blob: 126dec4342e663de4d0d21fd99f25745bc3fa544 [file] [log] [blame]
/* bnx2x.h: Broadcom Everest network driver.
*
* Copyright (c) 2007-2013 Broadcom Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation.
*
* Maintained by: Eilon Greenstein <eilong@broadcom.com>
* Written by: Eliezer Tamir
* Based on code from Michael Chan's bnx2 driver
*/
#ifndef BNX2X_H
#define BNX2X_H
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/dma-mapping.h>
#include <linux/types.h>
#include <linux/pci_regs.h>
/* compilation time flags */
/* define this to make the driver freeze on error to allow getting debug info
* (you will need to reboot afterwards) */
/* #define BNX2X_STOP_ON_ERROR */
#define DRV_MODULE_VERSION "1.78.17-0"
#define DRV_MODULE_RELDATE "2013/04/11"
#define BNX2X_BC_VER 0x040200
#if defined(CONFIG_DCB)
#define BCM_DCBNL
#endif
#include "bnx2x_hsi.h"
#include "../cnic_if.h"
#define BNX2X_MIN_MSIX_VEC_CNT(bp) ((bp)->min_msix_vec_cnt)
#include <linux/mdio.h>
#include "bnx2x_reg.h"
#include "bnx2x_fw_defs.h"
#include "bnx2x_mfw_req.h"
#include "bnx2x_link.h"
#include "bnx2x_sp.h"
#include "bnx2x_dcb.h"
#include "bnx2x_stats.h"
#include "bnx2x_vfpf.h"
enum bnx2x_int_mode {
BNX2X_INT_MODE_MSIX,
BNX2X_INT_MODE_INTX,
BNX2X_INT_MODE_MSI
};
/* error/debug prints */
#define DRV_MODULE_NAME "bnx2x"
/* for messages that are currently off */
#define BNX2X_MSG_OFF 0x0
#define BNX2X_MSG_MCP 0x0010000 /* was: NETIF_MSG_HW */
#define BNX2X_MSG_STATS 0x0020000 /* was: NETIF_MSG_TIMER */
#define BNX2X_MSG_NVM 0x0040000 /* was: NETIF_MSG_HW */
#define BNX2X_MSG_DMAE 0x0080000 /* was: NETIF_MSG_HW */
#define BNX2X_MSG_SP 0x0100000 /* was: NETIF_MSG_INTR */
#define BNX2X_MSG_FP 0x0200000 /* was: NETIF_MSG_INTR */
#define BNX2X_MSG_IOV 0x0800000
#define BNX2X_MSG_IDLE 0x2000000 /* used for idle check*/
#define BNX2X_MSG_ETHTOOL 0x4000000
#define BNX2X_MSG_DCB 0x8000000
/* regular debug print */
#define DP(__mask, fmt, ...) \
do { \
if (unlikely(bp->msg_enable & (__mask))) \
pr_notice("[%s:%d(%s)]" fmt, \
__func__, __LINE__, \
bp->dev ? (bp->dev->name) : "?", \
##__VA_ARGS__); \
} while (0)
#define DP_CONT(__mask, fmt, ...) \
do { \
if (unlikely(bp->msg_enable & (__mask))) \
pr_cont(fmt, ##__VA_ARGS__); \
} while (0)
/* errors debug print */
#define BNX2X_DBG_ERR(fmt, ...) \
do { \
if (unlikely(netif_msg_probe(bp))) \
pr_err("[%s:%d(%s)]" fmt, \
__func__, __LINE__, \
bp->dev ? (bp->dev->name) : "?", \
##__VA_ARGS__); \
} while (0)
/* for errors (never masked) */
#define BNX2X_ERR(fmt, ...) \
do { \
pr_err("[%s:%d(%s)]" fmt, \
__func__, __LINE__, \
bp->dev ? (bp->dev->name) : "?", \
##__VA_ARGS__); \
} while (0)
#define BNX2X_ERROR(fmt, ...) \
pr_err("[%s:%d]" fmt, __func__, __LINE__, ##__VA_ARGS__)
/* before we have a dev->name use dev_info() */
#define BNX2X_DEV_INFO(fmt, ...) \
do { \
if (unlikely(netif_msg_probe(bp))) \
dev_info(&bp->pdev->dev, fmt, ##__VA_ARGS__); \
} while (0)
/* Error handling */
void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int);
#ifdef BNX2X_STOP_ON_ERROR
#define bnx2x_panic() \
do { \
bp->panic = 1; \
BNX2X_ERR("driver assert\n"); \
bnx2x_panic_dump(bp, true); \
} while (0)
#else
#define bnx2x_panic() \
do { \
bp->panic = 1; \
BNX2X_ERR("driver assert\n"); \
bnx2x_panic_dump(bp, false); \
} while (0)
#endif
#define bnx2x_mc_addr(ha) ((ha)->addr)
#define bnx2x_uc_addr(ha) ((ha)->addr)
#define U64_LO(x) ((u32)(((u64)(x)) & 0xffffffff))
#define U64_HI(x) ((u32)(((u64)(x)) >> 32))
#define HILO_U64(hi, lo) ((((u64)(hi)) << 32) + (lo))
#define REG_ADDR(bp, offset) ((bp->regview) + (offset))
#define REG_RD(bp, offset) readl(REG_ADDR(bp, offset))
#define REG_RD8(bp, offset) readb(REG_ADDR(bp, offset))
#define REG_RD16(bp, offset) readw(REG_ADDR(bp, offset))
#define REG_WR(bp, offset, val) writel((u32)val, REG_ADDR(bp, offset))
#define REG_WR8(bp, offset, val) writeb((u8)val, REG_ADDR(bp, offset))
#define REG_WR16(bp, offset, val) writew((u16)val, REG_ADDR(bp, offset))
#define REG_RD_IND(bp, offset) bnx2x_reg_rd_ind(bp, offset)
#define REG_WR_IND(bp, offset, val) bnx2x_reg_wr_ind(bp, offset, val)
#define REG_RD_DMAE(bp, offset, valp, len32) \
do { \
bnx2x_read_dmae(bp, offset, len32);\
memcpy(valp, bnx2x_sp(bp, wb_data[0]), (len32) * 4); \
} while (0)
#define REG_WR_DMAE(bp, offset, valp, len32) \
do { \
memcpy(bnx2x_sp(bp, wb_data[0]), valp, (len32) * 4); \
bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), \
offset, len32); \
} while (0)
#define REG_WR_DMAE_LEN(bp, offset, valp, len32) \
REG_WR_DMAE(bp, offset, valp, len32)
#define VIRT_WR_DMAE_LEN(bp, data, addr, len32, le32_swap) \
do { \
memcpy(GUNZIP_BUF(bp), data, (len32) * 4); \
bnx2x_write_big_buf_wb(bp, addr, len32); \
} while (0)
#define SHMEM_ADDR(bp, field) (bp->common.shmem_base + \
offsetof(struct shmem_region, field))
#define SHMEM_RD(bp, field) REG_RD(bp, SHMEM_ADDR(bp, field))
#define SHMEM_WR(bp, field, val) REG_WR(bp, SHMEM_ADDR(bp, field), val)
#define SHMEM2_ADDR(bp, field) (bp->common.shmem2_base + \
offsetof(struct shmem2_region, field))
#define SHMEM2_RD(bp, field) REG_RD(bp, SHMEM2_ADDR(bp, field))
#define SHMEM2_WR(bp, field, val) REG_WR(bp, SHMEM2_ADDR(bp, field), val)
#define MF_CFG_ADDR(bp, field) (bp->common.mf_cfg_base + \
offsetof(struct mf_cfg, field))
#define MF2_CFG_ADDR(bp, field) (bp->common.mf2_cfg_base + \
offsetof(struct mf2_cfg, field))
#define MF_CFG_RD(bp, field) REG_RD(bp, MF_CFG_ADDR(bp, field))
#define MF_CFG_WR(bp, field, val) REG_WR(bp,\
MF_CFG_ADDR(bp, field), (val))
#define MF2_CFG_RD(bp, field) REG_RD(bp, MF2_CFG_ADDR(bp, field))
#define SHMEM2_HAS(bp, field) ((bp)->common.shmem2_base && \
(SHMEM2_RD((bp), size) > \
offsetof(struct shmem2_region, field)))
#define EMAC_RD(bp, reg) REG_RD(bp, emac_base + reg)
#define EMAC_WR(bp, reg, val) REG_WR(bp, emac_base + reg, val)
/* SP SB indices */
/* General SP events - stats query, cfc delete, etc */
#define HC_SP_INDEX_ETH_DEF_CONS 3
/* EQ completions */
#define HC_SP_INDEX_EQ_CONS 7
/* FCoE L2 connection completions */
