |
| * be already stopped. |
| */ |
| jbd_debug(1, "Now suspending kjournald2\n"); |
| write_unlock(&journal->j_state_lock); |
| try_to_freeze(); |
| write_lock(&journal->j_state_lock); |
| } else { |
| /* |
| * We assume on resume that commits are already there, |
| * so we don't sleep |
| */ |
| DEFINE_WAIT(wait); |
| int should_sleep = 1; |
| |
| prepare_to_wait(&journal->j_wait_commit, &wait, |
| TASK_INTERRUPTIBLE); |
| if (journal->j_commit_sequence != journal->j_commit_request) |
| should_sleep = 0; |
| transaction = journal->j_running_transaction; |
| if (transaction && time_after_eq(jiffies, |
| transaction->t_expires)) |
| should_sleep = 0; |
| if (journal->j_flags & JBD2_UNMOUNT) |
| should_sleep = 0; |
| if (should_sleep) { |
| write_unlock(&journal->j_state_lock); |
| schedule(); |
| write_lock(&journal->j_state_lock); |
| } |
| finish_wait(&journal->j_wait_commit, &wait); |
| } |
| |
| jbd_debug(1, "kjournald2 wakes\n"); |
| |
| /* |
| * Were we woken up by a commit wakeup event? |
| */ |
| transaction = journal->j_running_transaction; |
| if (transaction && time_after_eq(jiffies, transaction->t_expires)) { |
| journal->j_commit_request = transaction->t_tid; |
| jbd_debug(1, "woke because of timeout\n"); |
| } |
| goto loop; |
| |
| end_loop: |
| del_timer_sync(&journal->j_commit_timer); |
| journal->j_task = NULL; |
| wake_up(&journal->j_wait_done_commit); |
| jbd_debug(1, "Journal thread exiting.\n"); |
| write_unlock(&journal->j_state_lock); |
| return 0; |
| } |
| |
| static int jbd2_journal_start_thread(journal_t *journal) |
| { |
| struct task_struct *t; |
| |
| t = kthread_run(kjournald2, journal, "jbd2/%s", |
| journal->j_devname); |
| if (IS_ERR(t)) |
| return PTR_ERR(t); |
| |
| wait_event(journal->j_wait_done_commit, journal->j_task != NULL); |
| return 0; |
| } |
| |
| static void journal_kill_thread(journal_t *journal) |
| { |
| write_lock(&journal->j_state_lock); |
| journal->j_flags |= JBD2_UNMOUNT; |
| |
| while (journal->j_task) { |
| write_unlock(&journal->j_state_lock); |
| wake_up(&journal->j_wait_commit); |
| wait_event(journal->j_wait_done_commit, journal->j_task == NULL); |
| write_lock(&journal->j_state_lock); |
| } |
| write_unlock(&journal->j_state_lock); |
| } |
| |
| /* |
| * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. |
| * |
| * Writes a metadata buffer to a given disk block. The actual IO is not |
| * performed but a new buffer_head is constructed which labels the data |
| * to be written with the correct destination disk block. |
| * |
| * Any magic-number escaping which needs to be done will cause a |
| * copy-out here. If the buffer happens to start with the |
| * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the |
| * magic number is only written to the log for descripter blocks. In |
| * this case, we copy the data and replace the first word with 0, and we |
| * return a result code which indicates that this buffer needs to be |
| * marked as an escaped buffer in the corresponding log descriptor |
| * block. The missing word can then be restored when the block is read |
| * during recovery. |
| * |
| * If the source buffer has already been modified by a new transaction |
| * since we took the last commit snapshot, we use the frozen copy of |
| * that data for IO. If we end up using the existing buffer_head's data |
| * for the write, then we have to make sure nobody modifies it while the |
| * IO is in progress. do_get_write_access() handles this. |
| * |
| * The function returns a pointer to the buffer_head to be used for IO. |
| * |
| * |
| * Return value: |
| * <0: Error |
| * >=0: Finished OK |
| * |
| * On success: |
| * Bit 0 set == escape performed on the data |
| * Bit 1 set == buffer copy-out performed (kfree the data after IO) |
| */ |
| |
| int jbd2_journal_write_metadata_buffer(transaction_t *transaction, |
| struct journal_head *jh_in, |
| struct buffer_head **bh_out, |
| sector_t blocknr) |
| { |
| int need_copy_out = 0; |
| int done_copy_out = 0; |
| int do_escape = 0; |
| char *mapped_data; |
| struct buffer_head *new_bh; |
| struct page *new_page; |
| unsigned int new_offset; |
| struct buffer_head *bh_in = jh2bh(jh_in); |
| journal_t *journal = transaction->t_journal; |
| |
| /* |
| * The buffer really shouldn't be locked: only the current committing |
| * transaction is allowed to write it, so nobody else is allowed |
| * to do any IO. |
| * |
| * akpm: except if we're journalling data, and write() output is |
| * also part of a shared mapping, and another thread has |
| * decided to launch a writepage() against this buffer. |
| */ |
| J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); |
| |
| new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL); |
| |
| /* keep subsequent assertions sane */ |
| atomic_set(&new_bh->b_count, 1); |
| |
| jbd_lock_bh_state(bh_in); |
| repeat: |
| /* |
| * If a new transaction has already done a buffer copy-out, then |
| * we use that version of the data for the commit. |
| */ |
| if (jh_in->b_frozen_data) { |
| done_copy_out = 1; |
| new_page = virt_to_page(jh_in->b_frozen_data); |
| new_offset = offset_in_page(jh_in->b_frozen_data); |
| } else { |
| new_page = jh2bh(jh_in)->b_page; |
| new_offset = offset_in_page(jh2bh(jh_in)->b_data); |
| } |
| |
| mapped_data = kmap_atomic(new_page); |
| /* |
| * Fire data frozen trigger if data already wasn't frozen. Do this |
| * before checking for escaping, as the trigger may modify the magic |
| * offset. If a copy-out happens afterwards, it will have the correct |
| * data in the buffer. |
| */ |
| if (!done_copy_out) |
| jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, |
| jh_in->b_triggers); |
| |
| /* |
| * Check for escaping |
| */ |
| if (*((__be32 *)(mapped_data + new_offset)) == |
| cpu_to_be32(JBD2_MAGIC_NUMBER)) { |
| need_copy_out = 1; |
| do_escape = 1; |
| } |
| kunmap_atomic(mapped_data); |
| |
| /* |
| * Do we need to do a data copy? |
| */ |
| if (need_copy_out && !done_copy_out) { |
| char *tmp; |
| |
| jbd_unlock_bh_state(bh_in); |
| tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); |
| if (!tmp) { |
| brelse(new_bh); |
| return -ENOMEM; |
| } |
| jbd_lock_bh_state(bh_in); |
| if (jh_in->b_frozen_data) { |
| jbd2_free(tmp, bh_in->b_size); |
| goto repeat; |
| } |
| |
| jh_in->b_frozen_data = tmp; |
| mapped_data = kmap_atomic(new_page); |
| memcpy(tmp, mapped_data + new_offset, bh_in->b_size); |
| kunmap_atomic(mapped_data); |
| |
| new_page = virt_to_page(tmp); |
| new_offset = offset_in_page(tmp); |
| done_copy_out = 1; |
| |
| /* |
| * This isn't strictly necessary, as we're using frozen |
| * data for the escaping, but it keeps consistency with |
| * b_frozen_data usage. |
| */ |
| jh_in->b_frozen_triggers = jh_in->b_triggers; |
| } |
| |
| /* |
| * Did we need to do an escaping? Now we've done all the |
| * copying, we can finally do so. |
| */ |
| if (do_escape) { |
| mapped_data = kmap_atomic(new_page); |
| *((unsigned int *)(mapped_data + new_offset)) = 0; |
| kunmap_atomic(mapped_data); |
| } |
| |
| set_bh_page(new_bh, new_page, new_offset); |
| new_bh->b_size = bh_in->b_size; |
| new_bh->b_bdev = journal->j_dev; |
| new_bh->b_blocknr = blocknr; |
| new_bh->b_private = bh_in; |
| set_buffer_mapped(new_bh); |
| set_buffer_dirty(new_bh); |
| |
| *bh_out = new_bh; |
| |
| /* |
| * The to-be-written buffer needs to get moved to the io queue, |
| * and the original buffer whose contents we are shadowing or |
| * copying is moved to the transaction's shadow queue. |
| */ |
| JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); |
| spin_lock(&journal->j_list_lock); |
| __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); |
| spin_unlock(&journal->j_list_lock); |
| set_buffer_shadow(bh_in); |
| jbd_unlock_bh_state(bh_in); |
| |
| return do_escape | (done_copy_out << 1); |
| } |
| |
| /* |
| * Allocation code for the journal file. Manage the space left in the |
| * journal, so that we can begin checkpointing when appropriate. |
| */ |
| |
| /* |
| * Called with j_state_lock locked for writing. |
| * Returns true if a transaction commit was started. |
| */ |
| int __jbd2_log_start_commit(journal_t *journal, tid_t target) |
| { |
| /* Return if the txn has already requested to be committed */ |
| if (journal->j_commit_request == target) |
| return 0; |
| |
| /* |
| * The only transaction we can possibly wait upon is the |
| * currently running transaction (if it exists). Otherwise, |
| * the target tid must be an old one. |
| */ |
| if (journal->j_running_transaction && |
| journal->j_running_transaction->t_tid == target) { |
| /* |
| * We want a new commit: OK, mark the request and wakeup the |
| * commit thread. We do _not_ do the commit ourselves. |
| */ |
| |
| journal->j_commit_request = target; |
| jbd_debug(1, "JBD2: requesting commit %d/%d\n", |
| journal->j_commit_request, |
| journal->j_commit_sequence); |
| journal->j_running_transaction->t_requested = jiffies; |
| wake_up(&journal->j_wait_commit); |
| return 1; |
| } else if (!tid_geq(journal->j_commit_request, target)) |
| /* This should never happen, but if it does, preserve |
| the evidence before kjournald goes into a loop and |
| increments j_commit_sequence beyond all recognition. */ |
| WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", |
| journal->j_commit_request, |
| journal->j_commit_sequence, |
| target, journal->j_running_transaction ? |
| journal->j_running_transaction->t_tid : 0); |
