| /* |
| * |
| * Intel Management Engine Interface (Intel MEI) Linux driver |
| * Copyright (c) 2003-2012, Intel Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| */ |
| |
| #include <linux/pci.h> |
| |
| #include <linux/kthread.h> |
| #include <linux/interrupt.h> |
| |
| #include "mei_dev.h" |
| #include "hbm.h" |
| |
| #include "hw-me.h" |
| #include "hw-me-regs.h" |
| |
| #include "mei-trace.h" |
| |
| /** |
| * mei_me_reg_read - Reads 32bit data from the mei device |
| * |
| * @hw: the me hardware structure |
| * @offset: offset from which to read the data |
| * |
| * Return: register value (u32) |
| */ |
| static inline u32 mei_me_reg_read(const struct mei_me_hw *hw, |
| unsigned long offset) |
| { |
| return ioread32(hw->mem_addr + offset); |
| } |
| |
| |
| /** |
| * mei_me_reg_write - Writes 32bit data to the mei device |
| * |
| * @hw: the me hardware structure |
| * @offset: offset from which to write the data |
| * @value: register value to write (u32) |
| */ |
| static inline void mei_me_reg_write(const struct mei_me_hw *hw, |
| unsigned long offset, u32 value) |
| { |
| iowrite32(value, hw->mem_addr + offset); |
| } |
| |
| /** |
| * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer |
| * read window register |
| * |
| * @dev: the device structure |
| * |
| * Return: ME_CB_RW register value (u32) |
| */ |
| static inline u32 mei_me_mecbrw_read(const struct mei_device *dev) |
| { |
| return mei_me_reg_read(to_me_hw(dev), ME_CB_RW); |
| } |
| |
| /** |
| * mei_me_hcbww_write - write 32bit data to the host circular buffer |
| * |
| * @dev: the device structure |
| * @data: 32bit data to be written to the host circular buffer |
| */ |
| static inline void mei_me_hcbww_write(struct mei_device *dev, u32 data) |
| { |
| mei_me_reg_write(to_me_hw(dev), H_CB_WW, data); |
| } |
| |
| /** |
| * mei_me_mecsr_read - Reads 32bit data from the ME CSR |
| * |
| * @dev: the device structure |
| * |
| * Return: ME_CSR_HA register value (u32) |
| */ |
| static inline u32 mei_me_mecsr_read(const struct mei_device *dev) |
| { |
| u32 reg; |
| |
| reg = mei_me_reg_read(to_me_hw(dev), ME_CSR_HA); |
| trace_mei_reg_read(dev->dev, "ME_CSR_HA", ME_CSR_HA, reg); |
| |
| return reg; |
| } |
| |
| /** |
| * mei_hcsr_read - Reads 32bit data from the host CSR |
| * |
| * @dev: the device structure |
| * |
| * Return: H_CSR register value (u32) |
| */ |
| static inline u32 mei_hcsr_read(const struct mei_device *dev) |
| { |
| u32 reg; |
| |
| reg = mei_me_reg_read(to_me_hw(dev), H_CSR); |
| trace_mei_reg_read(dev->dev, "H_CSR", H_CSR, reg); |
| |
| return reg; |
| } |
| |
| /** |
| * mei_hcsr_write - writes H_CSR register to the mei device |
| * |
| * @dev: the device structure |
| * @reg: new register value |
| */ |
| static inline void mei_hcsr_write(struct mei_device *dev, u32 reg) |
| { |
| trace_mei_reg_write(dev->dev, "H_CSR", H_CSR, reg); |
| mei_me_reg_write(to_me_hw(dev), H_CSR, reg); |
| } |
| |
| /** |
| * mei_hcsr_set - writes H_CSR register to the mei device, |
| * and ignores the H_IS bit for it is write-one-to-zero. |
| * |
| * @dev: the device structure |
| * @reg: new register value |
| */ |
| static inline void mei_hcsr_set(struct mei_device *dev, u32 reg) |
| { |
| reg &= ~H_IS; |
| mei_hcsr_write(dev, reg); |
| } |
| |
| /** |
| * mei_me_fw_status - read fw status register from pci config space |
| * |
| * @dev: mei device |
