blob: 03937212e9d81c97a3595e269cadc13c0f4eea97 [file] [log] [blame]
/*
* Copyright 2010 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#include "drmP.h"
#include "nouveau_drv.h"
#include "nouveau_bios.h"
#include "nouveau_hw.h"
#include "nouveau_pm.h"
#include "nouveau_hwsq.h"
enum clk_src {
clk_src_crystal,
clk_src_href,
clk_src_hclk,
clk_src_hclkm3,
clk_src_hclkm3d2,
clk_src_host,
clk_src_nvclk,
clk_src_sclk,
clk_src_mclk,
clk_src_vdec,
clk_src_dom6
};
static u32 read_clk(struct drm_device *, enum clk_src);
static u32
read_div(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
switch (dev_priv->chipset) {
case 0x50: /* it exists, but only has bit 31, not the dividers.. */
case 0x84:
case 0x86:
case 0x98:
case 0xa0:
return nv_rd32(dev, 0x004700);
case 0x92:
case 0x94:
case 0x96:
return nv_rd32(dev, 0x004800);
default:
return 0x00000000;
}
}
static u32
read_pll_src(struct drm_device *dev, u32 base)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
u32 coef, ref = read_clk(dev, clk_src_crystal);
u32 rsel = nv_rd32(dev, 0x00e18c);
int P, N, M, id;
switch (dev_priv->chipset) {
case 0x50:
case 0xa0:
switch (base) {
case 0x4020:
case 0x4028: id = !!(rsel & 0x00000004); break;
case 0x4008: id = !!(rsel & 0x00000008); break;
case 0x4030: id = 0; break;
default:
NV_ERROR(dev, "ref: bad pll 0x%06x\n", base);
return 0;
}
coef = nv_rd32(dev, 0x00e81c + (id * 0x0c));
ref *= (coef & 0x01000000) ? 2 : 4;
P = (coef & 0x00070000) >> 16;
N = ((coef & 0x0000ff00) >> 8) + 1;
M = ((coef & 0x000000ff) >> 0) + 1;
break;
case 0x84:
case 0x86:
case 0x92:
coef = nv_rd32(dev, 0x00e81c);
P = (coef & 0x00070000) >> 16;
N = (coef & 0x0000ff00) >> 8;
M = (coef & 0x000000ff) >> 0;
break;
case 0x94:
case 0x96:
case 0x98:
rsel = nv_rd32(dev, 0x00c050);
switch (base) {
case 0x4020: rsel = (rsel & 0x00000003) >> 0; break;
case 0x4008: rsel = (rsel & 0x0000000c) >> 2; break;
case 0x4028: rsel = (rsel & 0x00001800) >> 11; break;
case 0x4030: rsel = 3; break;
default:
NV_ERROR(dev, "ref: bad pll 0x%06x\n", base);
return 0;
}
switch (rsel) {
case 0: id = 1; break;
case 1: return read_clk(dev, clk_src_crystal);
case 2: return read_clk(dev, clk_src_href);
case 3: id = 0; break;
}
coef = nv_rd32(dev, 0x00e81c + (id * 0x28));
P = (nv_rd32(dev, 0x00e824 + (id * 0x28)) >> 16) & 7;
P += (coef & 0x00070000) >> 16;
N = (coef & 0x0000ff00) >> 8;
M = (coef & 0x000000ff) >> 0;
break;
default:
BUG_ON(1);
}
if (M)
return (ref * N / M) >> P;
return 0;
}
static u32
read_pll_ref(struct drm_device *dev, u32 base)
{
u32 src, mast = nv_rd32(dev, 0x00c040);
switch (base) {
case 0x004028:
src = !!(mast & 0x00200000);
break;
case 0x004020:
src = !!(mast & 0x00400000);
break;
case 0x004008:
src = !!(mast & 0x00010000);
break;
case 0x004030:
src = !!(mast & 0x02000000);
break;
case 0x00e810:
return read_clk(dev, clk_src_crystal);
default:
NV_ERROR(dev, "bad pll 0x%06x\n", base);
return 0;
}
if (src)
return read_clk(dev, clk_src_href);
return read_pll_src(dev, base);
}
static u32
read_pll(struct drm_device *dev, u32 base)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