| return 0; |
| } |
| |
| int jbd2_log_start_commit(journal_t *journal, tid_t tid) |
| { |
| int ret; |
| |
| write_lock(&journal->j_state_lock); |
| ret = __jbd2_log_start_commit(journal, tid); |
| write_unlock(&journal->j_state_lock); |
| return ret; |
| } |
| |
| /* |
| * Force and wait any uncommitted transactions. We can only force the running |
| * transaction if we don't have an active handle, otherwise, we will deadlock. |
| * Returns: <0 in case of error, |
| * 0 if nothing to commit, |
| * 1 if transaction was successfully committed. |
| */ |
| static int __jbd2_journal_force_commit(journal_t *journal) |
| { |
| transaction_t *transaction = NULL; |
| tid_t tid; |
| int need_to_start = 0, ret = 0; |
| |
| read_lock(&journal->j_state_lock); |
| if (journal->j_running_transaction && !current->journal_info) { |
| transaction = journal->j_running_transaction; |
| if (!tid_geq(journal->j_commit_request, transaction->t_tid)) |
| need_to_start = 1; |
| } else if (journal->j_committing_transaction) |
| transaction = journal->j_committing_transaction; |
| |
| if (!transaction) { |
| /* Nothing to commit */ |
| read_unlock(&journal->j_state_lock); |
| return 0; |
| } |
| tid = transaction->t_tid; |
| read_unlock(&journal->j_state_lock); |
| if (need_to_start) |
| jbd2_log_start_commit(journal, tid); |
| ret = jbd2_log_wait_commit(journal, tid); |
| if (!ret) |
| ret = 1; |
| |
| return ret; |
| } |
| |
| /** |
| * Force and wait upon a commit if the calling process is not within |
| * transaction. This is used for forcing out undo-protected data which contains |
| * bitmaps, when the fs is running out of space. |
| * |
| * @journal: journal to force |
| * Returns true if progress was made. |
| */ |
| int jbd2_journal_force_commit_nested(journal_t *journal) |
| { |
| int ret; |
| |
| ret = __jbd2_journal_force_commit(journal); |
| return ret > 0; |
| } |
| |
| /** |
| * int journal_force_commit() - force any uncommitted transactions |
| * @journal: journal to force |
| * |
| * Caller want unconditional commit. We can only force the running transaction |
| * if we don't have an active handle, otherwise, we will deadlock. |
| */ |
| int jbd2_journal_force_commit(journal_t *journal) |
| { |
| int ret; |
| |
| J_ASSERT(!current->journal_info); |
| ret = __jbd2_journal_force_commit(journal); |
| if (ret > 0) |
| ret = 0; |
| return ret; |
| } |
| |
| /* |
| * Start a commit of the current running transaction (if any). Returns true |
| * if a transaction is going to be committed (or is currently already |
| * committing), and fills its tid in at *ptid |
| */ |
| int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) |
| { |
| int ret = 0; |
| |
| write_lock(&journal->j_state_lock); |
| if (journal->j_running_transaction) { |
| tid_t tid = journal->j_running_transaction->t_tid; |
| |
| __jbd2_log_start_commit(journal, tid); |
| /* There's a running transaction and we've just made sure |
| * it's commit has been scheduled. */ |
| if (ptid) |
| *ptid = tid; |
| ret = 1; |
| } else if (journal->j_committing_transaction) { |
| /* |
| * If commit has been started, then we have to wait for |
| * completion of that transaction. |
| */ |
| if (ptid) |
| *ptid = journal->j_committing_transaction->t_tid; |
| ret = 1; |
| } |
| write_unlock(&journal->j_state_lock); |
| return ret; |
| } |
| |
| /* |
| * Return 1 if a given transaction has not yet sent barrier request |
| * connected with a transaction commit. If 0 is returned, transaction |
| * may or may not have sent the barrier. Used to avoid sending barrier |
| * twice in common cases. |
| */ |
| int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) |
| { |
| int ret = 0; |
| transaction_t *commit_trans; |
| |
| if (!(journal->j_flags & JBD2_BARRIER)) |
| return 0; |
| read_lock(&journal->j_state_lock); |
| /* Transaction already committed? */ |
| if (tid_geq(journal->j_commit_sequence, tid)) |
| goto out; |
| commit_trans = journal->j_committing_transaction; |
| if (!commit_trans || commit_trans->t_tid != tid) { |
| ret = 1; |
| goto out; |
| } |
| /* |
| * Transaction is being committed and we already proceeded to |
| * submitting a flush to fs partition? |
| */ |
| if (journal->j_fs_dev != journal->j_dev) { |
| if (!commit_trans->t_need_data_flush || |
| commit_trans->t_state >= T_COMMIT_DFLUSH) |
| goto out; |
| } else { |
| if (commit_trans->t_state >= T_COMMIT_JFLUSH) |
| goto out; |
| } |
| ret = 1; |
| out: |
| read_unlock(&journal->j_state_lock); |
| return ret; |
| } |
| EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); |
| |
| /* |
| * Wait for a specified commit to complete. |
| * The caller may not hold the journal lock. |
| */ |
| int jbd2_log_wait_commit(journal_t *journal, tid_t tid) |
| { |
| int err = 0; |
| |
| read_lock(&journal->j_state_lock); |
| #ifdef CONFIG_JBD2_DEBUG |
| if (!tid_geq(journal->j_commit_request, tid)) { |
| printk(KERN_ERR |
| "%s: error: j_commit_request=%d, tid=%d\n", |
| __func__, journal->j_commit_request, tid); |
| } |
| #endif |
| while (tid_gt(tid, journal->j_commit_sequence)) { |
| jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n", |
| tid, journal->j_commit_sequence); |
| read_unlock(&journal->j_state_lock); |
| wake_up(&journal->j_wait_commit); |
| wait_event(journal->j_wait_done_commit, |
| !tid_gt(tid, journal->j_commit_sequence)); |
| read_lock(&journal->j_state_lock); |
| } |
| read_unlock(&journal->j_state_lock); |
| |
| if (unlikely(is_journal_aborted(journal))) |
| err = -EIO; |
| return err; |
| } |
| |
| /* |
| * When this function returns the transaction corresponding to tid |
| * will be completed. If the transaction has currently running, start |
| * committing that transaction before waiting for it to complete. If |
| * the transaction id is stale, it is by definition already completed, |
| * so just return SUCCESS. |
| */ |
| int jbd2_complete_transaction(journal_t *journal, tid_t tid) |
| { |
| int need_to_wait = 1; |
| |
| read_lock(&journal->j_state_lock); |
| if (journal->j_running_transaction && |
| journal->j_running_transaction->t_tid == tid) { |
| if (journal->j_commit_request != tid) { |
| /* transaction not yet started, so request it */ |
| read_unlock(&journal->j_state_lock); |
| jbd2_log_start_commit(journal, tid); |
| goto wait_commit; |
| } |
| } else if (!(journal->j_committing_transaction && |
| journal->j_committing_transaction->t_tid == tid)) |
| need_to_wait = 0; |
| read_unlock(&journal->j_state_lock); |
| if (!need_to_wait) |
| return 0; |
| wait_commit: |
| return jbd2_log_wait_commit(journal, tid); |
| } |
| EXPORT_SYMBOL(jbd2_complete_transaction); |
| |
| /* |
| * Log buffer allocation routines: |
| */ |
| |
| int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) |
| { |
| unsigned long blocknr; |
| |
| write_lock(&journal->j_state_lock); |
| J_ASSERT(journal->j_free > 1); |
| |
| blocknr = journal->j_head; |
| journal->j_head++; |
| journal->j_free--; |
| if (journal->j_head == journal->j_last) |
| journal->j_head = journal->j_first; |
| write_unlock(&journal->j_state_lock); |
| return jbd2_journal_bmap(journal, blocknr, retp); |
| } |
| |
| /* |
| * Conversion of logical to physical block numbers for the journal |
| * |
| * On external journals the journal blocks are identity-mapped, so |
| * this is a no-op. If needed, we can use j_blk_offset - everything is |
| * ready. |
| */ |
| int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, |
| unsigned long long *retp) |
| { |
| int err = 0; |
| unsigned long long ret; |
| |
| if (journal->j_inode) { |
| ret = bmap(journal->j_inode, blocknr); |
| if (ret) |
| *retp = ret; |
| else { |
| printk(KERN_ALERT "%s: journal block not found " |
| "at offset %lu on %s\n", |
| __func__, blocknr, journal->j_devname); |
| err = -EIO; |
| __journal_abort_soft(journal, err); |
| } |
| } else { |
| *retp = blocknr; /* +journal->j_blk_offset */ |
| } |
| return err; |
| } |
| |
| /* |
| * We play buffer_head aliasing tricks to write data/metadata blocks to |
| * the journal without copying their contents, but for journal |
| * descriptor blocks we do need to generate bona fide buffers. |
| * |
| * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying |
| * the buffer's contents they really should run flush_dcache_page(bh->b_page). |
| * But we don't bother doing that, so there will be coherency problems with |
| * mmaps of blockdevs which hold live JBD-controlled filesystems. |
| */ |
| struct buffer_head *jbd2_journal_get_descriptor_buffer(journal_t *journal) |
| { |
| struct buffer_head *bh; |
| unsigned long long blocknr; |
| int err; |
| |
| err = jbd2_journal_next_log_block(journal, &blocknr); |
| |
| if (err) |
| return NULL; |
| |
| bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); |
| if (!bh) |
| return NULL; |
| lock_buffer(bh); |
| memset(bh->b_data, 0, journal->j_blocksize); |
| set_buffer_uptodate(bh); |
| unlock_buffer(bh); |
| BUFFER_TRACE(bh, "return this buffer"); |
| return bh; |
| } |
| |
| /* |
| * Return tid of the oldest transaction in the journal and block in the journal |
| * where the transaction starts. |
| * |
| * If the journal is now empty, return which will be the next transaction ID |
| * we will write and where will that transaction start. |
| * |
| * The return value is 0 if journal tail cannot be pushed any further, 1 if |
| * it can. |
| */ |
| int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, |