#define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS 6
#define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS 4
/* iSCSI L2 */
#define HC_SP_INDEX_ETH_ISCSI_CQ_CONS 5
#define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS 1
/* Special clients parameters */
/* SB indices */
/* FCoE L2 */
#define BNX2X_FCOE_L2_RX_INDEX \
(&bp->def_status_blk->sp_sb.\
index_values[HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS])
#define BNX2X_FCOE_L2_TX_INDEX \
(&bp->def_status_blk->sp_sb.\
index_values[HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS])
/**
* CIDs and CLIDs:
* CLIDs below is a CLID for func 0, then the CLID for other
* functions will be calculated by the formula:
*
* FUNC_N_CLID_X = N * NUM_SPECIAL_CLIENTS + FUNC_0_CLID_X
*
*/
enum {
BNX2X_ISCSI_ETH_CL_ID_IDX,
BNX2X_FCOE_ETH_CL_ID_IDX,
BNX2X_MAX_CNIC_ETH_CL_ID_IDX,
};
#define BNX2X_CNIC_START_ETH_CID(bp) (BNX2X_NUM_NON_CNIC_QUEUES(bp) *\
(bp)->max_cos)
/* iSCSI L2 */
#define BNX2X_ISCSI_ETH_CID(bp) (BNX2X_CNIC_START_ETH_CID(bp))
/* FCoE L2 */
#define BNX2X_FCOE_ETH_CID(bp) (BNX2X_CNIC_START_ETH_CID(bp) + 1)
#define CNIC_SUPPORT(bp) ((bp)->cnic_support)
#define CNIC_ENABLED(bp) ((bp)->cnic_enabled)
#define CNIC_LOADED(bp) ((bp)->cnic_loaded)
#define FCOE_INIT(bp) ((bp)->fcoe_init)
#define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \
AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR
#define SM_RX_ID 0
#define SM_TX_ID 1
/* defines for multiple tx priority indices */
#define FIRST_TX_ONLY_COS_INDEX 1
#define FIRST_TX_COS_INDEX 0
/* rules for calculating the cids of tx-only connections */
#define CID_TO_FP(cid, bp) ((cid) % BNX2X_NUM_NON_CNIC_QUEUES(bp))
#define CID_COS_TO_TX_ONLY_CID(cid, cos, bp) \
(cid + cos * BNX2X_NUM_NON_CNIC_QUEUES(bp))
/* fp index inside class of service range */
#define FP_COS_TO_TXQ(fp, cos, bp) \
((fp)->index + cos * BNX2X_NUM_NON_CNIC_QUEUES(bp))
/* Indexes for transmission queues array:
* txdata for RSS i CoS j is at location i + (j * num of RSS)
* txdata for FCoE (if exist) is at location max cos * num of RSS
* txdata for FWD (if exist) is one location after FCoE
* txdata for OOO (if exist) is one location after FWD
*/
enum {
FCOE_TXQ_IDX_OFFSET,
FWD_TXQ_IDX_OFFSET,
OOO_TXQ_IDX_OFFSET,
};
#define MAX_ETH_TXQ_IDX(bp) (BNX2X_NUM_NON_CNIC_QUEUES(bp) * (bp)->max_cos)
#define FCOE_TXQ_IDX(bp) (MAX_ETH_TXQ_IDX(bp) + FCOE_TXQ_IDX_OFFSET)
/* fast path */
/*
* This driver uses new build_skb() API :
* RX ring buffer contains pointer to kmalloc() data only,
* skb are built only after Hardware filled the frame.
*/
struct sw_rx_bd {
u8 *data;
DEFINE_DMA_UNMAP_ADDR(mapping);
};
struct sw_tx_bd {
struct sk_buff *skb;
u16 first_bd;
u8 flags;
/* Set on the first BD descriptor when there is a split BD */
#define BNX2X_TSO_SPLIT_BD (1<<0)
};
struct sw_rx_page {
struct page *page;
DEFINE_DMA_UNMAP_ADDR(mapping);
};
union db_prod {
struct doorbell_set_prod data;
u32 raw;
};
/* dropless fc FW/HW related params */
#define BRB_SIZE(bp) (CHIP_IS_E3(bp) ? 1024 : 512)
#define MAX_AGG_QS(bp) (CHIP_IS_E1(bp) ? \
ETH_MAX_AGGREGATION_QUEUES_E1 :\
ETH_MAX_AGGREGATION_QUEUES_E1H_E2)
#define FW_DROP_LEVEL(bp) (3 + MAX_SPQ_PENDING + MAX_AGG_QS(bp))
#define FW_PREFETCH_CNT 16
#define DROPLESS_FC_HEADROOM 100
/* MC hsi */
#define BCM_PAGE_SHIFT 12
#define BCM_PAGE_SIZE (1 << BCM_PAGE_SHIFT)
#define BCM_PAGE_MASK (~(BCM_PAGE_SIZE - 1))
#define BCM_PAGE_ALIGN(addr) (((addr) + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK)
#define PAGES_PER_SGE_SHIFT 0
#define PAGES_PER_SGE (1 << PAGES_PER_SGE_SHIFT)
#define SGE_PAGE_SIZE PAGE_SIZE
#define SGE_PAGE_SHIFT PAGE_SHIFT
#define SGE_PAGE_ALIGN(addr) PAGE_ALIGN((typeof(PAGE_SIZE))(addr))
#define SGE_PAGES (SGE_PAGE_SIZE * PAGES_PER_SGE)
#define TPA_AGG_SIZE min_t(u32, (min_t(u32, 8, MAX_SKB_FRAGS) * \
SGE_PAGES), 0xffff)
/* SGE ring related macros */
#define NUM_RX_SGE_PAGES 2
#define RX_SGE_CNT (BCM_PAGE_SIZE / sizeof(struct eth_rx_sge))
#define NEXT_PAGE_SGE_DESC_CNT 2
#define MAX_RX_SGE_CNT (RX_SGE_CNT - NEXT_PAGE_SGE_DESC_CNT)
/* RX_SGE_CNT is promised to be a power of 2 */
#define RX_SGE_MASK (RX_SGE_CNT - 1)
#define NUM_RX_SGE (RX_SGE_CNT * NUM_RX_SGE_PAGES)
#define MAX_RX_SGE (NUM_RX_SGE - 1)
#define NEXT_SGE_IDX(x) ((((x) & RX_SGE_MASK) == \
(MAX_RX_SGE_CNT - 1)) ? \
(x) + 1 + NEXT_PAGE_SGE_DESC_CNT : \
(x) + 1)
#define RX_SGE(x) ((x) & MAX_RX_SGE)
/*
* Number of required SGEs is the sum of two:
* 1. Number of possible opened aggregations (next packet for
* these aggregations will probably consume SGE immediately)
* 2. Rest of BRB blocks divided by 2 (block will consume new SGE only
* after placement on BD for new TPA aggregation)
*
* Takes into account NEXT_PAGE_SGE_DESC_CNT "next" elements on each page
*/
#define NUM_SGE_REQ (MAX_AGG_QS(bp) + \
(BRB_SIZE(bp) - MAX_AGG_QS(bp)) / 2)
#define NUM_SGE_PG_REQ ((NUM_SGE_REQ + MAX_RX_SGE_CNT - 1) / \
MAX_RX_SGE_CNT)
#define SGE_TH_LO(bp) (NUM_SGE_REQ + \
NUM_SGE_PG_REQ * NEXT_PAGE_SGE_DESC_CNT)
#define SGE_TH_HI(bp) (SGE_TH_LO(bp) + DROPLESS_FC_HEADROOM)
/* Manipulate a bit vector defined as an array of u64 */
/* Number of bits in one sge_mask array element */
#define BIT_VEC64_ELEM_SZ 64
#define BIT_VEC64_ELEM_SHIFT 6
#define BIT_VEC64_ELEM_MASK ((u64)BIT_VEC64_ELEM_SZ - 1)
#define __BIT_VEC64_SET_BIT(el, bit) \
do { \
el = ((el) | ((u64)0x1 << (bit))); \
} while (0)
#define __BIT_VEC64_CLEAR_BIT(el, bit) \
do { \
el = ((el) & (~((u64)0x1 << (bit)))); \
} while (0)
#define BIT_VEC64_SET_BIT(vec64, idx) \
__BIT_VEC64_SET_BIT((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT], \
(idx) & BIT_VEC64_ELEM_MASK)
#define BIT_VEC64_CLEAR_BIT(vec64, idx) \
__BIT_VEC64_CLEAR_BIT((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT], \
(idx) & BIT_VEC64_ELEM_MASK)
#define BIT_VEC64_TEST_BIT(vec64, idx) \
(((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT] >> \
((idx) & BIT_VEC64_ELEM_MASK)) & 0x1)
/* Creates a bitmask of all ones in less significant bits.