u32 mast = nv_rd32(dev, 0x00c040);
u32 ctrl = nv_rd32(dev, base + 0);
u32 coef = nv_rd32(dev, base + 4);
u32 ref = read_pll_ref(dev, base);
u32 clk = 0;
int N1, N2, M1, M2;
if (base == 0x004028 && (mast & 0x00100000)) {
/* wtf, appears to only disable post-divider on nva0 */
if (dev_priv->chipset != 0xa0)
return read_clk(dev, clk_src_dom6);
}
N2 = (coef & 0xff000000) >> 24;
M2 = (coef & 0x00ff0000) >> 16;
N1 = (coef & 0x0000ff00) >> 8;
M1 = (coef & 0x000000ff);
if ((ctrl & 0x80000000) && M1) {
clk = ref * N1 / M1;
if ((ctrl & 0x40000100) == 0x40000000) {
if (M2)
clk = clk * N2 / M2;
else
clk = 0;
}
}
return clk;
}
static u32
read_clk(struct drm_device *dev, enum clk_src src)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
u32 mast = nv_rd32(dev, 0x00c040);
u32 P = 0;
switch (src) {
case clk_src_crystal:
return dev_priv->crystal;
case clk_src_href:
return 100000; /* PCIE reference clock */
case clk_src_hclk:
return read_clk(dev, clk_src_href) * 27778 / 10000;
case clk_src_hclkm3:
return read_clk(dev, clk_src_hclk) * 3;
case clk_src_hclkm3d2:
return read_clk(dev, clk_src_hclk) * 3 / 2;
case clk_src_host:
switch (mast & 0x30000000) {
case 0x00000000: return read_clk(dev, clk_src_href);
case 0x10000000: break;
case 0x20000000: /* !0x50 */
case 0x30000000: return read_clk(dev, clk_src_hclk);
}
break;
case clk_src_nvclk:
if (!(mast & 0x00100000))
P = (nv_rd32(dev, 0x004028) & 0x00070000) >> 16;
switch (mast & 0x00000003) {
case 0x00000000: return read_clk(dev, clk_src_crystal) >> P;
case 0x00000001: return read_clk(dev, clk_src_dom6);
case 0x00000002: return read_pll(dev, 0x004020) >> P;
case 0x00000003: return read_pll(dev, 0x004028) >> P;
}
break;
case clk_src_sclk:
P = (nv_rd32(dev, 0x004020) & 0x00070000) >> 16;
switch (mast & 0x00000030) {
case 0x00000000:
if (mast & 0x00000080)
return read_clk(dev, clk_src_host) >> P;
return read_clk(dev, clk_src_crystal) >> P;
case 0x00000010: break;
case 0x00000020: return read_pll(dev, 0x004028) >> P;
case 0x00000030: return read_pll(dev, 0x004020) >> P;
}
break;
case clk_src_mclk:
P = (nv_rd32(dev, 0x004008) & 0x00070000) >> 16;
if (nv_rd32(dev, 0x004008) & 0x00000200) {
switch (mast & 0x0000c000) {
case 0x00000000:
return read_clk(dev, clk_src_crystal) >> P;
case 0x00008000:
case 0x0000c000:
return read_clk(dev, clk_src_href) >> P;
}
} else {
return read_pll(dev, 0x004008) >> P;
}
break;
case clk_src_vdec:
P = (read_div(dev) & 0x00000700) >> 8;
switch (dev_priv->chipset) {
case 0x84:
case 0x86:
case 0x92:
case 0x94:
case 0x96:
case 0xa0:
switch (mast & 0x00000c00) {
case 0x00000000:
if (dev_priv->chipset == 0xa0) /* wtf?? */
return read_clk(dev, clk_src_nvclk) >> P;
return read_clk(dev, clk_src_crystal) >> P;
case 0x00000400:
return 0;
case 0x00000800:
if (mast & 0x01000000)
return read_pll(dev, 0x004028) >> P;
return read_pll(dev, 0x004030) >> P;
case 0x00000c00:
return read_clk(dev, clk_src_nvclk) >> P;
}
break;
case 0x98:
switch (mast & 0x00000c00) {
case 0x00000000:
return read_clk(dev, clk_src_nvclk) >> P;
case 0x00000400:
return 0;
case 0x00000800:
return read_clk(dev, clk_src_hclkm3d2) >> P;
case 0x00000c00:
return read_clk(dev, clk_src_mclk) >> P;
}
break;
}
break;
case clk_src_dom6:
switch (dev_priv->chipset) {
case 0x50:
case 0xa0:
return read_pll(dev, 0x00e810) >> 2;
case 0x84:
case 0x86:
case 0x92:
case 0x94:
case 0x96:
case 0x98:
P = (read_div(dev) & 0x00000007) >> 0;
switch (mast & 0x0c000000) {
case 0x00000000: return read_clk(dev, clk_src_href);
case 0x04000000: break;
case 0x08000000: return read_clk(dev, clk_src_hclk);
case 0x0c000000:
return read_clk(dev, clk_src_hclkm3) >> P;
}
break;
default:
break;
}
default:
break;
}
NV_DEBUG(dev, "unknown clock source %d 0x%08x\n", src, mast);
return 0;
}
int
nv50_pm_clocks_get(struct drm_device *dev, struct nouveau_pm_level *perflvl)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
if (dev_priv->chipset == 0xaa ||
dev_priv->chipset == 0xac)
return 0;
perflvl->core = read_clk(dev, clk_src_nvclk);
perflvl->shader = read_clk(dev, clk_src_sclk);
perflvl->memory = read_clk(dev, clk_src_mclk);
if (dev_priv->chipset != 0x50) {
perflvl->vdec = read_clk(dev, clk_src_vdec);
perflvl->dom6 = read_clk(dev, clk_src_dom6);
}
return 0;
}
struct nv50_pm_state {
struct hwsq_ucode mclk_hwsq;
u32 mscript;
u32 emast;
u32 nctrl;
u32 ncoef;
u32 sctrl;
u32 scoef;
u32 amast;
u32 pdivs;
};
static u32
calc_pll(struct drm_device *dev, u32 reg, struct pll_lims *pll,
u32 clk, int *N1, int *M1, int *log2P)
{
struct nouveau_pll_vals coef;
int ret;
ret = get_pll_limits(dev, reg, pll);
if (ret)
return 0;
pll->vco2.maxfreq = 0;
pll->refclk = read_pll_ref(dev, reg);
if (!pll->refclk)
return 0;
ret = nouveau_calc_pll_mnp(dev, pll, clk, &coef);
if (ret == 0)
return 0;
*N1 = coef.N1;
*M1 = coef.M1;
*log2P = coef.log2P;
return ret;
}
static inline u32
calc_div(u32 src, u32 target, int *div)
{
u32 clk0 = src, clk1 = src;
for (*div = 0; *div <= 7; (*div)++) {
if (clk0 <= target) {
clk1 = clk0 << (*div ? 1 : 0);
break;
}
clk0 >>= 1;
}
if (target - clk0 <= clk1 - target)
return clk0;
(*div)--;
return clk1;
}
static inline u32
clk_same(u32 a, u32 b)
{
return ((a / 1000) == (b / 1000));
}
static int
calc_mclk(struct drm_device *dev, u32 freq, struct hwsq_ucode *hwsq)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct pll_lims pll;
u32 mast = nv_rd32(dev, 0x00c040);
u32 ctrl = nv_rd32(dev, 0x004008);
u32 coef = nv_rd32(dev, 0x00400c);
u32 orig = ctrl;
u32 crtc_mask = 0;
int N, M, P;
int ret, i;
/* use pcie refclock if possible, otherwise use mpll */
ctrl &= ~0x81ff0200;
if (clk_same(freq, read_clk(dev, clk_src_href))) {
ctrl |= 0x00000200 | (pll.log2p_bias << 19);
} else {
ret = calc_pll(dev, 0x4008, &pll, freq, &N, &M, &P);
if (ret == 0)
return -EINVAL;
ctrl |= 0x80000000 | (P << 22) | (P << 16);
ctrl |= pll.log2p_bias << 19;
coef = (N << 8) | M;
}
mast &= ~0xc0000000; /* get MCLK_2 from HREF */
mast |= 0x0000c000; /* use MCLK_2 as MPLL_BYPASS clock */
/* determine active crtcs */
for (i = 0; i < 2; i++) {
if (nv_rd32(dev, NV50_PDISPLAY_CRTC_C(i, CLOCK)))
crtc_mask |= (1 << i);
}
/* build the ucode which will reclock the memory for us */