| unsigned long *block) |
| { |
| transaction_t *transaction; |
| int ret; |
| |
| read_lock(&journal->j_state_lock); |
| spin_lock(&journal->j_list_lock); |
| transaction = journal->j_checkpoint_transactions; |
| if (transaction) { |
| *tid = transaction->t_tid; |
| *block = transaction->t_log_start; |
| } else if ((transaction = journal->j_committing_transaction) != NULL) { |
| *tid = transaction->t_tid; |
| *block = transaction->t_log_start; |
| } else if ((transaction = journal->j_running_transaction) != NULL) { |
| *tid = transaction->t_tid; |
| *block = journal->j_head; |
| } else { |
| *tid = journal->j_transaction_sequence; |
| *block = journal->j_head; |
| } |
| ret = tid_gt(*tid, journal->j_tail_sequence); |
| spin_unlock(&journal->j_list_lock); |
| read_unlock(&journal->j_state_lock); |
| |
| return ret; |
| } |
| |
| /* |
| * Update information in journal structure and in on disk journal superblock |
| * about log tail. This function does not check whether information passed in |
| * really pushes log tail further. It's responsibility of the caller to make |
| * sure provided log tail information is valid (e.g. by holding |
| * j_checkpoint_mutex all the time between computing log tail and calling this |
| * function as is the case with jbd2_cleanup_journal_tail()). |
| * |
| * Requires j_checkpoint_mutex |
| */ |
| int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) |
| { |
| unsigned long freed; |
| int ret; |
| |
| BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); |
| |
| /* |
| * We cannot afford for write to remain in drive's caches since as |
| * soon as we update j_tail, next transaction can start reusing journal |
| * space and if we lose sb update during power failure we'd replay |
| * old transaction with possibly newly overwritten data. |
| */ |
| ret = jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA); |
| if (ret) |
| goto out; |
| |
| write_lock(&journal->j_state_lock); |
| freed = block - journal->j_tail; |
| if (block < journal->j_tail) |
| freed += journal->j_last - journal->j_first; |
| |
| trace_jbd2_update_log_tail(journal, tid, block, freed); |
| jbd_debug(1, |
| "Cleaning journal tail from %d to %d (offset %lu), " |
| "freeing %lu\n", |
| journal->j_tail_sequence, tid, block, freed); |
| |
| journal->j_free += freed; |
| journal->j_tail_sequence = tid; |
| journal->j_tail = block; |
| write_unlock(&journal->j_state_lock); |
| |
| out: |
| return ret; |
| } |
| |
| /* |
| * This is a variation of __jbd2_update_log_tail which checks for validity of |
| * provided log tail and locks j_checkpoint_mutex. So it is safe against races |
| * with other threads updating log tail. |
| */ |
| void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) |
| { |
| mutex_lock(&journal->j_checkpoint_mutex); |
| if (tid_gt(tid, journal->j_tail_sequence)) |
| __jbd2_update_log_tail(journal, tid, block); |
| mutex_unlock(&journal->j_checkpoint_mutex); |
| } |
| |
| struct jbd2_stats_proc_session { |
| journal_t *journal; |
| struct transaction_stats_s *stats; |
| int start; |
| int max; |
| }; |
| |
| static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) |
| { |
| return *pos ? NULL : SEQ_START_TOKEN; |
| } |
| |
| static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) |
| { |
| return NULL; |
| } |
| |
| static int jbd2_seq_info_show(struct seq_file *seq, void *v) |
| { |
| struct jbd2_stats_proc_session *s = seq->private; |
| |
| if (v != SEQ_START_TOKEN) |
| return 0; |
| seq_printf(seq, "%lu transactions (%lu requested), " |
| "each up to %u blocks\n", |
| s->stats->ts_tid, s->stats->ts_requested, |
| s->journal->j_max_transaction_buffers); |
| if (s->stats->ts_tid == 0) |
| return 0; |
| seq_printf(seq, "average: \n %ums waiting for transaction\n", |
| jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); |
| seq_printf(seq, " %ums request delay\n", |
| (s->stats->ts_requested == 0) ? 0 : |
| jiffies_to_msecs(s->stats->run.rs_request_delay / |
| s->stats->ts_requested)); |
| seq_printf(seq, " %ums running transaction\n", |
| jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); |
| seq_printf(seq, " %ums transaction was being locked\n", |
| jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); |
| seq_printf(seq, " %ums flushing data (in ordered mode)\n", |
| jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); |
| seq_printf(seq, " %ums logging transaction\n", |
| jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); |
| seq_printf(seq, " %lluus average transaction commit time\n", |
| div_u64(s->journal->j_average_commit_time, 1000)); |
| seq_printf(seq, " %lu handles per transaction\n", |
| s->stats->run.rs_handle_count / s->stats->ts_tid); |
| seq_printf(seq, " %lu blocks per transaction\n", |
| s->stats->run.rs_blocks / s->stats->ts_tid); |
| seq_printf(seq, " %lu logged blocks per transaction\n", |
| s->stats->run.rs_blocks_logged / s->stats->ts_tid); |
| return 0; |
| } |
| |
| static void jbd2_seq_info_stop(struct seq_file *seq, void *v) |
| { |
| } |
| |
| static const struct seq_operations jbd2_seq_info_ops = { |
| .start = jbd2_seq_info_start, |
| .next = jbd2_seq_info_next, |
| .stop = jbd2_seq_info_stop, |
| .show = jbd2_seq_info_show, |
| }; |
| |
| static int jbd2_seq_info_open(struct inode *inode, struct file *file) |
| { |
| journal_t *journal = PDE_DATA(inode); |
| struct jbd2_stats_proc_session *s; |
| int rc, size; |
| |
| s = kmalloc(sizeof(*s), GFP_KERNEL); |
| if (s == NULL) |
| return -ENOMEM; |
| size = sizeof(struct transaction_stats_s); |
| s->stats = kmalloc(size, GFP_KERNEL); |
| if (s->stats == NULL) { |
| kfree(s); |
| return -ENOMEM; |
| } |
| spin_lock(&journal->j_history_lock); |
| memcpy(s->stats, &journal->j_stats, size); |
| s->journal = journal; |
| spin_unlock(&journal->j_history_lock); |
| |
| rc = seq_open(file, &jbd2_seq_info_ops); |
| if (rc == 0) { |
| struct seq_file *m = file->private_data; |
| m->private = s; |
| } else { |
| kfree(s->stats); |
| kfree(s); |
| } |
| return rc; |
| |
| } |
| |
| static int jbd2_seq_info_release(struct inode *inode, struct file *file) |
| { |
| struct seq_file *seq = file->private_data; |
| struct jbd2_stats_proc_session *s = seq->private; |
| kfree(s->stats); |
| kfree(s); |
| return seq_release(inode, file); |
| } |
| |
| static const struct file_operations jbd2_seq_info_fops = { |
| .owner = THIS_MODULE, |
| .open = jbd2_seq_info_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = jbd2_seq_info_release, |
| }; |
| |
| static struct proc_dir_entry *proc_jbd2_stats; |
| |
| static void jbd2_stats_proc_init(journal_t *journal) |
| { |
| journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); |
| if (journal->j_proc_entry) { |
| proc_create_data("info", S_IRUGO, journal->j_proc_entry, |
| &jbd2_seq_info_fops, journal); |
| } |
| } |
| |
| static void jbd2_stats_proc_exit(journal_t *journal) |
| { |
| remove_proc_entry("info", journal->j_proc_entry); |
| remove_proc_entry(journal->j_devname, proc_jbd2_stats); |
| } |
| |
| /* |
| * Management for journal control blocks: functions to create and |
| * destroy journal_t structures, and to initialise and read existing |
| * journal blocks from disk. */ |
| |
| /* First: create and setup a journal_t object in memory. We initialise |
| * very few fields yet: that has to wait until we have created the |
| * journal structures from from scratch, or loaded them from disk. */ |
| |
| static journal_t * journal_init_common (void) |
| { |
| journal_t *journal; |
| int err; |
| |
| journal = kzalloc(sizeof(*journal), GFP_KERNEL); |
| if (!journal) |
| return NULL; |
| |
| init_waitqueue_head(&journal->j_wait_transaction_locked); |
| init_waitqueue_head(&journal->j_wait_done_commit); |
| init_waitqueue_head(&journal->j_wait_commit); |
| init_waitqueue_head(&journal->j_wait_updates); |
| init_waitqueue_head(&journal->j_wait_reserved); |
| mutex_init(&journal->j_barrier); |
| mutex_init(&journal->j_checkpoint_mutex); |
| spin_lock_init(&journal->j_revoke_lock); |
| spin_lock_init(&journal->j_list_lock); |
| rwlock_init(&journal->j_state_lock); |
| |
| journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); |
| journal->j_min_batch_time = 0; |
| journal->j_max_batch_time = 15000; /* 15ms */ |
| atomic_set(&journal->j_reserved_credits, 0); |
| |
| /* The journal is marked for error until we succeed with recovery! */ |
| journal->j_flags = JBD2_ABORT; |
| |
| /* Set up a default-sized revoke table for the new mount. */ |
| err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); |
| if (err) { |
| kfree(journal); |
| return NULL; |
| } |
| |
| spin_lock_init(&journal->j_history_lock); |
| |
| return journal; |
| } |
| |
| /* jbd2_journal_init_dev and jbd2_journal_init_inode: |
| * |
| * Create a journal structure assigned some fixed set of disk blocks to |
| * the journal. We don't actually touch those disk blocks yet, but we |
| * need to set up all of the mapping information to tell the journaling |
| * system where the journal blocks are. |
| * |
| */ |
| |
| /** |
| * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure |
| * @bdev: Block device on which to create the journal |
| * @fs_dev: Device which hold journalled filesystem for this journal. |
| * @start: Block nr Start of journal. |
| * @len: Length of the journal in blocks. |
| * @blocksize: blocksize of journalling device |
| * |
| * Returns: a newly created journal_t * |
| * |