idx - index of the most significant bit in the created mask */
#define BIT_VEC64_ONES_MASK(idx) \
(((u64)0x1 << (((idx) & BIT_VEC64_ELEM_MASK) + 1)) - 1)
#define BIT_VEC64_ELEM_ONE_MASK ((u64)(~0))
/*******************************************************/
/* Number of u64 elements in SGE mask array */
#define RX_SGE_MASK_LEN (NUM_RX_SGE / BIT_VEC64_ELEM_SZ)
#define RX_SGE_MASK_LEN_MASK (RX_SGE_MASK_LEN - 1)
#define NEXT_SGE_MASK_ELEM(el) (((el) + 1) & RX_SGE_MASK_LEN_MASK)
union host_hc_status_block {
/* pointer to fp status block e1x */
struct host_hc_status_block_e1x *e1x_sb;
/* pointer to fp status block e2 */
struct host_hc_status_block_e2 *e2_sb;
};
struct bnx2x_agg_info {
/*
* First aggregation buffer is a data buffer, the following - are pages.
* We will preallocate the data buffer for each aggregation when
* we open the interface and will replace the BD at the consumer
* with this one when we receive the TPA_START CQE in order to
* keep the Rx BD ring consistent.
*/
struct sw_rx_bd first_buf;
u8 tpa_state;
#define BNX2X_TPA_START 1
#define BNX2X_TPA_STOP 2
#define BNX2X_TPA_ERROR 3
u8 placement_offset;
u16 parsing_flags;
u16 vlan_tag;
u16 len_on_bd;
u32 rxhash;
bool l4_rxhash;
u16 gro_size;
u16 full_page;
};
#define Q_STATS_OFFSET32(stat_name) \
(offsetof(struct bnx2x_eth_q_stats, stat_name) / 4)
struct bnx2x_fp_txdata {
struct sw_tx_bd *tx_buf_ring;
union eth_tx_bd_types *tx_desc_ring;
dma_addr_t tx_desc_mapping;
u32 cid;
union db_prod tx_db;
u16 tx_pkt_prod;
u16 tx_pkt_cons;
u16 tx_bd_prod;
u16 tx_bd_cons;
unsigned long tx_pkt;
__le16 *tx_cons_sb;
int txq_index;
struct bnx2x_fastpath *parent_fp;
int tx_ring_size;
};
enum bnx2x_tpa_mode_t {
TPA_MODE_LRO,
TPA_MODE_GRO
};
struct bnx2x_fastpath {
struct bnx2x *bp; /* parent */
struct napi_struct napi;
#ifdef CONFIG_NET_RX_BUSY_POLL
unsigned int state;
#define BNX2X_FP_STATE_IDLE 0
#define BNX2X_FP_STATE_NAPI (1 << 0) /* NAPI owns this FP */
#define BNX2X_FP_STATE_POLL (1 << 1) /* poll owns this FP */
#define BNX2X_FP_STATE_NAPI_YIELD (1 << 2) /* NAPI yielded this FP */
#define BNX2X_FP_STATE_POLL_YIELD (1 << 3) /* poll yielded this FP */
#define BNX2X_FP_YIELD (BNX2X_FP_STATE_NAPI_YIELD | BNX2X_FP_STATE_POLL_YIELD)
#define BNX2X_FP_LOCKED (BNX2X_FP_STATE_NAPI | BNX2X_FP_STATE_POLL)
#define BNX2X_FP_USER_PEND (BNX2X_FP_STATE_POLL | BNX2X_FP_STATE_POLL_YIELD)
/* protect state */
spinlock_t lock;
#endif /* CONFIG_NET_RX_BUSY_POLL */
union host_hc_status_block status_blk;
/* chip independent shortcuts into sb structure */
__le16 *sb_index_values;
__le16 *sb_running_index;
/* chip independent shortcut into rx_prods_offset memory */
u32 ustorm_rx_prods_offset;
u32 rx_buf_size;
u32 rx_frag_size; /* 0 if kmalloced(), or rx_buf_size + NET_SKB_PAD */
dma_addr_t status_blk_mapping;
enum bnx2x_tpa_mode_t mode;
u8 max_cos; /* actual number of active tx coses */
struct bnx2x_fp_txdata *txdata_ptr[BNX2X_MULTI_TX_COS];
struct sw_rx_bd *rx_buf_ring; /* BDs mappings ring */
struct sw_rx_page *rx_page_ring; /* SGE pages mappings ring */
struct eth_rx_bd *rx_desc_ring;
dma_addr_t rx_desc_mapping;
union eth_rx_cqe *rx_comp_ring;
dma_addr_t rx_comp_mapping;
/* SGE ring */
struct eth_rx_sge *rx_sge_ring;
dma_addr_t rx_sge_mapping;
u64 sge_mask[RX_SGE_MASK_LEN];
u32 cid;
__le16 fp_hc_idx;
u8 index; /* number in fp array */
u8 rx_queue; /* index for skb_record */
u8 cl_id; /* eth client id */
u8 cl_qzone_id;
u8 fw_sb_id; /* status block number in FW */
u8 igu_sb_id; /* status block number in HW */
u16 rx_bd_prod;
u16 rx_bd_cons;
u16 rx_comp_prod;
u16 rx_comp_cons;
u16 rx_sge_prod;
/* The last maximal completed SGE */
u16 last_max_sge;
__le16 *rx_cons_sb;
unsigned long rx_pkt,
rx_calls;
/* TPA related */
struct bnx2x_agg_info *tpa_info;
u8 disable_tpa;
#ifdef BNX2X_STOP_ON_ERROR
u64 tpa_queue_used;
#endif
/* The size is calculated using the following:
sizeof name field from netdev structure +
4 ('-Xx-' string) +
4 (for the digits and to make it DWORD aligned) */
#define FP_NAME_SIZE (sizeof(((struct net_device *)0)->name) + 8)
char name[FP_NAME_SIZE];
};
#define bnx2x_fp(bp, nr, var) ((bp)->fp[(nr)].var)
#define bnx2x_sp_obj(bp, fp) ((bp)->sp_objs[(fp)->index])
#define bnx2x_fp_stats(bp, fp) (&((bp)->fp_stats[(fp)->index]))
#define bnx2x_fp_qstats(bp, fp) (&((bp)->fp_stats[(fp)->index].eth_q_stats))
#ifdef CONFIG_NET_RX_BUSY_POLL
static inline void bnx2x_fp_init_lock(struct bnx2x_fastpath *fp)
{
spin_lock_init(&fp->lock);
fp->state = BNX2X_FP_STATE_IDLE;
}
/* called from the device poll routine to get ownership of a FP */
static inline bool bnx2x_fp_lock_napi(struct bnx2x_fastpath *fp)
{
bool rc = true;
spin_lock(&fp->lock);
if (fp->state & BNX2X_FP_LOCKED) {
WARN_ON(fp->state & BNX2X_FP_STATE_NAPI);
fp->state |= BNX2X_FP_STATE_NAPI_YIELD;
rc = false;
} else {
/* we don't care if someone yielded */
fp->state = BNX2X_FP_STATE_NAPI;
}
spin_unlock(&fp->lock);
return rc;
}
/* returns true is someone tried to get the FP while napi had it */
static inline bool bnx2x_fp_unlock_napi(struct bnx2x_fastpath *fp)
{
bool rc = false;
spin_lock(&fp->lock);
WARN_ON(fp->state &
(BNX2X_FP_STATE_POLL | BNX2X_FP_STATE_NAPI_YIELD));
if (fp->state & BNX2X_FP_STATE_POLL_YIELD)
rc = true;
fp->state = BNX2X_FP_STATE_IDLE;
spin_unlock(&fp->lock);
return rc;
}
/* called from bnx2x_low_latency_poll() */
static inline bool bnx2x_fp_lock_poll(struct bnx2x_fastpath *fp)
{
bool rc = true;
spin_lock_bh(&fp->lock);
if ((fp->state & BNX2X_FP_LOCKED)) {
fp->state |= BNX2X_FP_STATE_POLL_YIELD;
rc = false;
} else {
/* preserve yield marks */
fp->state |= BNX2X_FP_STATE_POLL;
}