| * @fw_status: fw status register values |
| * |
| * Return: 0 on success, error otherwise |
| */ |
| static int mei_me_fw_status(struct mei_device *dev, |
| struct mei_fw_status *fw_status) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev->dev); |
| struct mei_me_hw *hw = to_me_hw(dev); |
| const struct mei_fw_status *fw_src = &hw->cfg->fw_status; |
| int ret; |
| int i; |
| |
| if (!fw_status) |
| return -EINVAL; |
| |
| fw_status->count = fw_src->count; |
| for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) { |
| ret = pci_read_config_dword(pdev, |
| fw_src->status[i], &fw_status->status[i]); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * mei_me_hw_config - configure hw dependent settings |
| * |
| * @dev: mei device |
| */ |
| static void mei_me_hw_config(struct mei_device *dev) |
| { |
| struct mei_me_hw *hw = to_me_hw(dev); |
| u32 hcsr = mei_hcsr_read(dev); |
| /* Doesn't change in runtime */ |
| dev->hbuf_depth = (hcsr & H_CBD) >> 24; |
| |
| hw->pg_state = MEI_PG_OFF; |
| } |
| |
| /** |
| * mei_me_pg_state - translate internal pg state |
| * to the mei power gating state |
| * |
| * @dev: mei device |
| * |
| * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise |
| */ |
| static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev) |
| { |
| struct mei_me_hw *hw = to_me_hw(dev); |
| |
| return hw->pg_state; |
| } |
| |
| /** |
| * mei_me_intr_clear - clear and stop interrupts |
| * |
| * @dev: the device structure |
| */ |
| static void mei_me_intr_clear(struct mei_device *dev) |
| { |
| u32 hcsr = mei_hcsr_read(dev); |
| |
| if ((hcsr & H_IS) == H_IS) |
| mei_hcsr_write(dev, hcsr); |
| } |
| /** |
| * mei_me_intr_enable - enables mei device interrupts |
| * |
| * @dev: the device structure |
| */ |
| static void mei_me_intr_enable(struct mei_device *dev) |
| { |
| u32 hcsr = mei_hcsr_read(dev); |
| |
| hcsr |= H_IE; |
| mei_hcsr_set(dev, hcsr); |
| } |
| |
| /** |
| * mei_me_intr_disable - disables mei device interrupts |
| * |
| * @dev: the device structure |
| */ |
| static void mei_me_intr_disable(struct mei_device *dev) |
| { |
| u32 hcsr = mei_hcsr_read(dev); |
| |
| hcsr &= ~H_IE; |
| mei_hcsr_set(dev, hcsr); |
| } |
| |
| /** |
| * mei_me_hw_reset_release - release device from the reset |
| * |
| * @dev: the device structure |
| */ |
| static void mei_me_hw_reset_release(struct mei_device *dev) |
| { |
| u32 hcsr = mei_hcsr_read(dev); |
| |
| hcsr |= H_IG; |
| hcsr &= ~H_RST; |
| mei_hcsr_set(dev, hcsr); |
| |
| /* complete this write before we set host ready on another CPU */ |
| mmiowb(); |
| } |
| /** |
| * mei_me_hw_reset - resets fw via mei csr register. |
| * |
| * @dev: the device structure |
| * @intr_enable: if interrupt should be enabled after reset. |
| * |
| * Return: always 0 |
| */ |
| static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable) |
| { |
| u32 hcsr = mei_hcsr_read(dev); |
| |
| /* H_RST may be found lit before reset is started, |
| * for example if preceding reset flow hasn't completed. |
| * In that case asserting H_RST will be ignored, therefore |
| * we need to clean H_RST bit to start a successful reset sequence. |
| */ |
| if ((hcsr & H_RST) == H_RST) { |
| dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr); |
| hcsr &= ~H_RST; |
| mei_hcsr_set(dev, hcsr); |
| hcsr = mei_hcsr_read(dev); |
| } |
| |
| hcsr |= H_RST | H_IG | H_IS; |
| |
| if (intr_enable) |