| * jbd2_journal_init_dev creates a journal which maps a fixed contiguous |
| * range of blocks on an arbitrary block device. |
| * |
| */ |
| journal_t * jbd2_journal_init_dev(struct block_device *bdev, |
| struct block_device *fs_dev, |
| unsigned long long start, int len, int blocksize) |
| { |
| journal_t *journal = journal_init_common(); |
| struct buffer_head *bh; |
| int n; |
| |
| if (!journal) |
| return NULL; |
| |
| /* journal descriptor can store up to n blocks -bzzz */ |
| journal->j_blocksize = blocksize; |
| journal->j_dev = bdev; |
| journal->j_fs_dev = fs_dev; |
| journal->j_blk_offset = start; |
| journal->j_maxlen = len; |
| bdevname(journal->j_dev, journal->j_devname); |
| strreplace(journal->j_devname, '/', '!'); |
| jbd2_stats_proc_init(journal); |
| n = journal->j_blocksize / sizeof(journal_block_tag_t); |
| journal->j_wbufsize = n; |
| journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); |
| if (!journal->j_wbuf) { |
| printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n", |
| __func__); |
| goto out_err; |
| } |
| |
| bh = __getblk(journal->j_dev, start, journal->j_blocksize); |
| if (!bh) { |
| printk(KERN_ERR |
| "%s: Cannot get buffer for journal superblock\n", |
| __func__); |
| goto out_err; |
| } |
| journal->j_sb_buffer = bh; |
| journal->j_superblock = (journal_superblock_t *)bh->b_data; |
| |
| return journal; |
| out_err: |
| kfree(journal->j_wbuf); |
| jbd2_stats_proc_exit(journal); |
| kfree(journal); |
| return NULL; |
| } |
| |
| /** |
| * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. |
| * @inode: An inode to create the journal in |
| * |
| * jbd2_journal_init_inode creates a journal which maps an on-disk inode as |
| * the journal. The inode must exist already, must support bmap() and |
| * must have all data blocks preallocated. |
| */ |
| journal_t * jbd2_journal_init_inode (struct inode *inode) |
| { |
| struct buffer_head *bh; |
| journal_t *journal = journal_init_common(); |
| char *p; |
| int err; |
| int n; |
| unsigned long long blocknr; |
| |
| if (!journal) |
| return NULL; |
| |
| journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev; |
| journal->j_inode = inode; |
| bdevname(journal->j_dev, journal->j_devname); |
| p = strreplace(journal->j_devname, '/', '!'); |
| sprintf(p, "-%lu", journal->j_inode->i_ino); |
| jbd_debug(1, |
| "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n", |
| journal, inode->i_sb->s_id, inode->i_ino, |
| (long long) inode->i_size, |
| inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); |
| |
| journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits; |
| journal->j_blocksize = inode->i_sb->s_blocksize; |
| jbd2_stats_proc_init(journal); |
| |
| /* journal descriptor can store up to n blocks -bzzz */ |
| n = journal->j_blocksize / sizeof(journal_block_tag_t); |
| journal->j_wbufsize = n; |
| journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); |
| if (!journal->j_wbuf) { |
| printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n", |
| __func__); |
| goto out_err; |
| } |
| |
| err = jbd2_journal_bmap(journal, 0, &blocknr); |
| /* If that failed, give up */ |
| if (err) { |
| printk(KERN_ERR "%s: Cannot locate journal superblock\n", |
| __func__); |
| goto out_err; |
| } |
| |
| bh = getblk_unmovable(journal->j_dev, blocknr, journal->j_blocksize); |
| if (!bh) { |
| printk(KERN_ERR |
| "%s: Cannot get buffer for journal superblock\n", |
| __func__); |
| goto out_err; |
| } |
| journal->j_sb_buffer = bh; |
| journal->j_superblock = (journal_superblock_t *)bh->b_data; |
| |
| return journal; |
| out_err: |
| kfree(journal->j_wbuf); |
| jbd2_stats_proc_exit(journal); |
| kfree(journal); |
| return NULL; |
| } |
| |
| /* |
| * If the journal init or create aborts, we need to mark the journal |
| * superblock as being NULL to prevent the journal destroy from writing |
| * back a bogus superblock. |
| */ |
| static void journal_fail_superblock (journal_t *journal) |
| { |
| struct buffer_head *bh = journal->j_sb_buffer; |
| brelse(bh); |
| journal->j_sb_buffer = NULL; |
| } |
| |
| /* |
| * Given a journal_t structure, initialise the various fields for |
| * startup of a new journaling session. We use this both when creating |
| * a journal, and after recovering an old journal to reset it for |
| * subsequent use. |
| */ |
| |
| static int journal_reset(journal_t *journal) |
| { |
| journal_superblock_t *sb = journal->j_superblock; |
| unsigned long long first, last; |
| |
| first = be32_to_cpu(sb->s_first); |
| last = be32_to_cpu(sb->s_maxlen); |
| if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { |
| printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", |
| first, last); |
| journal_fail_superblock(journal); |
| return -EINVAL; |
| } |
| |
| journal->j_first = first; |
| journal->j_last = last; |
| |
| journal->j_head = first; |
| journal->j_tail = first; |
| journal->j_free = last - first; |
| |
| journal->j_tail_sequence = journal->j_transaction_sequence; |
| journal->j_commit_sequence = journal->j_transaction_sequence - 1; |
| journal->j_commit_request = journal->j_commit_sequence; |
| |
| journal->j_max_transaction_buffers = journal->j_maxlen / 4; |
| |
| /* |
| * As a special case, if the on-disk copy is already marked as needing |
| * no recovery (s_start == 0), then we can safely defer the superblock |
| * update until the next commit by setting JBD2_FLUSHED. This avoids |
| * attempting a write to a potential-readonly device. |
| */ |
| if (sb->s_start == 0) { |
| jbd_debug(1, "JBD2: Skipping superblock update on recovered sb " |
| "(start %ld, seq %d, errno %d)\n", |
| journal->j_tail, journal->j_tail_sequence, |
| journal->j_errno); |
| journal->j_flags |= JBD2_FLUSHED; |
| } else { |
| /* Lock here to make assertions happy... */ |
| mutex_lock(&journal->j_checkpoint_mutex); |
| /* |
| * Update log tail information. We use WRITE_FUA since new |
| * transaction will start reusing journal space and so we |
| * must make sure information about current log tail is on |
| * disk before that. |
| */ |
| jbd2_journal_update_sb_log_tail(journal, |
| journal->j_tail_sequence, |
| journal->j_tail, |
| WRITE_FUA); |
| mutex_unlock(&journal->j_checkpoint_mutex); |
| } |
| return jbd2_journal_start_thread(journal); |
| } |
| |
| static int jbd2_write_superblock(journal_t *journal, int write_op) |
| { |
| struct buffer_head *bh = journal->j_sb_buffer; |
| journal_superblock_t *sb = journal->j_superblock; |
| int ret; |
| |
| trace_jbd2_write_superblock(journal, write_op); |
| if (!(journal->j_flags & JBD2_BARRIER)) |
| write_op &= ~(REQ_FUA | REQ_FLUSH); |
| lock_buffer(bh); |
| if (buffer_write_io_error(bh)) { |
| /* |
| * Oh, dear. A previous attempt to write the journal |
| * superblock failed. This could happen because the |
| * USB device was yanked out. Or it could happen to |
| * be a transient write error and maybe the block will |
| * be remapped. Nothing we can do but to retry the |
| * write and hope for the best. |
| */ |
| printk(KERN_ERR "JBD2: previous I/O error detected " |
| "for journal superblock update for %s.\n", |
| journal->j_devname); |
| clear_buffer_write_io_error(bh); |
| set_buffer_uptodate(bh); |
| } |
| jbd2_superblock_csum_set(journal, sb); |
| get_bh(bh); |
| bh->b_end_io = end_buffer_write_sync; |
| #ifdef CONFIG_JOURNAL_DATA_TAG |
| if (journal->j_flags & JBD2_JOURNAL_TAG) |
| set_buffer_journal(bh); |
| #endif |
| ret = submit_bh(write_op, bh); |
| wait_on_buffer(bh); |
| if (buffer_write_io_error(bh)) { |
| clear_buffer_write_io_error(bh); |
| set_buffer_uptodate(bh); |
| ret = -EIO; |
| } |
| if (ret) { |
| printk(KERN_ERR "JBD2: Error %d detected when updating " |
| "journal superblock for %s.\n", ret, |
| journal->j_devname); |
| jbd2_journal_abort(journal, ret); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. |
| * @journal: The journal to update. |
| * @tail_tid: TID of the new transaction at the tail of the log |
| * @tail_block: The first block of the transaction at the tail of the log |
| * @write_op: With which operation should we write the journal sb |
| * |
| * Update a journal's superblock information about log tail and write it to |
| * disk, waiting for the IO to complete. |
| */ |
| int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, |
| unsigned long tail_block, int write_op) |
| { |
| journal_superblock_t *sb = journal->j_superblock; |
| int ret; |
| |
| if (is_journal_aborted(journal)) |
| return -EIO; |
| |
| BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); |
| jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", |
| tail_block, tail_tid); |
| |
| sb->s_sequence = cpu_to_be32(tail_tid); |
| sb->s_start = cpu_to_be32(tail_block); |
| |
| ret = jbd2_write_superblock(journal, write_op); |
| if (ret) |
| goto out; |
| |
| /* Log is no longer empty */ |
| write_lock(&journal->j_state_lock); |
| WARN_ON(!sb->s_sequence); |
| journal->j_flags &= ~JBD2_FLUSHED; |
| write_unlock(&journal->j_state_lock); |
| |
| out: |
| return ret; |
| } |
| |
| /** |
| * jbd2_mark_journal_empty() - Mark on disk journal as empty. |
| * @journal: The journal to update. |
| * @write_op: With which operation should we write the journal sb |
| * |
| * Update a journal's dynamic superblock fields to show that journal is empty. |
| * Write updated superblock to disk waiting for IO to complete. |
| */ |
| static void jbd2_mark_journal_empty(journal_t *journal, int write_op) |
| { |