spin_unlock_bh(&fp->lock);
return rc;
}
/* returns true if someone tried to get the FP while it was locked */
static inline bool bnx2x_fp_unlock_poll(struct bnx2x_fastpath *fp)
{
bool rc = false;
spin_lock_bh(&fp->lock);
WARN_ON(fp->state & BNX2X_FP_STATE_NAPI);
if (fp->state & BNX2X_FP_STATE_POLL_YIELD)
rc = true;
fp->state = BNX2X_FP_STATE_IDLE;
spin_unlock_bh(&fp->lock);
return rc;
}
/* true if a socket is polling, even if it did not get the lock */
static inline bool bnx2x_fp_ll_polling(struct bnx2x_fastpath *fp)
{
WARN_ON(!(fp->state & BNX2X_FP_LOCKED));
return fp->state & BNX2X_FP_USER_PEND;
}
#else
static inline void bnx2x_fp_init_lock(struct bnx2x_fastpath *fp)
{
}
static inline bool bnx2x_fp_lock_napi(struct bnx2x_fastpath *fp)
{
return true;
}
static inline bool bnx2x_fp_unlock_napi(struct bnx2x_fastpath *fp)
{
return false;
}
static inline bool bnx2x_fp_lock_poll(struct bnx2x_fastpath *fp)
{
return false;
}
static inline bool bnx2x_fp_unlock_poll(struct bnx2x_fastpath *fp)
{
return false;
}
static inline bool bnx2x_fp_ll_polling(struct bnx2x_fastpath *fp)
{
return false;
}
#endif /* CONFIG_NET_RX_BUSY_POLL */
/* Use 2500 as a mini-jumbo MTU for FCoE */
#define BNX2X_FCOE_MINI_JUMBO_MTU 2500
#define FCOE_IDX_OFFSET 0
#define FCOE_IDX(bp) (BNX2X_NUM_NON_CNIC_QUEUES(bp) + \
FCOE_IDX_OFFSET)
#define bnx2x_fcoe_fp(bp) (&bp->fp[FCOE_IDX(bp)])
#define bnx2x_fcoe(bp, var) (bnx2x_fcoe_fp(bp)->var)
#define bnx2x_fcoe_inner_sp_obj(bp) (&bp->sp_objs[FCOE_IDX(bp)])
#define bnx2x_fcoe_sp_obj(bp, var) (bnx2x_fcoe_inner_sp_obj(bp)->var)
#define bnx2x_fcoe_tx(bp, var) (bnx2x_fcoe_fp(bp)-> \
txdata_ptr[FIRST_TX_COS_INDEX] \
->var)
#define IS_ETH_FP(fp) ((fp)->index < BNX2X_NUM_ETH_QUEUES((fp)->bp))
#define IS_FCOE_FP(fp) ((fp)->index == FCOE_IDX((fp)->bp))
#define IS_FCOE_IDX(idx) ((idx) == FCOE_IDX(bp))
/* MC hsi */
#define MAX_FETCH_BD 13 /* HW max BDs per packet */
#define RX_COPY_THRESH 92
#define NUM_TX_RINGS 16
#define TX_DESC_CNT (BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types))
#define NEXT_PAGE_TX_DESC_CNT 1
#define MAX_TX_DESC_CNT (TX_DESC_CNT - NEXT_PAGE_TX_DESC_CNT)
#define NUM_TX_BD (TX_DESC_CNT * NUM_TX_RINGS)
#define MAX_TX_BD (NUM_TX_BD - 1)
#define MAX_TX_AVAIL (MAX_TX_DESC_CNT * NUM_TX_RINGS - 2)
#define NEXT_TX_IDX(x) ((((x) & MAX_TX_DESC_CNT) == \
(MAX_TX_DESC_CNT - 1)) ? \
(x) + 1 + NEXT_PAGE_TX_DESC_CNT : \
(x) + 1)
#define TX_BD(x) ((x) & MAX_TX_BD)
#define TX_BD_POFF(x) ((x) & MAX_TX_DESC_CNT)
/* number of NEXT_PAGE descriptors may be required during placement */
#define NEXT_CNT_PER_TX_PKT(bds) \
(((bds) + MAX_TX_DESC_CNT - 1) / \
MAX_TX_DESC_CNT * NEXT_PAGE_TX_DESC_CNT)
/* max BDs per tx packet w/o next_pages:
* START_BD - describes packed
* START_BD(splitted) - includes unpaged data segment for GSO
* PARSING_BD - for TSO and CSUM data
* PARSING_BD2 - for encapsulation data
* Frag BDs - describes pages for frags
*/
#define BDS_PER_TX_PKT 4
#define MAX_BDS_PER_TX_PKT (MAX_SKB_FRAGS + BDS_PER_TX_PKT)
/* max BDs per tx packet including next pages */
#define MAX_DESC_PER_TX_PKT (MAX_BDS_PER_TX_PKT + \
NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))
/* The RX BD ring is special, each bd is 8 bytes but the last one is 16 */
#define NUM_RX_RINGS 8
#define RX_DESC_CNT (BCM_PAGE_SIZE / sizeof(struct eth_rx_bd))
#define NEXT_PAGE_RX_DESC_CNT 2
#define MAX_RX_DESC_CNT (RX_DESC_CNT - NEXT_PAGE_RX_DESC_CNT)
#define RX_DESC_MASK (RX_DESC_CNT - 1)
#define NUM_RX_BD (RX_DESC_CNT * NUM_RX_RINGS)
#define MAX_RX_BD (NUM_RX_BD - 1)
#define MAX_RX_AVAIL (MAX_RX_DESC_CNT * NUM_RX_RINGS - 2)
/* dropless fc calculations for BDs
*
* Number of BDs should as number of buffers in BRB:
* Low threshold takes into account NEXT_PAGE_RX_DESC_CNT
* "next" elements on each page
*/
#define NUM_BD_REQ BRB_SIZE(bp)
#define NUM_BD_PG_REQ ((NUM_BD_REQ + MAX_RX_DESC_CNT - 1) / \
MAX_RX_DESC_CNT)
#define BD_TH_LO(bp) (NUM_BD_REQ + \
NUM_BD_PG_REQ * NEXT_PAGE_RX_DESC_CNT + \
FW_DROP_LEVEL(bp))
#define BD_TH_HI(bp) (BD_TH_LO(bp) + DROPLESS_FC_HEADROOM)
#define MIN_RX_AVAIL ((bp)->dropless_fc ? BD_TH_HI(bp) + 128 : 128)
#define MIN_RX_SIZE_TPA_HW (CHIP_IS_E1(bp) ? \
ETH_MIN_RX_CQES_WITH_TPA_E1 : \
ETH_MIN_RX_CQES_WITH_TPA_E1H_E2)
#define MIN_RX_SIZE_NONTPA_HW ETH_MIN_RX_CQES_WITHOUT_TPA
#define MIN_RX_SIZE_TPA (max_t(u32, MIN_RX_SIZE_TPA_HW, MIN_RX_AVAIL))
#define MIN_RX_SIZE_NONTPA (max_t(u32, MIN_RX_SIZE_NONTPA_HW,\
MIN_RX_AVAIL))
#define NEXT_RX_IDX(x) ((((x) & RX_DESC_MASK) == \
(MAX_RX_DESC_CNT - 1)) ? \
(x) + 1 + NEXT_PAGE_RX_DESC_CNT : \
(x) + 1)
#define RX_BD(x) ((x) & MAX_RX_BD)
/*
* As long as CQE is X times bigger than BD entry we have to allocate X times
* more pages for CQ ring in order to keep it balanced with BD ring
*/
#define CQE_BD_REL (sizeof(union eth_rx_cqe) / sizeof(struct eth_rx_bd))
#define NUM_RCQ_RINGS (NUM_RX_RINGS * CQE_BD_REL)
#define RCQ_DESC_CNT (BCM_PAGE_SIZE / sizeof(union eth_rx_cqe))
#define NEXT_PAGE_RCQ_DESC_CNT 1
#define MAX_RCQ_DESC_CNT (RCQ_DESC_CNT - NEXT_PAGE_RCQ_DESC_CNT)
#define NUM_RCQ_BD (RCQ_DESC_CNT * NUM_RCQ_RINGS)
#define MAX_RCQ_BD (NUM_RCQ_BD - 1)
#define MAX_RCQ_AVAIL (MAX_RCQ_DESC_CNT * NUM_RCQ_RINGS - 2)
#define NEXT_RCQ_IDX(x) ((((x) & MAX_RCQ_DESC_CNT) == \
(MAX_RCQ_DESC_CNT - 1)) ? \
(x) + 1 + NEXT_PAGE_RCQ_DESC_CNT : \
(x) + 1)
#define RCQ_BD(x) ((x) & MAX_RCQ_BD)
/* dropless fc calculations for RCQs
*
* Number of RCQs should be as number of buffers in BRB:
* Low threshold takes into account NEXT_PAGE_RCQ_DESC_CNT
* "next" elements on each page
*/
#define NUM_RCQ_REQ BRB_SIZE(bp)
#define NUM_RCQ_PG_REQ ((NUM_BD_REQ + MAX_RCQ_DESC_CNT - 1) / \