| hcsr |= H_IE; |
| else |
| hcsr &= ~H_IE; |
| |
| dev->recvd_hw_ready = false; |
| mei_hcsr_write(dev, hcsr); |
| |
| /* |
| * Host reads the H_CSR once to ensure that the |
| * posted write to H_CSR completes. |
| */ |
| hcsr = mei_hcsr_read(dev); |
| |
| if ((hcsr & H_RST) == 0) |
| dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr); |
| |
| if ((hcsr & H_RDY) == H_RDY) |
| dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr); |
| |
| if (intr_enable == false) |
| mei_me_hw_reset_release(dev); |
| |
| return 0; |
| } |
| |
| /** |
| * mei_me_host_set_ready - enable device |
| * |
| * @dev: mei device |
| */ |
| static void mei_me_host_set_ready(struct mei_device *dev) |
| { |
| u32 hcsr = mei_hcsr_read(dev); |
| |
| hcsr |= H_IE | H_IG | H_RDY; |
| mei_hcsr_set(dev, hcsr); |
| } |
| |
| /** |
| * mei_me_host_is_ready - check whether the host has turned ready |
| * |
| * @dev: mei device |
| * Return: bool |
| */ |
| static bool mei_me_host_is_ready(struct mei_device *dev) |
| { |
| u32 hcsr = mei_hcsr_read(dev); |
| |
| return (hcsr & H_RDY) == H_RDY; |
| } |
| |
| /** |
| * mei_me_hw_is_ready - check whether the me(hw) has turned ready |
| * |
| * @dev: mei device |
| * Return: bool |
| */ |
| static bool mei_me_hw_is_ready(struct mei_device *dev) |
| { |
| u32 mecsr = mei_me_mecsr_read(dev); |
| |
| return (mecsr & ME_RDY_HRA) == ME_RDY_HRA; |
| } |
| |
| /** |
| * mei_me_hw_ready_wait - wait until the me(hw) has turned ready |
| * or timeout is reached |
| * |
| * @dev: mei device |
| * Return: 0 on success, error otherwise |
| */ |
| static int mei_me_hw_ready_wait(struct mei_device *dev) |
| { |
| mutex_unlock(&dev->device_lock); |
| wait_event_timeout(dev->wait_hw_ready, |
| dev->recvd_hw_ready, |
| mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT)); |
| mutex_lock(&dev->device_lock); |
| if (!dev->recvd_hw_ready) { |
| dev_err(dev->dev, "wait hw ready failed\n"); |
| return -ETIME; |
| } |
| |
| mei_me_hw_reset_release(dev); |
| dev->recvd_hw_ready = false; |
| return 0; |
| } |
| |
| /** |
| * mei_me_hw_start - hw start routine |
| * |
| * @dev: mei device |
| * Return: 0 on success, error otherwise |
| */ |
| static int mei_me_hw_start(struct mei_device *dev) |
| { |
| int ret = mei_me_hw_ready_wait(dev); |
| |
| if (ret) |
| return ret; |
| dev_dbg(dev->dev, "hw is ready\n"); |
| |
| mei_me_host_set_ready(dev); |
| return ret; |
| } |
| |
| |
| /** |
| * mei_hbuf_filled_slots - gets number of device filled buffer slots |
| * |
| * @dev: the device structure |
| * |
| * Return: number of filled slots |
| */ |
| static unsigned char mei_hbuf_filled_slots(struct mei_device *dev) |
| { |
| u32 hcsr; |
| char read_ptr, write_ptr; |
| |
| hcsr = mei_hcsr_read(dev); |
| |
| read_ptr = (char) ((hcsr & H_CBRP) >> 8); |
| write_ptr = (char) ((hcsr & H_CBWP) >> 16); |
| |
| return (unsigned char) (write_ptr - read_ptr); |
| } |
| |
| /** |
| * mei_me_hbuf_is_empty - checks if host buffer is empty. |
| * |
| * @dev: the device structure |
| * |
| * Return: true if empty, false - otherwise. |
| */ |
| static bool mei_me_hbuf_is_empty(struct mei_device *dev) |
| { |
| return mei_hbuf_filled_slots(dev) == 0; |
| } |
| |
| /** |
| * mei_me_hbuf_empty_slots - counts write empty slots. |
| * |
| * @dev: the device structure |
| * |
| * Return: -EOVERFLOW if overflow, otherwise empty slots count |
| */ |