| journal_superblock_t *sb = journal->j_superblock; |
| |
| BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); |
| read_lock(&journal->j_state_lock); |
| /* Is it already empty? */ |
| if (sb->s_start == 0) { |
| read_unlock(&journal->j_state_lock); |
| return; |
| } |
| jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n", |
| journal->j_tail_sequence); |
| |
| sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); |
| sb->s_start = cpu_to_be32(0); |
| read_unlock(&journal->j_state_lock); |
| |
| jbd2_write_superblock(journal, write_op); |
| |
| /* Log is no longer empty */ |
| write_lock(&journal->j_state_lock); |
| journal->j_flags |= JBD2_FLUSHED; |
| write_unlock(&journal->j_state_lock); |
| } |
| |
| |
| /** |
| * jbd2_journal_update_sb_errno() - Update error in the journal. |
| * @journal: The journal to update. |
| * |
| * Update a journal's errno. Write updated superblock to disk waiting for IO |
| * to complete. |
| */ |
| void jbd2_journal_update_sb_errno(journal_t *journal) |
| { |
| journal_superblock_t *sb = journal->j_superblock; |
| |
| read_lock(&journal->j_state_lock); |
| jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", |
| journal->j_errno); |
| sb->s_errno = cpu_to_be32(journal->j_errno); |
| read_unlock(&journal->j_state_lock); |
| |
| jbd2_write_superblock(journal, WRITE_FUA); |
| } |
| EXPORT_SYMBOL(jbd2_journal_update_sb_errno); |
| |
| /* |
| * Read the superblock for a given journal, performing initial |
| * validation of the format. |
| */ |
| static int journal_get_superblock(journal_t *journal) |
| { |
| struct buffer_head *bh; |
| journal_superblock_t *sb; |
| int err = -EIO; |
| |
| bh = journal->j_sb_buffer; |
| |
| J_ASSERT(bh != NULL); |
| if (!buffer_uptodate(bh)) { |
| ll_rw_block(READ, 1, &bh); |
| wait_on_buffer(bh); |
| if (!buffer_uptodate(bh)) { |
| printk(KERN_ERR |
| "JBD2: IO error reading journal superblock\n"); |
| goto out; |
| } |
| } |
| |
| if (buffer_verified(bh)) |
| return 0; |
| |
| sb = journal->j_superblock; |
| |
| err = -EINVAL; |
| |
| if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || |
| sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { |
| printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); |
| goto out; |
| } |
| |
| switch(be32_to_cpu(sb->s_header.h_blocktype)) { |
| case JBD2_SUPERBLOCK_V1: |
| journal->j_format_version = 1; |
| break; |
| case JBD2_SUPERBLOCK_V2: |
| journal->j_format_version = 2; |
| break; |
| default: |
| printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); |
| goto out; |
| } |
| |
| if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) |
| journal->j_maxlen = be32_to_cpu(sb->s_maxlen); |
| else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { |
| printk(KERN_WARNING "JBD2: journal file too short\n"); |
| goto out; |
| } |
| |
| if (be32_to_cpu(sb->s_first) == 0 || |
| be32_to_cpu(sb->s_first) >= journal->j_maxlen) { |
| printk(KERN_WARNING |
| "JBD2: Invalid start block of journal: %u\n", |
| be32_to_cpu(sb->s_first)); |
| goto out; |
| } |
| |
| if (jbd2_has_feature_csum2(journal) && |
| jbd2_has_feature_csum3(journal)) { |
| /* Can't have checksum v2 and v3 at the same time! */ |
| printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 " |
| "at the same time!\n"); |
| goto out; |
| } |
| |
| if (jbd2_journal_has_csum_v2or3_feature(journal) && |
| jbd2_has_feature_checksum(journal)) { |
| /* Can't have checksum v1 and v2 on at the same time! */ |
| printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 " |
| "at the same time!\n"); |
| goto out; |
| } |
| |
| if (!jbd2_verify_csum_type(journal, sb)) { |
| printk(KERN_ERR "JBD2: Unknown checksum type\n"); |
| goto out; |
| } |
| |
| /* Load the checksum driver */ |
| if (jbd2_journal_has_csum_v2or3_feature(journal)) { |
| journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); |
| if (IS_ERR(journal->j_chksum_driver)) { |
| printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); |
| err = PTR_ERR(journal->j_chksum_driver); |
| journal->j_chksum_driver = NULL; |
| goto out; |
| } |
| } |
| |
| /* Check superblock checksum */ |
| if (!jbd2_superblock_csum_verify(journal, sb)) { |
| printk(KERN_ERR "JBD2: journal checksum error\n"); |
| err = -EFSBADCRC; |
| goto out; |
| } |
| |
| /* Precompute checksum seed for all metadata */ |
| if (jbd2_journal_has_csum_v2or3(journal)) |
| journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, |
| sizeof(sb->s_uuid)); |
| |
| set_buffer_verified(bh); |
| |
| return 0; |
| |
| out: |
| journal_fail_superblock(journal); |
| return err; |
| } |
| |
| /* |
| * Load the on-disk journal superblock and read the key fields into the |
| * journal_t. |
| */ |
| |
| static int load_superblock(journal_t *journal) |
| { |
| int err; |
| journal_superblock_t *sb; |
| |
| err = journal_get_superblock(journal); |
| if (err) |
| return err; |
| |
| sb = journal->j_superblock; |
| |
| journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); |
| journal->j_tail = be32_to_cpu(sb->s_start); |
| journal->j_first = be32_to_cpu(sb->s_first); |
| journal->j_last = be32_to_cpu(sb->s_maxlen); |
| journal->j_errno = be32_to_cpu(sb->s_errno); |
| |
| return 0; |
| } |
| |
| |
| /** |
| * int jbd2_journal_load() - Read journal from disk. |
| * @journal: Journal to act on. |
| * |
| * Given a journal_t structure which tells us which disk blocks contain |
| * a journal, read the journal from disk to initialise the in-memory |
| * structures. |
| */ |
| int jbd2_journal_load(journal_t *journal) |
| { |
| int err; |
| journal_superblock_t *sb; |
| |
| err = load_superblock(journal); |
| if (err) |
| return err; |
| |
| sb = journal->j_superblock; |
| /* If this is a V2 superblock, then we have to check the |
| * features flags on it. */ |
| |
| if (journal->j_format_version >= 2) { |
| if ((sb->s_feature_ro_compat & |
| ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || |
| (sb->s_feature_incompat & |
| ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { |
| printk(KERN_WARNING |
| "JBD2: Unrecognised features on journal\n"); |
| return -EINVAL; |
| } |
| } |
| |
| /* |
| * Create a slab for this blocksize |
| */ |
| err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); |
| if (err) |
| return err; |
| |
| /* Let the recovery code check whether it needs to recover any |
| * data from the journal. */ |
| if (jbd2_journal_recover(journal)) |
| goto recovery_error; |
| |
| if (journal->j_failed_commit) { |
| printk(KERN_ERR "JBD2: journal transaction %u on %s " |
| "is corrupt.\n", journal->j_failed_commit, |
| journal->j_devname); |
| return -EFSCORRUPTED; |
| } |
| |
| /* OK, we've finished with the dynamic journal bits: |
| * reinitialise the dynamic contents of the superblock in memory |
| * and reset them on disk. */ |
| if (journal_reset(journal)) |
| goto recovery_error; |
| |
| journal->j_flags &= ~JBD2_ABORT; |
| journal->j_flags |= JBD2_LOADED; |
| return 0; |
| |
| recovery_error: |
| printk(KERN_WARNING "JBD2: recovery failed\n"); |
| return -EIO; |
| } |
| |
| /** |
| * void jbd2_journal_destroy() - Release a journal_t structure. |
| * @journal: Journal to act on. |
| * |
| * Release a journal_t structure once it is no longer in use by the |
| * journaled object. |
| * Return <0 if we couldn't clean up the journal. |
| */ |
| int jbd2_journal_destroy(journal_t *journal) |
| { |
| int err = 0; |
| |
| /* Wait for the commit thread to wake up and die. */ |
| journal_kill_thread(journal); |
| |
| /* Force a final log commit */ |
| if (journal->j_running_transaction) |
| jbd2_journal_commit_transaction(journal); |
| |
| /* Force any old transactions to disk */ |
| |
| /* Totally anal locking here... */ |
| spin_lock(&journal->j_list_lock); |
| while (journal->j_checkpoint_transactions != NULL) { |
| spin_unlock(&journal->j_list_lock); |
| mutex_lock(&journal->j_checkpoint_mutex); |
| err = jbd2_log_do_checkpoint(journal); |
| mutex_unlock(&journal->j_checkpoint_mutex); |
| /* |
| * If checkpointing failed, just free the buffers to avoid |
| * looping forever |
| */ |
| if (err) { |
| jbd2_journal_destroy_checkpoint(journal); |
| spin_lock(&journal->j_list_lock); |
| break; |
| } |
| spin_lock(&journal->j_list_lock); |
| } |
| |
| J_ASSERT(journal->j_running_transaction == NULL); |
| J_ASSERT(journal->j_committing_transaction == NULL); |
| J_ASSERT(journal->j_checkpoint_transactions == NULL); |
| spin_unlock(&journal->j_list_lock); |
| |
| if (journal->j_sb_buffer) { |
| if (!is_journal_aborted(journal)) { |
| mutex_lock(&journal->j_checkpoint_mutex); |
| |
| write_lock(&journal->j_state_lock); |
| journal->j_tail_sequence = |
| ++journal->j_transaction_sequence; |
| write_unlock(&journal->j_state_lock); |
| |
| jbd2_mark_journal_empty(journal, WRITE_FLUSH_FUA); |
| mutex_unlock(&journal->j_checkpoint_mutex); |
| } else |
| err = -EIO; |
| brelse(journal->j_sb_buffer); |
| } |
| |
| if (journal->j_proc_entry) |
| jbd2_stats_proc_exit(journal); |
| iput(journal->j_inode); |
| if (journal->j_revoke) |
| jbd2_journal_destroy_revoke(journal); |
| if (journal->j_chksum_driver) |
| crypto_free_shash(journal->j_chksum_driver); |
| kfree(journal->j_wbuf); |
| kfree(journal); |
| |
| return err; |
| } |
| |
| |
| /** |
| *int jbd2_journal_check_used_features () - Check if features specified are used. |
| * @journal: Journal to check. |
| * @compat: bitmask of compatible features |
| * @ro: bitmask of features that force read-only mount |