MAX_RCQ_DESC_CNT)
#define RCQ_TH_LO(bp) (NUM_RCQ_REQ + \
NUM_RCQ_PG_REQ * NEXT_PAGE_RCQ_DESC_CNT + \
FW_DROP_LEVEL(bp))
#define RCQ_TH_HI(bp) (RCQ_TH_LO(bp) + DROPLESS_FC_HEADROOM)
/* This is needed for determining of last_max */
#define SUB_S16(a, b) (s16)((s16)(a) - (s16)(b))
#define SUB_S32(a, b) (s32)((s32)(a) - (s32)(b))
#define BNX2X_SWCID_SHIFT 17
#define BNX2X_SWCID_MASK ((0x1 << BNX2X_SWCID_SHIFT) - 1)
/* used on a CID received from the HW */
#define SW_CID(x) (le32_to_cpu(x) & BNX2X_SWCID_MASK)
#define CQE_CMD(x) (le32_to_cpu(x) >> \
COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT)
#define BD_UNMAP_ADDR(bd) HILO_U64(le32_to_cpu((bd)->addr_hi), \
le32_to_cpu((bd)->addr_lo))
#define BD_UNMAP_LEN(bd) (le16_to_cpu((bd)->nbytes))
#define BNX2X_DB_MIN_SHIFT 3 /* 8 bytes */
#define BNX2X_DB_SHIFT 7 /* 128 bytes*/
#if (BNX2X_DB_SHIFT < BNX2X_DB_MIN_SHIFT)
#error "Min DB doorbell stride is 8"
#endif
#define DPM_TRIGER_TYPE 0x40
#define DOORBELL(bp, cid, val) \
do { \
writel((u32)(val), bp->doorbells + (bp->db_size * (cid)) + \
DPM_TRIGER_TYPE); \
} while (0)
/* TX CSUM helpers */
#define SKB_CS_OFF(skb) (offsetof(struct tcphdr, check) - \
skb->csum_offset)
#define SKB_CS(skb) (*(u16 *)(skb_transport_header(skb) + \
skb->csum_offset))
#define pbd_tcp_flags(tcp_hdr) (ntohl(tcp_flag_word(tcp_hdr))>>16 & 0xff)
#define XMIT_PLAIN 0
#define XMIT_CSUM_V4 (1 << 0)
#define XMIT_CSUM_V6 (1 << 1)
#define XMIT_CSUM_TCP (1 << 2)
#define XMIT_GSO_V4 (1 << 3)
#define XMIT_GSO_V6 (1 << 4)
#define XMIT_CSUM_ENC_V4 (1 << 5)
#define XMIT_CSUM_ENC_V6 (1 << 6)
#define XMIT_GSO_ENC_V4 (1 << 7)
#define XMIT_GSO_ENC_V6 (1 << 8)
#define XMIT_CSUM_ENC (XMIT_CSUM_ENC_V4 | XMIT_CSUM_ENC_V6)
#define XMIT_GSO_ENC (XMIT_GSO_ENC_V4 | XMIT_GSO_ENC_V6)
#define XMIT_CSUM (XMIT_CSUM_V4 | XMIT_CSUM_V6 | XMIT_CSUM_ENC)
#define XMIT_GSO (XMIT_GSO_V4 | XMIT_GSO_V6 | XMIT_GSO_ENC)
/* stuff added to make the code fit 80Col */
#define CQE_TYPE(cqe_fp_flags) ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE)
#define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG)
#define CQE_TYPE_STOP(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG)
#define CQE_TYPE_SLOW(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD)
#define CQE_TYPE_FAST(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH)
#define ETH_RX_ERROR_FALGS ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG
#define BNX2X_PRS_FLAG_OVERETH_IPV4(flags) \
(((le16_to_cpu(flags) & \
PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) >> \
PARSING_FLAGS_OVER_ETHERNET_PROTOCOL_SHIFT) \
== PRS_FLAG_OVERETH_IPV4)
#define BNX2X_RX_SUM_FIX(cqe) \
BNX2X_PRS_FLAG_OVERETH_IPV4(cqe->fast_path_cqe.pars_flags.flags)
#define FP_USB_FUNC_OFF \
offsetof(struct cstorm_status_block_u, func)
#define FP_CSB_FUNC_OFF \
offsetof(struct cstorm_status_block_c, func)
#define HC_INDEX_ETH_RX_CQ_CONS 1
#define HC_INDEX_OOO_TX_CQ_CONS 4
#define HC_INDEX_ETH_TX_CQ_CONS_COS0 5
#define HC_INDEX_ETH_TX_CQ_CONS_COS1 6
#define HC_INDEX_ETH_TX_CQ_CONS_COS2 7
#define HC_INDEX_ETH_FIRST_TX_CQ_CONS HC_INDEX_ETH_TX_CQ_CONS_COS0
#define BNX2X_RX_SB_INDEX \
(&fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS])
#define BNX2X_TX_SB_INDEX_BASE BNX2X_TX_SB_INDEX_COS0
#define BNX2X_TX_SB_INDEX_COS0 \
(&fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0])
/* end of fast path */
/* common */
struct bnx2x_common {
u32 chip_id;
/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
#define CHIP_ID(bp) (bp->common.chip_id & 0xfffffff0)
#define CHIP_NUM(bp) (bp->common.chip_id >> 16)
#define CHIP_NUM_57710 0x164e
#define CHIP_NUM_57711 0x164f
#define CHIP_NUM_57711E 0x1650
#define CHIP_NUM_57712 0x1662
#define CHIP_NUM_57712_MF 0x1663
#define CHIP_NUM_57712_VF 0x166f
#define CHIP_NUM_57713 0x1651
#define CHIP_NUM_57713E 0x1652
#define CHIP_NUM_57800 0x168a
#define CHIP_NUM_57800_MF 0x16a5
#define CHIP_NUM_57800_VF 0x16a9
#define CHIP_NUM_57810 0x168e
#define CHIP_NUM_57810_MF 0x16ae
#define CHIP_NUM_57810_VF 0x16af
#define CHIP_NUM_57811 0x163d
#define CHIP_NUM_57811_MF 0x163e
#define CHIP_NUM_57811_VF 0x163f
#define CHIP_NUM_57840_OBSOLETE 0x168d
#define CHIP_NUM_57840_MF_OBSOLETE 0x16ab
#define CHIP_NUM_57840_4_10 0x16a1
#define CHIP_NUM_57840_2_20 0x16a2
#define CHIP_NUM_57840_MF 0x16a4
#define CHIP_NUM_57840_VF 0x16ad
#define CHIP_IS_E1(bp) (CHIP_NUM(bp) == CHIP_NUM_57710)
#define CHIP_IS_57711(bp) (CHIP_NUM(bp) == CHIP_NUM_57711)
#define CHIP_IS_57711E(bp) (CHIP_NUM(bp) == CHIP_NUM_57711E)
#define CHIP_IS_57712(bp) (CHIP_NUM(bp) == CHIP_NUM_57712)
#define CHIP_IS_57712_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57712_VF)
#define CHIP_IS_57712_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57712_MF)
#define CHIP_IS_57800(bp) (CHIP_NUM(bp) == CHIP_NUM_57800)
#define CHIP_IS_57800_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57800_MF)
#define CHIP_IS_57800_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57800_VF)
#define CHIP_IS_57810(bp) (CHIP_NUM(bp) == CHIP_NUM_57810)
#define CHIP_IS_57810_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57810_MF)
#define CHIP_IS_57810_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57810_VF)
#define CHIP_IS_57811(bp) (CHIP_NUM(bp) == CHIP_NUM_57811)
#define CHIP_IS_57811_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57811_MF)
#define CHIP_IS_57811_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57811_VF)
#define CHIP_IS_57840(bp) \
((CHIP_NUM(bp) == CHIP_NUM_57840_4_10) || \
(CHIP_NUM(bp) == CHIP_NUM_57840_2_20) || \
(CHIP_NUM(bp) == CHIP_NUM_57840_OBSOLETE))