| static int mei_me_hbuf_empty_slots(struct mei_device *dev) |
| { |
| unsigned char filled_slots, empty_slots; |
| |
| filled_slots = mei_hbuf_filled_slots(dev); |
| empty_slots = dev->hbuf_depth - filled_slots; |
| |
| /* check for overflow */ |
| if (filled_slots > dev->hbuf_depth) |
| return -EOVERFLOW; |
| |
| return empty_slots; |
| } |
| |
| /** |
| * mei_me_hbuf_max_len - returns size of hw buffer. |
| * |
| * @dev: the device structure |
| * |
| * Return: size of hw buffer in bytes |
| */ |
| static size_t mei_me_hbuf_max_len(const struct mei_device *dev) |
| { |
| return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr); |
| } |
| |
| |
| /** |
| * mei_me_write_message - writes a message to mei device. |
| * |
| * @dev: the device structure |
| * @header: mei HECI header of message |
| * @buf: message payload will be written |
| * |
| * Return: -EIO if write has failed |
| */ |
| static int mei_me_write_message(struct mei_device *dev, |
| struct mei_msg_hdr *header, |
| unsigned char *buf) |
| { |
| unsigned long rem; |
| unsigned long length = header->length; |
| u32 *reg_buf = (u32 *)buf; |
| u32 hcsr; |
| u32 dw_cnt; |
| int i; |
| int empty_slots; |
| |
| dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header)); |
| |
| empty_slots = mei_hbuf_empty_slots(dev); |
| dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots); |
| |
| dw_cnt = mei_data2slots(length); |
| if (empty_slots < 0 || dw_cnt > empty_slots) |
| return -EMSGSIZE; |
| |
| mei_me_hcbww_write(dev, *((u32 *) header)); |
| |
| for (i = 0; i < length / 4; i++) |
| mei_me_hcbww_write(dev, reg_buf[i]); |
| |
| rem = length & 0x3; |
| if (rem > 0) { |
| u32 reg = 0; |
| |
| memcpy(®, &buf[length - rem], rem); |
| mei_me_hcbww_write(dev, reg); |
| } |
| |
| hcsr = mei_hcsr_read(dev) | H_IG; |
| mei_hcsr_set(dev, hcsr); |
| if (!mei_me_hw_is_ready(dev)) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| /** |
| * mei_me_count_full_read_slots - counts read full slots. |
| * |
| * @dev: the device structure |
| * |
| * Return: -EOVERFLOW if overflow, otherwise filled slots count |
| */ |
| static int mei_me_count_full_read_slots(struct mei_device *dev) |
| { |
| u32 me_csr; |
| char read_ptr, write_ptr; |
| unsigned char buffer_depth, filled_slots; |
| |
| me_csr = mei_me_mecsr_read(dev); |
| buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24); |
| read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8); |
| write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16); |
| filled_slots = (unsigned char) (write_ptr - read_ptr); |
| |
| /* check for overflow */ |
| if (filled_slots > buffer_depth) |
| return -EOVERFLOW; |
| |
| dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots); |
| return (int)filled_slots; |
| } |
| |
| /** |
| * mei_me_read_slots - reads a message from mei device. |
| * |
| * @dev: the device structure |
| * @buffer: message buffer will be written |
| * @buffer_length: message size will be read |
| * |
| * Return: always 0 |
| */ |
| static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer, |
| unsigned long buffer_length) |
| { |
| u32 *reg_buf = (u32 *)buffer; |
| u32 hcsr; |
| |
| for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32)) |
| *reg_buf++ = mei_me_mecbrw_read(dev); |
| |
| if (buffer_length > 0) { |
| u32 reg = mei_me_mecbrw_read(dev); |
| |
| memcpy(reg_buf, ®, buffer_length); |
| } |
| |