| * @incompat: bitmask of incompatible features |
| * |
| * Check whether the journal uses all of a given set of |
| * features. Return true (non-zero) if it does. |
| **/ |
| |
| int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat, |
| unsigned long ro, unsigned long incompat) |
| { |
| journal_superblock_t *sb; |
| |
| if (!compat && !ro && !incompat) |
| return 1; |
| /* Load journal superblock if it is not loaded yet. */ |
| if (journal->j_format_version == 0 && |
| journal_get_superblock(journal) != 0) |
| return 0; |
| if (journal->j_format_version == 1) |
| return 0; |
| |
| sb = journal->j_superblock; |
| |
| if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && |
| ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && |
| ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) |
| return 1; |
| |
| return 0; |
| } |
| |
| /** |
| * int jbd2_journal_check_available_features() - Check feature set in journalling layer |
| * @journal: Journal to check. |
| * @compat: bitmask of compatible features |
| * @ro: bitmask of features that force read-only mount |
| * @incompat: bitmask of incompatible features |
| * |
| * Check whether the journaling code supports the use of |
| * all of a given set of features on this journal. Return true |
| * (non-zero) if it can. */ |
| |
| int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat, |
| unsigned long ro, unsigned long incompat) |
| { |
| if (!compat && !ro && !incompat) |
| return 1; |
| |
| /* We can support any known requested features iff the |
| * superblock is in version 2. Otherwise we fail to support any |
| * extended sb features. */ |
| |
| if (journal->j_format_version != 2) |
| return 0; |
| |
| if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && |
| (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && |
| (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) |
| return 1; |
| |
| return 0; |
| } |
| |
| /** |
| * int jbd2_journal_set_features () - Mark a given journal feature in the superblock |
| * @journal: Journal to act on. |
| * @compat: bitmask of compatible features |
| * @ro: bitmask of features that force read-only mount |
| * @incompat: bitmask of incompatible features |
| * |
| * Mark a given journal feature as present on the |
| * superblock. Returns true if the requested features could be set. |
| * |
| */ |
| |
| int jbd2_journal_set_features (journal_t *journal, unsigned long compat, |
| unsigned long ro, unsigned long incompat) |
| { |
| #define INCOMPAT_FEATURE_ON(f) \ |
| ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) |
| #define COMPAT_FEATURE_ON(f) \ |
| ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) |
| journal_superblock_t *sb; |
| |
| if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) |
| return 1; |
| |
| if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) |
| return 0; |
| |
| /* If enabling v2 checksums, turn on v3 instead */ |
| if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) { |
| incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2; |
| incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3; |
| } |
| |
| /* Asking for checksumming v3 and v1? Only give them v3. */ |
| if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 && |
| compat & JBD2_FEATURE_COMPAT_CHECKSUM) |
| compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; |
| |
| jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", |
| compat, ro, incompat); |
| |
| sb = journal->j_superblock; |
| |
| /* If enabling v3 checksums, update superblock */ |
| if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { |
| sb->s_checksum_type = JBD2_CRC32C_CHKSUM; |
| sb->s_feature_compat &= |
| ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); |
| |
| /* Load the checksum driver */ |
| if (journal->j_chksum_driver == NULL) { |
| journal->j_chksum_driver = crypto_alloc_shash("crc32c", |
| 0, 0); |
| if (IS_ERR(journal->j_chksum_driver)) { |
| printk(KERN_ERR "JBD2: Cannot load crc32c " |
| "driver.\n"); |
| journal->j_chksum_driver = NULL; |
| return 0; |
| } |
| |
| /* Precompute checksum seed for all metadata */ |
| journal->j_csum_seed = jbd2_chksum(journal, ~0, |
| sb->s_uuid, |
| sizeof(sb->s_uuid)); |
| } |
| } |
| |
| /* If enabling v1 checksums, downgrade superblock */ |
| if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) |
| sb->s_feature_incompat &= |
| ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 | |
| JBD2_FEATURE_INCOMPAT_CSUM_V3); |
| |
| sb->s_feature_compat |= cpu_to_be32(compat); |
| sb->s_feature_ro_compat |= cpu_to_be32(ro); |
| sb->s_feature_incompat |= cpu_to_be32(incompat); |
| |
| return 1; |
| #undef COMPAT_FEATURE_ON |
| #undef INCOMPAT_FEATURE_ON |
| } |
| |
| /* |
| * jbd2_journal_clear_features () - Clear a given journal feature in the |
| * superblock |
| * @journal: Journal to act on. |
| * @compat: bitmask of compatible features |
| * @ro: bitmask of features that force read-only mount |
| * @incompat: bitmask of incompatible features |
| * |
| * Clear a given journal feature as present on the |
| * superblock. |
| */ |
| void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, |
| unsigned long ro, unsigned long incompat) |
| { |
| journal_superblock_t *sb; |
| |
| jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", |
| compat, ro, incompat); |
| |
| sb = journal->j_superblock; |
| |
| sb->s_feature_compat &= ~cpu_to_be32(compat); |
| sb->s_feature_ro_compat &= ~cpu_to_be32(ro); |
| sb->s_feature_incompat &= ~cpu_to_be32(incompat); |
| } |
| EXPORT_SYMBOL(jbd2_journal_clear_features); |
| |
| /** |
| * int jbd2_journal_flush () - Flush journal |
| * @journal: Journal to act on. |
| * |
| * Flush all data for a given journal to disk and empty the journal. |
| * Filesystems can use this when remounting readonly to ensure that |
| * recovery does not need to happen on remount. |
| */ |
| |
| int jbd2_journal_flush(journal_t *journal) |
| { |
| int err = 0; |
| transaction_t *transaction = NULL; |
| |
| write_lock(&journal->j_state_lock); |
| |
| /* Force everything buffered to the log... */ |
| if (journal->j_running_transaction) { |
| transaction = journal->j_running_transaction; |
| __jbd2_log_start_commit(journal, transaction->t_tid); |
| } else if (journal->j_committing_transaction) |
| transaction = journal->j_committing_transaction; |
| |
| /* Wait for the log commit to complete... */ |
| if (transaction) { |
| tid_t tid = transaction->t_tid; |
| |
| write_unlock(&journal->j_state_lock); |
| jbd2_log_wait_commit(journal, tid); |
| } else { |
| write_unlock(&journal->j_state_lock); |
| } |
| |
| /* ...and flush everything in the log out to disk. */ |
| spin_lock(&journal->j_list_lock); |
| while (!err && journal->j_checkpoint_transactions != NULL) { |
| spin_unlock(&journal->j_list_lock); |
| mutex_lock(&journal->j_checkpoint_mutex); |
| err = jbd2_log_do_checkpoint(journal); |
| mutex_unlock(&journal->j_checkpoint_mutex); |
| spin_lock(&journal->j_list_lock); |
| } |
| spin_unlock(&journal->j_list_lock); |
| |
| if (is_journal_aborted(journal)) |
| return -EIO; |
| |
| mutex_lock(&journal->j_checkpoint_mutex); |
| if (!err) { |
| err = jbd2_cleanup_journal_tail(journal); |
| if (err < 0) { |
| mutex_unlock(&journal->j_checkpoint_mutex); |
| goto out; |
| } |
| err = 0; |
| } |
| |
| /* Finally, mark the journal as really needing no recovery. |
| * This sets s_start==0 in the underlying superblock, which is |
| * the magic code for a fully-recovered superblock. Any future |
| * commits of data to the journal will restore the current |
| * s_start value. */ |
| jbd2_mark_journal_empty(journal, WRITE_FUA); |
| mutex_unlock(&journal->j_checkpoint_mutex); |
| write_lock(&journal->j_state_lock); |
| J_ASSERT(!journal->j_running_transaction); |
| J_ASSERT(!journal->j_committing_transaction); |
| J_ASSERT(!journal->j_checkpoint_transactions); |
| J_ASSERT(journal->j_head == journal->j_tail); |
| J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); |
| write_unlock(&journal->j_state_lock); |
| out: |
| return err; |
| } |
| |
| /** |
| * int jbd2_journal_wipe() - Wipe journal contents |
| * @journal: Journal to act on. |
| * @write: flag (see below) |
| * |
| * Wipe out all of the contents of a journal, safely. This will produce |
| * a warning if the journal contains any valid recovery information. |
| * Must be called between journal_init_*() and jbd2_journal_load(). |
| * |
| * If 'write' is non-zero, then we wipe out the journal on disk; otherwise |
| * we merely suppress recovery. |
| */ |
| |
| int jbd2_journal_wipe(journal_t *journal, int write) |
| { |
| int err = 0; |
| |
| J_ASSERT (!(journal->j_flags & JBD2_LOADED)); |
| |
| err = load_superblock(journal); |
| if (err) |
| return err; |
| |
| if (!journal->j_tail) |
| goto no_recovery; |
| |
| printk(KERN_WARNING "JBD2: %s recovery information on journal\n", |
| write ? "Clearing" : "Ignoring"); |
| |
| err = jbd2_journal_skip_recovery(journal); |
| if (write) { |
| /* Lock to make assertions happy... */ |
| mutex_lock(&journal->j_checkpoint_mutex); |
| jbd2_mark_journal_empty(journal, WRITE_FUA); |
| mutex_unlock(&journal->j_checkpoint_mutex); |
| } |
| |
| no_recovery: |
| return err; |
| } |
| |
| /* |
| * Journal abort has very specific semantics, which we describe |
| * for journal abort. |
| * |
| * Two internal functions, which provide abort to the jbd layer |
| * itself are here. |
| */ |
| |
| /* |