#define CHIP_IS_57840_MF(bp) ((CHIP_NUM(bp) == CHIP_NUM_57840_MF) || \
(CHIP_NUM(bp) == CHIP_NUM_57840_MF_OBSOLETE))
#define CHIP_IS_57840_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57840_VF)
#define CHIP_IS_E1H(bp) (CHIP_IS_57711(bp) || \
CHIP_IS_57711E(bp))
#define CHIP_IS_57811xx(bp) (CHIP_IS_57811(bp) || \
CHIP_IS_57811_MF(bp) || \
CHIP_IS_57811_VF(bp))
#define CHIP_IS_E2(bp) (CHIP_IS_57712(bp) || \
CHIP_IS_57712_MF(bp) || \
CHIP_IS_57712_VF(bp))
#define CHIP_IS_E3(bp) (CHIP_IS_57800(bp) || \
CHIP_IS_57800_MF(bp) || \
CHIP_IS_57800_VF(bp) || \
CHIP_IS_57810(bp) || \
CHIP_IS_57810_MF(bp) || \
CHIP_IS_57810_VF(bp) || \
CHIP_IS_57811xx(bp) || \
CHIP_IS_57840(bp) || \
CHIP_IS_57840_MF(bp) || \
CHIP_IS_57840_VF(bp))
#define CHIP_IS_E1x(bp) (CHIP_IS_E1((bp)) || CHIP_IS_E1H((bp)))
#define USES_WARPCORE(bp) (CHIP_IS_E3(bp))
#define IS_E1H_OFFSET (!CHIP_IS_E1(bp))
#define CHIP_REV_SHIFT 12
#define CHIP_REV_MASK (0xF << CHIP_REV_SHIFT)
#define CHIP_REV_VAL(bp) (bp->common.chip_id & CHIP_REV_MASK)
#define CHIP_REV_Ax (0x0 << CHIP_REV_SHIFT)
#define CHIP_REV_Bx (0x1 << CHIP_REV_SHIFT)
/* assume maximum 5 revisions */
#define CHIP_REV_IS_SLOW(bp) (CHIP_REV_VAL(bp) > 0x00005000)
/* Emul versions are A=>0xe, B=>0xc, C=>0xa, D=>8, E=>6 */
#define CHIP_REV_IS_EMUL(bp) ((CHIP_REV_IS_SLOW(bp)) && \
!(CHIP_REV_VAL(bp) & 0x00001000))
/* FPGA versions are A=>0xf, B=>0xd, C=>0xb, D=>9, E=>7 */
#define CHIP_REV_IS_FPGA(bp) ((CHIP_REV_IS_SLOW(bp)) && \
(CHIP_REV_VAL(bp) & 0x00001000))
#define CHIP_TIME(bp) ((CHIP_REV_IS_EMUL(bp)) ? 2000 : \
((CHIP_REV_IS_FPGA(bp)) ? 200 : 1))
#define CHIP_METAL(bp) (bp->common.chip_id & 0x00000ff0)
#define CHIP_BOND_ID(bp) (bp->common.chip_id & 0x0000000f)
#define CHIP_REV_SIM(bp) (((CHIP_REV_MASK - CHIP_REV_VAL(bp)) >>\
(CHIP_REV_SHIFT + 1)) \
<< CHIP_REV_SHIFT)
#define CHIP_REV(bp) (CHIP_REV_IS_SLOW(bp) ? \
CHIP_REV_SIM(bp) :\
CHIP_REV_VAL(bp))
#define CHIP_IS_E3B0(bp) (CHIP_IS_E3(bp) && \
(CHIP_REV(bp) == CHIP_REV_Bx))
#define CHIP_IS_E3A0(bp) (CHIP_IS_E3(bp) && \
(CHIP_REV(bp) == CHIP_REV_Ax))
/* This define is used in two main places:
* 1. In the early stages of nic_load, to know if to configure Parser / Searcher
* to nic-only mode or to offload mode. Offload mode is configured if either the
* chip is E1x (where MIC_MODE register is not applicable), or if cnic already
* registered for this port (which means that the user wants storage services).
* 2. During cnic-related load, to know if offload mode is already configured in
* the HW or needs to be configured.
* Since the transition from nic-mode to offload-mode in HW causes traffic
* corruption, nic-mode is configured only in ports on which storage services
* where never requested.
*/
#define CONFIGURE_NIC_MODE(bp) (!CHIP_IS_E1x(bp) && !CNIC_ENABLED(bp))
int flash_size;
#define BNX2X_NVRAM_1MB_SIZE 0x20000 /* 1M bit in bytes */
#define BNX2X_NVRAM_TIMEOUT_COUNT 30000
#define BNX2X_NVRAM_PAGE_SIZE 256
u32 shmem_base;
u32 shmem2_base;
u32 mf_cfg_base;
u32 mf2_cfg_base;
u32 hw_config;
u32 bc_ver;
u8 int_block;
#define INT_BLOCK_HC 0
#define INT_BLOCK_IGU 1
#define INT_BLOCK_MODE_NORMAL 0
#define INT_BLOCK_MODE_BW_COMP 2
#define CHIP_INT_MODE_IS_NBC(bp) \
(!CHIP_IS_E1x(bp) && \
!((bp)->common.int_block & INT_BLOCK_MODE_BW_COMP))
#define CHIP_INT_MODE_IS_BC(bp) (!CHIP_INT_MODE_IS_NBC(bp))
u8 chip_port_mode;
#define CHIP_4_PORT_MODE 0x0
#define CHIP_2_PORT_MODE 0x1
#define CHIP_PORT_MODE_NONE 0x2
#define CHIP_MODE(bp) (bp->common.chip_port_mode)
#define CHIP_MODE_IS_4_PORT(bp) (CHIP_MODE(bp) == CHIP_4_PORT_MODE)
u32 boot_mode;
};
/* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */
#define BNX2X_IGU_STAS_MSG_VF_CNT 64
#define BNX2X_IGU_STAS_MSG_PF_CNT 4
#define MAX_IGU_ATTN_ACK_TO 100
/* end of common */
/* port */
struct bnx2x_port {
u32 pmf;
u32 link_config[LINK_CONFIG_SIZE];
u32 supported[LINK_CONFIG_SIZE];
/* link settings - missing defines */
#define SUPPORTED_2500baseX_Full (1 << 15)
u32 advertising[LINK_CONFIG_SIZE];
/* link settings - missing defines */
#define ADVERTISED_2500baseX_Full (1 << 15)
u32 phy_addr;
/* used to synchronize phy accesses */
struct mutex phy_mutex;
u32 port_stx;
struct nig_stats old_nig_stats;
};
/* end of port */
#define STATS_OFFSET32(stat_name) \
(offsetof(struct bnx2x_eth_stats, stat_name) / 4)
/* slow path */
/* slow path work-queue */
extern struct workqueue_struct *bnx2x_wq;
#define BNX2X_MAX_NUM_OF_VFS 64
#define BNX2X_VF_CID_WND 0
#define BNX2X_CIDS_PER_VF (1 << BNX2X_VF_CID_WND)
#define BNX2X_CLIENTS_PER_VF 1
#define BNX2X_FIRST_VF_CID 256
#define BNX2X_VF_CIDS (BNX2X_MAX_NUM_OF_VFS * BNX2X_CIDS_PER_VF)
#define BNX2X_VF_ID_INVALID 0xFF
/*
* The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is
* control by the number of fast-path status blocks supported by the
* device (HW/FW). Each fast-path status block (FP-SB) aka non-default
* status block represents an independent interrupts context that can
* serve a regular L2 networking queue. However special L2 queues such
* as the FCoE queue do not require a FP-SB and other components like
* the CNIC may consume FP-SB reducing the number of possible L2 queues
*
* If the maximum number of FP-SB available is X then:
* a. If CNIC is supported it consumes 1 FP-SB thus the max number of
* regular L2 queues is Y=X-1
* b. In MF mode the actual number of L2 queues is Y= (X-1/MF_factor)
* c. If the FCoE L2 queue is supported the actual number of L2 queues
* is Y+1
* d. The number of irqs (MSIX vectors) is either Y+1 (one extra for
* slow-path interrupts) or Y+2 if CNIC is supported (one additional
* FP interrupt context for the CNIC).