| hcsr = mei_hcsr_read(dev) | H_IG; |
| mei_hcsr_set(dev, hcsr); |
| return 0; |
| } |
| |
| /** |
| * mei_me_pg_set - write pg enter register |
| * |
| * @dev: the device structure |
| */ |
| static void mei_me_pg_set(struct mei_device *dev) |
| { |
| struct mei_me_hw *hw = to_me_hw(dev); |
| u32 reg; |
| |
| reg = mei_me_reg_read(hw, H_HPG_CSR); |
| trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg); |
| |
| reg |= H_HPG_CSR_PGI; |
| |
| trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg); |
| mei_me_reg_write(hw, H_HPG_CSR, reg); |
| } |
| |
| /** |
| * mei_me_pg_unset - write pg exit register |
| * |
| * @dev: the device structure |
| */ |
| static void mei_me_pg_unset(struct mei_device *dev) |
| { |
| struct mei_me_hw *hw = to_me_hw(dev); |
| u32 reg; |
| |
| reg = mei_me_reg_read(hw, H_HPG_CSR); |
| trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg); |
| |
| WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n"); |
| |
| reg |= H_HPG_CSR_PGIHEXR; |
| |
| trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg); |
| mei_me_reg_write(hw, H_HPG_CSR, reg); |
| } |
| |
| /** |
| * mei_me_pg_enter_sync - perform pg entry procedure |
| * |
| * @dev: the device structure |
| * |
| * Return: 0 on success an error code otherwise |
| */ |
| int mei_me_pg_enter_sync(struct mei_device *dev) |
| { |
| struct mei_me_hw *hw = to_me_hw(dev); |
| unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT); |
| int ret; |
| |
| dev->pg_event = MEI_PG_EVENT_WAIT; |
| |
| ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD); |
| if (ret) |
| return ret; |
| |
| mutex_unlock(&dev->device_lock); |
| wait_event_timeout(dev->wait_pg, |
| dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout); |
| mutex_lock(&dev->device_lock); |
| |
| if (dev->pg_event == MEI_PG_EVENT_RECEIVED) { |
| mei_me_pg_set(dev); |
| ret = 0; |
| } else { |
| ret = -ETIME; |
| } |
| |
| dev->pg_event = MEI_PG_EVENT_IDLE; |
| hw->pg_state = MEI_PG_ON; |
| |
| return ret; |
| } |
| |
| /** |
| * mei_me_pg_exit_sync - perform pg exit procedure |
| * |
| * @dev: the device structure |
| * |
| * Return: 0 on success an error code otherwise |
| */ |
| int mei_me_pg_exit_sync(struct mei_device *dev) |
| { |
| struct mei_me_hw *hw = to_me_hw(dev); |
| unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT); |
| int ret; |
| |
| if (dev->pg_event == MEI_PG_EVENT_RECEIVED) |
| goto reply; |
| |
| dev->pg_event = MEI_PG_EVENT_WAIT; |
| |
| mei_me_pg_unset(dev); |
| |
| mutex_unlock(&dev->device_lock); |
| wait_event_timeout(dev->wait_pg, |
| dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout); |
| mutex_lock(&dev->device_lock); |
| |
| reply: |
| if (dev->pg_event == MEI_PG_EVENT_RECEIVED) |
| ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD); |
| else |
| ret = -ETIME; |
| |
| dev->pg_event = MEI_PG_EVENT_IDLE; |
| hw->pg_state = MEI_PG_OFF; |
| |
| return ret; |
| } |
| |
| /** |
| * mei_me_pg_is_enabled - detect if PG is supported by HW |
| * |
| * @dev: the device structure |
| * |
| * Return: true is pg supported, false otherwise |
| */ |
| static bool mei_me_pg_is_enabled(struct mei_device *dev) |
| { |
| u32 reg = mei_me_mecsr_read(dev); |
| |
| if ((reg & ME_PGIC_HRA) == 0) |
| goto notsupported; |
| |
| if (!dev->hbm_f_pg_supported) |
| goto notsupported; |
| |
| return true; |
| |
| notsupported: |
| dev_dbg(dev->dev, "pg: not supported: HGP = %d hbm version %d.%d ?= %d.%d\n", |