| * Quick version for internal journal use (doesn't lock the journal). |
| * Aborts hard --- we mark the abort as occurred, but do _nothing_ else, |
| * and don't attempt to make any other journal updates. |
| */ |
| void __jbd2_journal_abort_hard(journal_t *journal) |
| { |
| transaction_t *transaction; |
| |
| if (journal->j_flags & JBD2_ABORT) |
| return; |
| |
| printk(KERN_ERR "Aborting journal on device %s.\n", |
| journal->j_devname); |
| |
| write_lock(&journal->j_state_lock); |
| journal->j_flags |= JBD2_ABORT; |
| transaction = journal->j_running_transaction; |
| if (transaction) |
| __jbd2_log_start_commit(journal, transaction->t_tid); |
| write_unlock(&journal->j_state_lock); |
| } |
| |
| /* Soft abort: record the abort error status in the journal superblock, |
| * but don't do any other IO. */ |
| static void __journal_abort_soft (journal_t *journal, int errno) |
| { |
| if (journal->j_flags & JBD2_ABORT) |
| return; |
| |
| if (!journal->j_errno) |
| journal->j_errno = errno; |
| |
| __jbd2_journal_abort_hard(journal); |
| |
| if (errno) { |
| jbd2_journal_update_sb_errno(journal); |
| write_lock(&journal->j_state_lock); |
| journal->j_flags |= JBD2_REC_ERR; |
| write_unlock(&journal->j_state_lock); |
| } |
| } |
| |
| /** |
| * void jbd2_journal_abort () - Shutdown the journal immediately. |
| * @journal: the journal to shutdown. |
| * @errno: an error number to record in the journal indicating |
| * the reason for the shutdown. |
| * |
| * Perform a complete, immediate shutdown of the ENTIRE |
| * journal (not of a single transaction). This operation cannot be |
| * undone without closing and reopening the journal. |
| * |
| * The jbd2_journal_abort function is intended to support higher level error |
| * recovery mechanisms such as the ext2/ext3 remount-readonly error |
| * mode. |
| * |
| * Journal abort has very specific semantics. Any existing dirty, |
| * unjournaled buffers in the main filesystem will still be written to |
| * disk by bdflush, but the journaling mechanism will be suspended |
| * immediately and no further transaction commits will be honoured. |
| * |
| * Any dirty, journaled buffers will be written back to disk without |
| * hitting the journal. Atomicity cannot be guaranteed on an aborted |
| * filesystem, but we _do_ attempt to leave as much data as possible |
| * behind for fsck to use for cleanup. |
| * |
| * Any attempt to get a new transaction handle on a journal which is in |
| * ABORT state will just result in an -EROFS error return. A |
| * jbd2_journal_stop on an existing handle will return -EIO if we have |
| * entered abort state during the update. |
| * |
| * Recursive transactions are not disturbed by journal abort until the |
| * final jbd2_journal_stop, which will receive the -EIO error. |
| * |
| * Finally, the jbd2_journal_abort call allows the caller to supply an errno |
| * which will be recorded (if possible) in the journal superblock. This |
| * allows a client to record failure conditions in the middle of a |
| * transaction without having to complete the transaction to record the |
| * failure to disk. ext3_error, for example, now uses this |
| * functionality. |
| * |
| * Errors which originate from within the journaling layer will NOT |
| * supply an errno; a null errno implies that absolutely no further |
| * writes are done to the journal (unless there are any already in |
| * progress). |
| * |
| */ |
| |
| void jbd2_journal_abort(journal_t *journal, int errno) |
| { |
| __journal_abort_soft(journal, errno); |
| } |
| |
| /** |
| * int jbd2_journal_errno () - returns the journal's error state. |
| * @journal: journal to examine. |
| * |
| * This is the errno number set with jbd2_journal_abort(), the last |
| * time the journal was mounted - if the journal was stopped |
| * without calling abort this will be 0. |
| * |
| * If the journal has been aborted on this mount time -EROFS will |
| * be returned. |
| */ |
| int jbd2_journal_errno(journal_t *journal) |
| { |
| int err; |
| |
| read_lock(&journal->j_state_lock); |
| if (journal->j_flags & JBD2_ABORT) |
| err = -EROFS; |
| else |
| err = journal->j_errno; |
| read_unlock(&journal->j_state_lock); |
| return err; |
| } |
| |
| /** |
| * int jbd2_journal_clear_err () - clears the journal's error state |
| * @journal: journal to act on. |
| * |
| * An error must be cleared or acked to take a FS out of readonly |
| * mode. |
| */ |
| int jbd2_journal_clear_err(journal_t *journal) |
| { |
| int err = 0; |
| |
| write_lock(&journal->j_state_lock); |
| if (journal->j_flags & JBD2_ABORT) |
| err = -EROFS; |
| else |
| journal->j_errno = 0; |
| write_unlock(&journal->j_state_lock); |
| return err; |
| } |
| |
| /** |
| * void jbd2_journal_ack_err() - Ack journal err. |
| * @journal: journal to act on. |
| * |
| * An error must be cleared or acked to take a FS out of readonly |
| * mode. |
| */ |
| void jbd2_journal_ack_err(journal_t *journal) |
| { |
| write_lock(&journal->j_state_lock); |
| if (journal->j_errno) |
| journal->j_flags |= JBD2_ACK_ERR; |
| write_unlock(&journal->j_state_lock); |
| } |
| |
| int jbd2_journal_blocks_per_page(struct inode *inode) |
| { |
| return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); |
| } |
| |
| /* |
| * helper functions to deal with 32 or 64bit block numbers. |
| */ |
| size_t journal_tag_bytes(journal_t *journal) |
| { |
| size_t sz; |
| |
| if (jbd2_has_feature_csum3(journal)) |
| return sizeof(journal_block_tag3_t); |
| |
| sz = sizeof(journal_block_tag_t); |
| |
| if (jbd2_has_feature_csum2(journal)) |
| sz += sizeof(__u16); |
| |
| if (jbd2_has_feature_64bit(journal)) |
| return sz; |
| else |
| return sz - sizeof(__u32); |
| } |
| |
| /* |
| * JBD memory management |
| * |
| * These functions are used to allocate block-sized chunks of memory |
| * used for making copies of buffer_head data. Very often it will be |
| * page-sized chunks of data, but sometimes it will be in |
| * sub-page-size chunks. (For example, 16k pages on Power systems |
| * with a 4k block file system.) For blocks smaller than a page, we |
| * use a SLAB allocator. There are slab caches for each block size, |
| * which are allocated at mount time, if necessary, and we only free |
| * (all of) the slab caches when/if the jbd2 module is unloaded. For |
| * this reason we don't need to a mutex to protect access to |
| * jbd2_slab[] allocating or releasing memory; only in |
| * jbd2_journal_create_slab(). |
| */ |
| #define JBD2_MAX_SLABS 8 |
| static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; |
| |
| static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { |
| "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", |
| "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" |
| }; |
| |
| |
| static void jbd2_journal_destroy_slabs(void) |
| { |
| int i; |
| |
| for (i = 0; i < JBD2_MAX_SLABS; i++) { |
| if (jbd2_slab[i]) |
| kmem_cache_destroy(jbd2_slab[i]); |
| jbd2_slab[i] = NULL; |
| } |
| } |
| |
| static int jbd2_journal_create_slab(size_t size) |
| { |
| static DEFINE_MUTEX(jbd2_slab_create_mutex); |
| int i = order_base_2(size) - 10; |
| size_t slab_size; |
| |
| if (size == PAGE_SIZE) |
| return 0; |
| |
| if (i >= JBD2_MAX_SLABS) |
| return -EINVAL; |
| |
| if (unlikely(i < 0)) |
| i = 0; |
| mutex_lock(&jbd2_slab_create_mutex); |
| if (jbd2_slab[i]) { |
| mutex_unlock(&jbd2_slab_create_mutex); |
| return 0; /* Already created */ |
| } |
| |
| slab_size = 1 << (i+10); |
| jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, |
| slab_size, 0, NULL); |
| mutex_unlock(&jbd2_slab_create_mutex); |
| if (!jbd2_slab[i]) { |
| printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| static struct kmem_cache *get_slab(size_t size) |
| { |
| int i = order_base_2(size) - 10; |
| |
| BUG_ON(i >= JBD2_MAX_SLABS); |
| if (unlikely(i < 0)) |
| i = 0; |
| BUG_ON(jbd2_slab[i] == NULL); |
| return jbd2_slab[i]; |
| } |
| |
| void *jbd2_alloc(size_t size, gfp_t flags) |
| { |
| void *ptr; |
| |
| BUG_ON(size & (size-1)); /* Must be a power of 2 */ |
| |
| flags |= __GFP_REPEAT; |
| if (size == PAGE_SIZE) |
| ptr = (void *)__get_free_pages(flags, 0); |
| else if (size > PAGE_SIZE) { |
| int order = get_order(size); |
| |
| if (order < 3) |
| ptr = (void *)__get_free_pages(flags, order); |
| else |
| ptr = vmalloc(size); |
| } else |
| ptr = kmem_cache_alloc(get_slab(size), flags); |
| |
| /* Check alignment; SLUB has gotten this wrong in the past, |
| * and this can lead to user data corruption! */ |
| BUG_ON(((unsigned long) ptr) & (size-1)); |
| |
| return ptr; |
| } |
| |
| void jbd2_free(void *ptr, size_t size) |
| { |
| if (size == PAGE_SIZE) { |
| free_pages((unsigned long)ptr, 0); |
| return; |
| } |
| if (size > PAGE_SIZE) { |
| int order = get_order(size); |
| |
| if (order < 3) |
| free_pages((unsigned long)ptr, order); |
| else |
| vfree(ptr); |
| return; |
| } |
| kmem_cache_free(get_slab(size), ptr); |
| }; |
| |
| /* |
| * Journal_head storage management |
| */ |
| static struct kmem_cache *jbd2_journal_head_cache; |
| #ifdef CONFIG_JBD2_DEBUG |
| static atomic_t nr_journal_heads = ATOMIC_INIT(0); |
| #endif |
| |
| static int jbd2_journal_init_journal_head_cache(void) |
| { |
| int retval; |
| |
| J_ASSERT(jbd2_journal_head_cache == NULL); |
| jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", |
| sizeof(struct journal_head), |
| 0, /* offset */ |
| SLAB_TEMPORARY | SLAB_DESTROY_BY_RCU, |