hwsq_init(hwsq);
if (crtc_mask) {
hwsq_op5f(hwsq, crtc_mask, 0x00); /* wait for scanout */
hwsq_op5f(hwsq, crtc_mask, 0x01); /* wait for vblank */
}
if (dev_priv->chipset >= 0x92)
hwsq_wr32(hwsq, 0x611200, 0x00003300); /* disable scanout */
hwsq_setf(hwsq, 0x10, 0); /* disable bus access */
hwsq_op5f(hwsq, 0x00, 0x01); /* no idea :s */
/* prepare memory controller */
hwsq_wr32(hwsq, 0x1002d4, 0x00000001); /* precharge banks and idle */
hwsq_wr32(hwsq, 0x1002d0, 0x00000001); /* force refresh */
hwsq_wr32(hwsq, 0x100210, 0x00000000); /* stop the automatic refresh */
hwsq_wr32(hwsq, 0x1002dc, 0x00000001); /* start self refresh mode */
/* reclock memory */
hwsq_wr32(hwsq, 0xc040, mast);
hwsq_wr32(hwsq, 0x4008, orig | 0x00000200); /* bypass MPLL */
hwsq_wr32(hwsq, 0x400c, coef);
hwsq_wr32(hwsq, 0x4008, ctrl);
/* restart memory controller */
hwsq_wr32(hwsq, 0x1002d4, 0x00000001); /* precharge banks and idle */
hwsq_wr32(hwsq, 0x1002dc, 0x00000000); /* stop self refresh mode */
hwsq_wr32(hwsq, 0x100210, 0x80000000); /* restart automatic refresh */
hwsq_usec(hwsq, 12); /* wait for the PLL to stabilize */
hwsq_usec(hwsq, 48); /* may be unnecessary: causes flickering */
hwsq_setf(hwsq, 0x10, 1); /* enable bus access */
hwsq_op5f(hwsq, 0x00, 0x00); /* no idea, reverse of 0x00, 0x01? */
if (dev_priv->chipset >= 0x92)
hwsq_wr32(hwsq, 0x611200, 0x00003330); /* enable scanout */
hwsq_fini(hwsq);
return 0;
}
void *
nv50_pm_clocks_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nv50_pm_state *info;
struct pll_lims pll;
int ret = -EINVAL;
int N, M, P1, P2;
u32 clk, out;
if (dev_priv->chipset == 0xaa ||
dev_priv->chipset == 0xac)
return ERR_PTR(-ENODEV);
info = kmalloc(sizeof(*info), GFP_KERNEL);
if (!info)
return ERR_PTR(-ENOMEM);
/* core: for the moment at least, always use nvpll */
clk = calc_pll(dev, 0x4028, &pll, perflvl->core, &N, &M, &P1);
if (clk == 0)
goto error;
info->emast = 0x00000003;
info->nctrl = 0x80000000 | (P1 << 19) | (P1 << 16);
info->ncoef = (N << 8) | M;
/* shader: tie to nvclk if possible, otherwise use spll. have to be
* very careful that the shader clock is at least twice the core, or
* some chipsets will be very unhappy. i expect most or all of these
* cases will be handled by tying to nvclk, but it's possible there's
* corners
*/
if (P1-- && perflvl->shader == (perflvl->core << 1)) {
info->emast |= 0x00000020;
info->sctrl = 0x00000000 | (P1 << 19) | (P1 << 16);
info->scoef = nv_rd32(dev, 0x004024);
} else {
clk = calc_pll(dev, 0x4020, &pll, perflvl->shader, &N, &M, &P1);
if (clk == 0)
goto error;
info->emast |= 0x00000030;
info->sctrl = 0x80000000 | (P1 << 19) | (P1 << 16);
info->scoef = (N << 8) | M;
}
/* memory: build hwsq ucode which we'll use to reclock memory */
info->mclk_hwsq.len = 0;
if (perflvl->memory) {
clk = calc_mclk(dev, perflvl->memory, &info->mclk_hwsq);
if (clk < 0) {
ret = clk;
goto error;
}
info->mscript = perflvl->memscript;
}
/* vdec: avoid modifying xpll until we know exactly how the other
* clock domains work, i suspect at least some of them can also be
* tied to xpll...