| !!(reg & ME_PGIC_HRA), |
| dev->version.major_version, |
| dev->version.minor_version, |
| HBM_MAJOR_VERSION_PGI, |
| HBM_MINOR_VERSION_PGI); |
| |
| return false; |
| } |
| |
| /** |
| * mei_me_irq_quick_handler - The ISR of the MEI device |
| * |
| * @irq: The irq number |
| * @dev_id: pointer to the device structure |
| * |
| * Return: irqreturn_t |
| */ |
| |
| irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id) |
| { |
| struct mei_device *dev = (struct mei_device *) dev_id; |
| u32 hcsr = mei_hcsr_read(dev); |
| |
| if ((hcsr & H_IS) != H_IS) |
| return IRQ_NONE; |
| |
| /* clear H_IS bit in H_CSR */ |
| mei_hcsr_write(dev, hcsr); |
| |
| return IRQ_WAKE_THREAD; |
| } |
| |
| /** |
| * mei_me_irq_thread_handler - function called after ISR to handle the interrupt |
| * processing. |
| * |
| * @irq: The irq number |
| * @dev_id: pointer to the device structure |
| * |
| * Return: irqreturn_t |
| * |
| */ |
| irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id) |
| { |
| struct mei_device *dev = (struct mei_device *) dev_id; |
| struct mei_cl_cb complete_list; |
| s32 slots; |
| int rets = 0; |
| |
| dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n"); |
| /* initialize our complete list */ |
| mutex_lock(&dev->device_lock); |
| mei_io_list_init(&complete_list); |
| |
| /* Ack the interrupt here |
| * In case of MSI we don't go through the quick handler */ |
| if (pci_dev_msi_enabled(to_pci_dev(dev->dev))) |
| mei_clear_interrupts(dev); |
| |
| /* check if ME wants a reset */ |
| if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) { |
| dev_warn(dev->dev, "FW not ready: resetting.\n"); |
| schedule_work(&dev->reset_work); |
| goto end; |
| } |
| |
| /* check if we need to start the dev */ |
| if (!mei_host_is_ready(dev)) { |
| if (mei_hw_is_ready(dev)) { |
| dev_dbg(dev->dev, "we need to start the dev.\n"); |
| dev->recvd_hw_ready = true; |
| wake_up(&dev->wait_hw_ready); |
| } else { |
| dev_dbg(dev->dev, "Spurious Interrupt\n"); |
| } |
| goto end; |
| } |
| /* check slots available for reading */ |
| slots = mei_count_full_read_slots(dev); |
| while (slots > 0) { |
| dev_dbg(dev->dev, "slots to read = %08x\n", slots); |
| rets = mei_irq_read_handler(dev, &complete_list, &slots); |
| /* There is a race between ME write and interrupt delivery: |
| * Not all data is always available immediately after the |
| * interrupt, so try to read again on the next interrupt. |
| */ |
| if (rets == -ENODATA) |
| break; |
| |
| if (rets && dev->dev_state != MEI_DEV_RESETTING) { |
| dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n", |
| rets); |
| schedule_work(&dev->reset_work); |
| goto end; |
| } |
| } |
| |
| dev->hbuf_is_ready = mei_hbuf_is_ready(dev); |
| |
| /* |
| * During PG handshake only allowed write is the replay to the |
| * PG exit message, so block calling write function |
| * if the pg state is not idle |
| */ |
| if (dev->pg_event == MEI_PG_EVENT_IDLE) { |
| rets = mei_irq_write_handler(dev, &complete_list); |
| dev->hbuf_is_ready = mei_hbuf_is_ready(dev); |
| } |
| |
| mei_irq_compl_handler(dev, &complete_list); |
| |
| end: |
| dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets); |
| mutex_unlock(&dev->device_lock); |
| return IRQ_HANDLED; |
| } |
| |
| static const struct mei_hw_ops mei_me_hw_ops = { |
| |
| .fw_status = mei_me_fw_status, |
| .pg_state = mei_me_pg_state, |