| NULL); /* ctor */ |
| retval = 0; |
| if (!jbd2_journal_head_cache) { |
| retval = -ENOMEM; |
| printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); |
| } |
| return retval; |
| } |
| |
| static void jbd2_journal_destroy_journal_head_cache(void) |
| { |
| if (jbd2_journal_head_cache) { |
| kmem_cache_destroy(jbd2_journal_head_cache); |
| jbd2_journal_head_cache = NULL; |
| } |
| } |
| |
| /* |
| * journal_head splicing and dicing |
| */ |
| static struct journal_head *journal_alloc_journal_head(void) |
| { |
| struct journal_head *ret; |
| |
| #ifdef CONFIG_JBD2_DEBUG |
| atomic_inc(&nr_journal_heads); |
| #endif |
| ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS); |
| if (!ret) { |
| jbd_debug(1, "out of memory for journal_head\n"); |
| pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); |
| ret = kmem_cache_zalloc(jbd2_journal_head_cache, |
| GFP_NOFS | __GFP_NOFAIL); |
| } |
| return ret; |
| } |
| |
| static void journal_free_journal_head(struct journal_head *jh) |
| { |
| #ifdef CONFIG_JBD2_DEBUG |
| atomic_dec(&nr_journal_heads); |
| memset(jh, JBD2_POISON_FREE, sizeof(*jh)); |
| #endif |
| kmem_cache_free(jbd2_journal_head_cache, jh); |
| } |
| |
| /* |
| * A journal_head is attached to a buffer_head whenever JBD has an |
| * interest in the buffer. |
| * |
| * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit |
| * is set. This bit is tested in core kernel code where we need to take |
| * JBD-specific actions. Testing the zeroness of ->b_private is not reliable |
| * there. |
| * |
| * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. |
| * |
| * When a buffer has its BH_JBD bit set it is immune from being released by |
| * core kernel code, mainly via ->b_count. |
| * |
| * A journal_head is detached from its buffer_head when the journal_head's |
| * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint |
| * transaction (b_cp_transaction) hold their references to b_jcount. |
| * |
| * Various places in the kernel want to attach a journal_head to a buffer_head |
| * _before_ attaching the journal_head to a transaction. To protect the |
| * journal_head in this situation, jbd2_journal_add_journal_head elevates the |
| * journal_head's b_jcount refcount by one. The caller must call |
| * jbd2_journal_put_journal_head() to undo this. |
| * |
| * So the typical usage would be: |
| * |
| * (Attach a journal_head if needed. Increments b_jcount) |
| * struct journal_head *jh = jbd2_journal_add_journal_head(bh); |
| * ... |
| * (Get another reference for transaction) |
| * jbd2_journal_grab_journal_head(bh); |
| * jh->b_transaction = xxx; |
| * (Put original reference) |
| * jbd2_journal_put_journal_head(jh); |
| */ |
| |
| /* |
| * Give a buffer_head a journal_head. |
| * |
| * May sleep. |
| */ |
| struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) |
| { |
| struct journal_head *jh; |
| struct journal_head *new_jh = NULL; |
| |
| repeat: |
| if (!buffer_jbd(bh)) |
| new_jh = journal_alloc_journal_head(); |
| |
| jbd_lock_bh_journal_head(bh); |
| if (buffer_jbd(bh)) { |
| jh = bh2jh(bh); |
| } else { |
| J_ASSERT_BH(bh, |
| (atomic_read(&bh->b_count) > 0) || |
| (bh->b_page && bh->b_page->mapping)); |
| |
| if (!new_jh) { |
| jbd_unlock_bh_journal_head(bh); |
| goto repeat; |
| } |
| |
| jh = new_jh; |
| new_jh = NULL; /* We consumed it */ |
| set_buffer_jbd(bh); |
| bh->b_private = jh; |
| jh->b_bh = bh; |
| get_bh(bh); |
| BUFFER_TRACE(bh, "added journal_head"); |
| } |
| jh->b_jcount++; |
| jbd_unlock_bh_journal_head(bh); |
| if (new_jh) |
| journal_free_journal_head(new_jh); |
| return bh->b_private; |
| } |
| |
| /* |
| * Grab a ref against this buffer_head's journal_head. If it ended up not |
| * having a journal_head, return NULL |
| */ |
| struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) |
| { |
| struct journal_head *jh = NULL; |
| |
| jbd_lock_bh_journal_head(bh); |
| if (buffer_jbd(bh)) { |
| jh = bh2jh(bh); |
| jh->b_jcount++; |
| } |
| jbd_unlock_bh_journal_head(bh); |
| return jh; |
| } |
| |
| static void __journal_remove_journal_head(struct buffer_head *bh) |
| { |
| struct journal_head *jh = bh2jh(bh); |
| |
| J_ASSERT_JH(jh, jh->b_jcount >= 0); |
| J_ASSERT_JH(jh, jh->b_transaction == NULL); |
| J_ASSERT_JH(jh, jh->b_next_transaction == NULL); |
| J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); |
| J_ASSERT_JH(jh, jh->b_jlist == BJ_None); |
| J_ASSERT_BH(bh, buffer_jbd(bh)); |
| J_ASSERT_BH(bh, jh2bh(jh) == bh); |
| BUFFER_TRACE(bh, "remove journal_head"); |
| if (jh->b_frozen_data) { |
| printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); |
| jbd2_free(jh->b_frozen_data, bh->b_size); |
| } |
| if (jh->b_committed_data) { |
| printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); |
| jbd2_free(jh->b_committed_data, bh->b_size); |
| } |
| bh->b_private = NULL; |
| jh->b_bh = NULL; /* debug, really */ |
| clear_buffer_jbd(bh); |
| journal_free_journal_head(jh); |
| } |
| |
| /* |
| * Drop a reference on the passed journal_head. If it fell to zero then |
| * release the journal_head from the buffer_head. |
| */ |
| void jbd2_journal_put_journal_head(struct journal_head *jh) |
| { |
| struct buffer_head *bh = jh2bh(jh); |
| |
| jbd_lock_bh_journal_head(bh); |
| J_ASSERT_JH(jh, jh->b_jcount > 0); |
| --jh->b_jcount; |
| if (!jh->b_jcount) { |
| __journal_remove_journal_head(bh); |
| jbd_unlock_bh_journal_head(bh); |
| __brelse(bh); |
| } else |
| jbd_unlock_bh_journal_head(bh); |
| } |
| |
| /* |
| * Initialize jbd inode head |
| */ |
| void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) |
| { |
| jinode->i_transaction = NULL; |
| jinode->i_next_transaction = NULL; |
| jinode->i_vfs_inode = inode; |
| jinode->i_flags = 0; |
| INIT_LIST_HEAD(&jinode->i_list); |
| } |
| |
| /* |
| * Function to be called before we start removing inode from memory (i.e., |
| * clear_inode() is a fine place to be called from). It removes inode from |
| * transaction's lists. |
| */ |
| void jbd2_journal_release_jbd_inode(journal_t *journal, |
| struct jbd2_inode *jinode) |
| { |
| if (!journal) |
| return; |
| restart: |
| spin_lock(&journal->j_list_lock); |
| /* Is commit writing out inode - we have to wait */ |
| if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) { |
| wait_queue_head_t *wq; |
| DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); |
| wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); |
| prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); |
| spin_unlock(&journal->j_list_lock); |
| schedule(); |
| finish_wait(wq, &wait.wait); |
| goto restart; |
| } |
| |
| if (jinode->i_transaction) { |
| list_del(&jinode->i_list); |
| jinode->i_transaction = NULL; |
| } |
| spin_unlock(&journal->j_list_lock); |
| } |
| |
| |
| #ifdef CONFIG_PROC_FS |
| |
| #define JBD2_STATS_PROC_NAME "fs/jbd2" |
| |
| static void __init jbd2_create_jbd_stats_proc_entry(void) |
| { |
| proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); |
| } |
| |
| static void __exit jbd2_remove_jbd_stats_proc_entry(void) |
| { |
| if (proc_jbd2_stats) |
| remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); |
| } |
| |
| #else |
| |
| #define jbd2_create_jbd_stats_proc_entry() do {} while (0) |
| #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) |
| |
| #endif |
| |
| struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; |
| |
| static int __init jbd2_journal_init_handle_cache(void) |
| { |
| jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); |
| if (jbd2_handle_cache == NULL) { |
| printk(KERN_EMERG "JBD2: failed to create handle cache\n"); |
| return -ENOMEM; |
| } |
| jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); |
| if (jbd2_inode_cache == NULL) { |
| printk(KERN_EMERG "JBD2: failed to create inode cache\n"); |
| kmem_cache_destroy(jbd2_handle_cache); |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| static void jbd2_journal_destroy_handle_cache(void) |
| { |
| if (jbd2_handle_cache) |
| kmem_cache_destroy(jbd2_handle_cache); |
| if (jbd2_inode_cache) |
| kmem_cache_destroy(jbd2_inode_cache); |
| |
| } |
| |
| /* |
| * Module startup and shutdown |
| */ |
| |
| static int __init journal_init_caches(void) |
| { |
| int ret; |
| |
| ret = jbd2_journal_init_revoke_caches(); |
| if (ret == 0) |
| ret = jbd2_journal_init_journal_head_cache(); |
| if (ret == 0) |
| ret = jbd2_journal_init_handle_cache(); |
| if (ret == 0) |
| ret = jbd2_journal_init_transaction_cache(); |
| return ret; |
| } |
| |
| static void jbd2_journal_destroy_caches(void) |
| { |
| jbd2_journal_destroy_revoke_caches(); |
| jbd2_journal_destroy_journal_head_cache(); |
| jbd2_journal_destroy_handle_cache(); |
| jbd2_journal_destroy_transaction_cache(); |
| jbd2_journal_destroy_slabs(); |
| } |
| |
| static int __init journal_init(void) |
| { |
| int ret; |
| |
| BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); |
| |
| ret = journal_init_caches(); |
| if (ret == 0) { |
| jbd2_create_jbd_stats_proc_entry(); |
| } else { |
| jbd2_journal_destroy_caches(); |
| } |
| return ret; |
| } |
| |
| static void __exit journal_exit(void) |
| { |
| #ifdef CONFIG_JBD2_DEBUG |
| int n = atomic_read(&nr_journal_heads); |
| if (n) |
| printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n); |
| #endif |
| jbd2_remove_jbd_stats_proc_entry(); |
| jbd2_journal_destroy_caches(); |
| } |
| |
| MODULE_LICENSE("GPL"); |
| module_init(journal_init); |
| module_exit(journal_exit); |
| |