*/
info->amast = nv_rd32(dev, 0x00c040);
info->pdivs = read_div(dev);
if (perflvl->vdec) {
/* see how close we can get using nvclk as a source */
clk = calc_div(perflvl->core, perflvl->vdec, &P1);
/* see how close we can get using xpll/hclk as a source */
if (dev_priv->chipset != 0x98)
out = read_pll(dev, 0x004030);
else
out = read_clk(dev, clk_src_hclkm3d2);
out = calc_div(out, perflvl->vdec, &P2);
/* select whichever gets us closest */
info->amast &= ~0x00000c00;
info->pdivs &= ~0x00000700;
if (abs((int)perflvl->vdec - clk) <=
abs((int)perflvl->vdec - out)) {
if (dev_priv->chipset != 0x98)
info->amast |= 0x00000c00;
info->pdivs |= P1 << 8;
} else {
info->amast |= 0x00000800;
info->pdivs |= P2 << 8;
}
}
/* dom6: nfi what this is, but we're limited to various combinations
* of the host clock frequency
*/
if (perflvl->dom6) {
info->amast &= ~0x0c000000;
if (clk_same(perflvl->dom6, read_clk(dev, clk_src_href))) {
info->amast |= 0x00000000;
} else
if (clk_same(perflvl->dom6, read_clk(dev, clk_src_hclk))) {
info->amast |= 0x08000000;
} else {
clk = read_clk(dev, clk_src_hclk) * 3;
clk = calc_div(clk, perflvl->dom6, &P1);
info->amast |= 0x0c000000;
info->pdivs = (info->pdivs & ~0x00000007) | P1;
}
}
return info;
error:
kfree(info);
return ERR_PTR(ret);
}
static int
prog_mclk(struct drm_device *dev, struct hwsq_ucode *hwsq)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
u32 hwsq_data, hwsq_kick;
int i;
if (dev_priv->chipset < 0x90) {
hwsq_data = 0x001400;
hwsq_kick = 0x00000003;
} else {
hwsq_data = 0x080000;
hwsq_kick = 0x00000001;
}
/* upload hwsq ucode */
nv_mask(dev, 0x001098, 0x00000008, 0x00000000);
nv_wr32(dev, 0x001304, 0x00000000);
for (i = 0; i < hwsq->len / 4; i++)
nv_wr32(dev, hwsq_data + (i * 4), hwsq->ptr.u32[i]);
nv_mask(dev, 0x001098, 0x00000018, 0x00000018);
/* launch, and wait for completion */
nv_wr32(dev, 0x00130c, hwsq_kick);
if (!nv_wait(dev, 0x001308, 0x00000100, 0x00000000)) {
NV_ERROR(dev, "hwsq ucode exec timed out\n");
NV_ERROR(dev, "0x001308: 0x%08x\n", nv_rd32(dev, 0x001308));
for (i = 0; i < hwsq->len / 4; i++) {
NV_ERROR(dev, "0x%06x: 0x%08x\n", 0x1400 + (i * 4),
nv_rd32(dev, 0x001400 + (i * 4)));
}
return -EIO;
}
return 0;
}
int
nv50_pm_clocks_set(struct drm_device *dev, void *data)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nv50_pm_state *info = data;
struct bit_entry M;
int ret = 0;
/* halt and idle execution engines */
nv_mask(dev, 0x002504, 0x00000001, 0x00000001);
if (!nv_wait(dev, 0x002504, 0x00000010, 0x00000010))
goto error;
/* memory: it is *very* important we change this first, the ucode
* we build in pre() now has hardcoded 0xc040 values, which can't
* change before we execute it or the engine clocks may end up
* messed up.