* e. The number of HW context (CID count) is always X or X+1 if FCoE
* L2 queue is supported. The cid for the FCoE L2 queue is always X.
*/
/* fast-path interrupt contexts E1x */
#define FP_SB_MAX_E1x 16
/* fast-path interrupt contexts E2 */
#define FP_SB_MAX_E2 HC_SB_MAX_SB_E2
union cdu_context {
struct eth_context eth;
char pad[1024];
};
/* CDU host DB constants */
#define CDU_ILT_PAGE_SZ_HW 2
#define CDU_ILT_PAGE_SZ (8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */
#define ILT_PAGE_CIDS (CDU_ILT_PAGE_SZ / sizeof(union cdu_context))
#define CNIC_ISCSI_CID_MAX 256
#define CNIC_FCOE_CID_MAX 2048
#define CNIC_CID_MAX (CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX)
#define CNIC_ILT_LINES DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS)
#define QM_ILT_PAGE_SZ_HW 0
#define QM_ILT_PAGE_SZ (4096 << QM_ILT_PAGE_SZ_HW) /* 4K */
#define QM_CID_ROUND 1024
/* TM (timers) host DB constants */
#define TM_ILT_PAGE_SZ_HW 0
#define TM_ILT_PAGE_SZ (4096 << TM_ILT_PAGE_SZ_HW) /* 4K */
/* #define TM_CONN_NUM (CNIC_STARTING_CID+CNIC_ISCSI_CXT_MAX) */
#define TM_CONN_NUM 1024
#define TM_ILT_SZ (8 * TM_CONN_NUM)
#define TM_ILT_LINES DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ)
/* SRC (Searcher) host DB constants */
#define SRC_ILT_PAGE_SZ_HW 0
#define SRC_ILT_PAGE_SZ (4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */
#define SRC_HASH_BITS 10
#define SRC_CONN_NUM (1 << SRC_HASH_BITS) /* 1024 */
#define SRC_ILT_SZ (sizeof(struct src_ent) * SRC_CONN_NUM)
#define SRC_T2_SZ SRC_ILT_SZ
#define SRC_ILT_LINES DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ)
#define MAX_DMAE_C 8
/* DMA memory not used in fastpath */
struct bnx2x_slowpath {
union {
struct mac_configuration_cmd e1x;
struct eth_classify_rules_ramrod_data e2;
} mac_rdata;
union {
struct tstorm_eth_mac_filter_config e1x;
struct eth_filter_rules_ramrod_data e2;
} rx_mode_rdata;
union {
struct mac_configuration_cmd e1;
struct eth_multicast_rules_ramrod_data e2;
} mcast_rdata;
struct eth_rss_update_ramrod_data rss_rdata;
/* Queue State related ramrods are always sent under rtnl_lock */
union {
struct client_init_ramrod_data init_data;
struct client_update_ramrod_data update_data;
} q_rdata;
union {
struct function_start_data func_start;
/* pfc configuration for DCBX ramrod */
struct flow_control_configuration pfc_config;
} func_rdata;
/* afex ramrod can not be a part of func_rdata union because these
* events might arrive in parallel to other events from func_rdata.
* Therefore, if they would have been defined in the same union,
* data can get corrupted.
*/
struct afex_vif_list_ramrod_data func_afex_rdata;
/* used by dmae command executer */
struct dmae_command dmae[MAX_DMAE_C];
u32 stats_comp;
union mac_stats mac_stats;
struct nig_stats nig_stats;
struct host_port_stats port_stats;
struct host_func_stats func_stats;
u32 wb_comp;
u32 wb_data[4];
union drv_info_to_mcp drv_info_to_mcp;
};
#define bnx2x_sp(bp, var) (&bp->slowpath->var)
#define bnx2x_sp_mapping(bp, var) \
(bp->slowpath_mapping + offsetof(struct bnx2x_slowpath, var))
/* attn group wiring */
#define MAX_DYNAMIC_ATTN_GRPS 8
struct attn_route {
u32 sig[5];
};
struct iro {
u32 base;
u16 m1;
u16 m2;
u16 m3;
u16 size;
};
struct hw_context {
union cdu_context *vcxt;
dma_addr_t cxt_mapping;
size_t size;
};
/* forward */
struct bnx2x_ilt;
struct bnx2x_vfdb;
enum bnx2x_recovery_state {
BNX2X_RECOVERY_DONE,
BNX2X_RECOVERY_INIT,
BNX2X_RECOVERY_WAIT,
BNX2X_RECOVERY_FAILED,
BNX2X_RECOVERY_NIC_LOADING
};
/*
* Event queue (EQ or event ring) MC hsi
* NUM_EQ_PAGES and EQ_DESC_CNT_PAGE must be power of 2
*/
#define NUM_EQ_PAGES 1
#define EQ_DESC_CNT_PAGE (BCM_PAGE_SIZE / sizeof(union event_ring_elem))
#define EQ_DESC_MAX_PAGE (EQ_DESC_CNT_PAGE - 1)
#define NUM_EQ_DESC (EQ_DESC_CNT_PAGE * NUM_EQ_PAGES)
#define EQ_DESC_MASK (NUM_EQ_DESC - 1)
#define MAX_EQ_AVAIL (EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2)
/* depends on EQ_DESC_CNT_PAGE being a power of 2 */
#define NEXT_EQ_IDX(x) ((((x) & EQ_DESC_MAX_PAGE) == \
(EQ_DESC_MAX_PAGE - 1)) ? (x) + 2 : (x) + 1)
/* depends on the above and on NUM_EQ_PAGES being a power of 2 */
#define EQ_DESC(x) ((x) & EQ_DESC_MASK)
#define BNX2X_EQ_INDEX \
(&bp->def_status_blk->sp_sb.\
index_values[HC_SP_INDEX_EQ_CONS])
/* This is a data that will be used to create a link report message.
* We will keep the data used for the last link report in order
* to prevent reporting the same link parameters twice.