| |
| .host_is_ready = mei_me_host_is_ready, |
| |
| .hw_is_ready = mei_me_hw_is_ready, |
| .hw_reset = mei_me_hw_reset, |
| .hw_config = mei_me_hw_config, |
| .hw_start = mei_me_hw_start, |
| |
| .pg_is_enabled = mei_me_pg_is_enabled, |
| |
| .intr_clear = mei_me_intr_clear, |
| .intr_enable = mei_me_intr_enable, |
| .intr_disable = mei_me_intr_disable, |
| |
| .hbuf_free_slots = mei_me_hbuf_empty_slots, |
| .hbuf_is_ready = mei_me_hbuf_is_empty, |
| .hbuf_max_len = mei_me_hbuf_max_len, |
| |
| .write = mei_me_write_message, |
| |
| .rdbuf_full_slots = mei_me_count_full_read_slots, |
| .read_hdr = mei_me_mecbrw_read, |
| .read = mei_me_read_slots |
| }; |
| |
| static bool mei_me_fw_type_nm(struct pci_dev *pdev) |
| { |
| u32 reg; |
| |
| pci_read_config_dword(pdev, PCI_CFG_HFS_2, ®); |
| /* make sure that bit 9 (NM) is up and bit 10 (DM) is down */ |
| return (reg & 0x600) == 0x200; |
| } |
| |
| #define MEI_CFG_FW_NM \ |
| .quirk_probe = mei_me_fw_type_nm |
| |
| static bool mei_me_fw_type_sps(struct pci_dev *pdev) |
| { |
| u32 reg; |
| /* Read ME FW Status check for SPS Firmware */ |
| pci_read_config_dword(pdev, PCI_CFG_HFS_1, ®); |
| /* if bits [19:16] = 15, running SPS Firmware */ |
| return (reg & 0xf0000) == 0xf0000; |
| } |
| |
| #define MEI_CFG_FW_SPS \ |
| .quirk_probe = mei_me_fw_type_sps |
| |
| |
| #define MEI_CFG_LEGACY_HFS \ |
| .fw_status.count = 0 |
| |
| #define MEI_CFG_ICH_HFS \ |
| .fw_status.count = 1, \ |
| .fw_status.status[0] = PCI_CFG_HFS_1 |
| |
| #define MEI_CFG_PCH_HFS \ |
| .fw_status.count = 2, \ |
| .fw_status.status[0] = PCI_CFG_HFS_1, \ |
| .fw_status.status[1] = PCI_CFG_HFS_2 |
| |
| #define MEI_CFG_PCH8_HFS \ |
| .fw_status.count = 6, \ |
| .fw_status.status[0] = PCI_CFG_HFS_1, \ |
| .fw_status.status[1] = PCI_CFG_HFS_2, \ |
| .fw_status.status[2] = PCI_CFG_HFS_3, \ |
| .fw_status.status[3] = PCI_CFG_HFS_4, \ |
| .fw_status.status[4] = PCI_CFG_HFS_5, \ |
| .fw_status.status[5] = PCI_CFG_HFS_6 |
| |
| /* ICH Legacy devices */ |
| const struct mei_cfg mei_me_legacy_cfg = { |
| MEI_CFG_LEGACY_HFS, |
| }; |
| |
| /* ICH devices */ |
| const struct mei_cfg mei_me_ich_cfg = { |
| MEI_CFG_ICH_HFS, |
| }; |
| |
| /* PCH devices */ |
| const struct mei_cfg mei_me_pch_cfg = { |
| MEI_CFG_PCH_HFS, |
| }; |
| |
| |
| /* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */ |
| const struct mei_cfg mei_me_pch_cpt_pbg_cfg = { |
| MEI_CFG_PCH_HFS, |
| MEI_CFG_FW_NM, |
| }; |
| |
| /* PCH8 Lynx Point and newer devices */ |
| const struct mei_cfg mei_me_pch8_cfg = { |
| MEI_CFG_PCH8_HFS, |
| }; |
| |
| /* PCH8 Lynx Point with quirk for SPS Firmware exclusion */ |
| const struct mei_cfg mei_me_pch8_sps_cfg = { |
| MEI_CFG_PCH8_HFS, |
| MEI_CFG_FW_SPS, |
| }; |
| |
| /** |
| * mei_me_dev_init - allocates and initializes the mei device structure |
| * |
| * @pdev: The pci device structure |
| * @cfg: per device generation config |
| * |
| * Return: The mei_device_device pointer on success, NULL on failure. |
| */ |
| struct mei_device *mei_me_dev_init(struct pci_dev *pdev, |
| const struct mei_cfg *cfg) |
| { |
| struct mei_device *dev; |
| struct mei_me_hw *hw; |
| |
| dev = kzalloc(sizeof(struct mei_device) + |
| sizeof(struct mei_me_hw), GFP_KERNEL); |
| if (!dev) |
| return NULL; |
| hw = to_me_hw(dev); |
| |
| mei_device_init(dev, &pdev->dev, &mei_me_hw_ops); |
| hw->cfg = cfg; |
| return dev; |
| } |
| |