*/
if (info->mclk_hwsq.len) {
/* execute some scripts that do ??? from the vbios.. */
if (!bit_table(dev, 'M', &M) && M.version == 1) {
if (M.length >= 6)
nouveau_bios_init_exec(dev, ROM16(M.data[5]));
if (M.length >= 8)
nouveau_bios_init_exec(dev, ROM16(M.data[7]));
if (M.length >= 10)
nouveau_bios_init_exec(dev, ROM16(M.data[9]));
nouveau_bios_init_exec(dev, info->mscript);
}
ret = prog_mclk(dev, &info->mclk_hwsq);
if (ret)
goto resume;
}
/* reclock vdec/dom6 */
nv_mask(dev, 0x00c040, 0x00000c00, 0x00000000);
switch (dev_priv->chipset) {
case 0x92:
case 0x94:
case 0x96:
nv_mask(dev, 0x004800, 0x00000707, info->pdivs);
break;
default:
nv_mask(dev, 0x004700, 0x00000707, info->pdivs);
break;
}
nv_mask(dev, 0x00c040, 0x0c000c00, info->amast);
/* core/shader: make sure sclk/nvclk are disconnected from their
* plls (nvclk to dom6, sclk to hclk), modify the plls, and
* reconnect sclk/nvclk to their new clock source
*/
if (dev_priv->chipset < 0x92)
nv_mask(dev, 0x00c040, 0x001000b0, 0x00100080); /* grrr! */
else
nv_mask(dev, 0x00c040, 0x000000b3, 0x00000081);
nv_mask(dev, 0x004020, 0xc03f0100, info->sctrl);
nv_wr32(dev, 0x004024, info->scoef);
nv_mask(dev, 0x004028, 0xc03f0100, info->nctrl);
nv_wr32(dev, 0x00402c, info->ncoef);
nv_mask(dev, 0x00c040, 0x00100033, info->emast);
goto resume;
error:
ret = -EBUSY;
resume:
nv_mask(dev, 0x002504, 0x00000001, 0x00000000);
kfree(info);
return ret;
}
static int
pwm_info(struct drm_device *dev, int *line, int *ctrl, int *indx)
{
if (*line == 0x04) {
*ctrl = 0x00e100;
*line = 4;
*indx = 0;
} else
if (*line == 0x09) {
*ctrl = 0x00e100;
*line = 9;
*indx = 1;
} else
if (*line == 0x10) {
*ctrl = 0x00e28c;
*line = 0;
*indx = 0;
} else {
NV_ERROR(dev, "unknown pwm ctrl for gpio %d\n", *line);
return -ENODEV;
}
return 0;
}
int
nv50_pm_pwm_get(struct drm_device *dev, int line, u32 *divs, u32 *duty)
{
int ctrl, id, ret = pwm_info(dev, &line, &ctrl, &id);
if (ret)
return ret;
if (nv_rd32(dev, ctrl) & (1 << line)) {
*divs = nv_rd32(dev, 0x00e114 + (id * 8));
*duty = nv_rd32(dev, 0x00e118 + (id * 8));
return 0;
}
return -EINVAL;
}
int
nv50_pm_pwm_set(struct drm_device *dev, int line, u32 divs, u32 duty)
{
int ctrl, id, ret = pwm_info(dev, &line, &ctrl, &id);
if (ret)
return ret;
nv_mask(dev, ctrl, 0x00010001 << line, 0x00000001 << line);
nv_wr32(dev, 0x00e114 + (id * 8), divs);
nv_wr32(dev, 0x00e118 + (id * 8), duty | 0x80000000);
return 0;
}