*/
struct bnx2x_link_report_data {
u16 line_speed; /* Effective line speed */
unsigned long link_report_flags;/* BNX2X_LINK_REPORT_XXX flags */
};
enum {
BNX2X_LINK_REPORT_FD, /* Full DUPLEX */
BNX2X_LINK_REPORT_LINK_DOWN,
BNX2X_LINK_REPORT_RX_FC_ON,
BNX2X_LINK_REPORT_TX_FC_ON,
};
enum {
BNX2X_PORT_QUERY_IDX,
BNX2X_PF_QUERY_IDX,
BNX2X_FCOE_QUERY_IDX,
BNX2X_FIRST_QUEUE_QUERY_IDX,
};
struct bnx2x_fw_stats_req {
struct stats_query_header hdr;
struct stats_query_entry query[FP_SB_MAX_E1x+
BNX2X_FIRST_QUEUE_QUERY_IDX];
};
struct bnx2x_fw_stats_data {
struct stats_counter storm_counters;
struct per_port_stats port;
struct per_pf_stats pf;
struct fcoe_statistics_params fcoe;
struct per_queue_stats queue_stats[1];
};
/* Public slow path states */
enum {
BNX2X_SP_RTNL_SETUP_TC,
BNX2X_SP_RTNL_TX_TIMEOUT,
BNX2X_SP_RTNL_FAN_FAILURE,
BNX2X_SP_RTNL_AFEX_F_UPDATE,
BNX2X_SP_RTNL_ENABLE_SRIOV,
BNX2X_SP_RTNL_VFPF_MCAST,
BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
BNX2X_SP_RTNL_RX_MODE,
BNX2X_SP_RTNL_HYPERVISOR_VLAN,
};
struct bnx2x_prev_path_list {
struct list_head list;
u8 bus;
u8 slot;
u8 path;
u8 aer;
u8 undi;
};
struct bnx2x_sp_objs {
/* MACs object */
struct bnx2x_vlan_mac_obj mac_obj;
/* Queue State object */
struct bnx2x_queue_sp_obj q_obj;
};
struct bnx2x_fp_stats {
struct tstorm_per_queue_stats old_tclient;
struct ustorm_per_queue_stats old_uclient;
struct xstorm_per_queue_stats old_xclient;
struct bnx2x_eth_q_stats eth_q_stats;
struct bnx2x_eth_q_stats_old eth_q_stats_old;
};
struct bnx2x {
/* Fields used in the tx and intr/napi performance paths
* are grouped together in the beginning of the structure
*/
struct bnx2x_fastpath *fp;
struct bnx2x_sp_objs *sp_objs;
struct bnx2x_fp_stats *fp_stats;
struct bnx2x_fp_txdata *bnx2x_txq;
void __iomem *regview;
void __iomem *doorbells;
u16 db_size;
u8 pf_num; /* absolute PF number */
u8 pfid; /* per-path PF number */
int base_fw_ndsb; /**/
#define BP_PATH(bp) (CHIP_IS_E1x(bp) ? 0 : (bp->pf_num & 1))
#define BP_PORT(bp) (bp->pfid & 1)
#define BP_FUNC(bp) (bp->pfid)
#define BP_ABS_FUNC(bp) (bp->pf_num)
#define BP_VN(bp) ((bp)->pfid >> 1)
#define BP_MAX_VN_NUM(bp) (CHIP_MODE_IS_4_PORT(bp) ? 2 : 4)
#define BP_L_ID(bp) (BP_VN(bp) << 2)
#define BP_FW_MB_IDX_VN(bp, vn) (BP_PORT(bp) +\
(vn) * ((CHIP_IS_E1x(bp) || (CHIP_MODE_IS_4_PORT(bp))) ? 2 : 1))
#define BP_FW_MB_IDX(bp) BP_FW_MB_IDX_VN(bp, BP_VN(bp))
#ifdef CONFIG_BNX2X_SRIOV
/* protects vf2pf mailbox from simultaneous access */
struct mutex vf2pf_mutex;
/* vf pf channel mailbox contains request and response buffers */
struct bnx2x_vf_mbx_msg *vf2pf_mbox;
dma_addr_t vf2pf_mbox_mapping;
/* we set aside a copy of the acquire response */
struct pfvf_acquire_resp_tlv acquire_resp;
/* bulletin board for messages from pf to vf */
union pf_vf_bulletin *pf2vf_bulletin;
dma_addr_t pf2vf_bulletin_mapping;
struct pf_vf_bulletin_content old_bulletin;
u16 requested_nr_virtfn;
#endif /* CONFIG_BNX2X_SRIOV */
struct net_device *dev;
struct pci_dev *pdev;
const struct iro *iro_arr;
#define IRO (bp->iro_arr)
enum bnx2x_recovery_state recovery_state;
int is_leader;
struct msix_entry *msix_table;
int tx_ring_size;
/* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */
#define ETH_OVREHEAD (ETH_HLEN + 8 + 8)
#define ETH_MIN_PACKET_SIZE 60
#define ETH_MAX_PACKET_SIZE 1500
#define ETH_MAX_JUMBO_PACKET_SIZE 9600
/* TCP with Timestamp Option (32) + IPv6 (40) */
#define ETH_MAX_TPA_HEADER_SIZE 72
/* Max supported alignment is 256 (8 shift) */
#define BNX2X_RX_ALIGN_SHIFT min(8, L1_CACHE_SHIFT)
/* FW uses 2 Cache lines Alignment for start packet and size
*
* We assume skb_build() uses sizeof(struct skb_shared_info) bytes
* at the end of skb->data, to avoid wasting a full cache line.
* This reduces memory use (skb->truesize).
*/
#define BNX2X_FW_RX_ALIGN_START (1UL << BNX2X_RX_ALIGN_SHIFT)
#define BNX2X_FW_RX_ALIGN_END \
max_t(u64, 1UL << BNX2X_RX_ALIGN_SHIFT, \
SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
#define BNX2X_PXP_DRAM_ALIGN (BNX2X_RX_ALIGN_SHIFT - 5)
struct host_sp_status_block *def_status_blk;
#define DEF_SB_IGU_ID 16
#define DEF_SB_ID HC_SP_SB_ID
__le16 def_idx;
__le16 def_att_idx;
u32 attn_state;
struct attn_route attn_group[MAX_DYNAMIC_ATTN_GRPS];
/* slow path ring */
struct eth_spe *spq;
dma_addr_t spq_mapping;
u16 spq_prod_idx;
struct eth_spe *spq_prod_bd;
struct eth_spe *spq_last_bd;
__le16 *dsb_sp_prod;
atomic_t cq_spq_left; /* ETH_XXX ramrods credit */
/* used to synchronize spq accesses */
spinlock_t spq_lock;
/* event queue */
union event_ring_elem *eq_ring;
dma_addr_t eq_mapping;
u16 eq_prod;
u16 eq_cons;
__le16 *eq_cons_sb;
atomic_t eq_spq_left; /* COMMON_XXX ramrods credit */
/* Counter for marking that there is a STAT_QUERY ramrod pending */
u16 stats_pending;
/* Counter for completed statistics ramrods */
u16 stats_comp;
/* End of fields used in the performance code paths */
int panic;
int msg_enable;
u32 flags;
#define PCIX_FLAG (1 << 0)
#define PCI_32BIT_FLAG (1 << 1)
#define ONE_PORT_FLAG (1 << 2)
#define NO_WOL_FLAG (1 << 3)
#define USING_DAC_FLAG (1 << 4)
#define USING_MSIX_FLAG (1 << 5)
#define USING_MSI_FLAG (1 << 6)
#define DISABLE_MSI_FLAG (1 << 7)
#define TPA_ENABLE_FLAG (1 << 8)
#define NO_MCP_FLAG (1 << 9)
#define GRO_ENABLE_FLAG (1 << 10)
#define MF_FUNC_DIS (1 << 11)
#define OWN_CNIC_IRQ (1 << 12)
#define NO_ISCSI_OOO_FLAG (1 << 13)
#define NO_ISCSI_FLAG (1 << 14)
#define NO_FCOE_FLAG (1 << 15)
#define BC_SUPPORTS_PFC_STATS (1 << 17)
#define BC_SUPPORTS_FCOE_FEATURES (1 << 19)
#define USING_SINGLE_MSIX_FLAG (1 << 20)
#define BC_SUPPORTS_DCBX_MSG_NON_PMF (1 << 21)
#define IS_VF_FLAG (1 << 22)
#define INTERRUPTS_ENABLED_FLAG (1 << 23)
#define BC_SUPPORTS_RMMOD_CMD (1 << 24)
#define BP_NOMCP(bp) ((bp)->flags & NO_MCP_FLAG)
#ifdef CONFIG_BNX2X_SRIOV
#define IS_VF(bp) ((bp)->flags & IS_VF_FLAG)
#define IS_PF(bp) (!((bp)->flags & IS_VF_FLAG))
#else
#define IS_VF(bp) false
#define IS_PF(bp) true
#endif
#define NO_ISCSI(bp) ((bp)->flags & NO_ISCSI_FLAG)
#define NO_ISCSI_OOO(bp) ((bp)->flags & NO_ISCSI_OOO_FLAG)
#define NO_FCOE(bp) ((bp)->flags & NO_FCOE_FLAG)
u8 cnic_support;
bool cnic_enabled;
bool cnic_loaded;
struct cnic_eth_dev *(*cnic_probe)(struct net_device *);
/* Flag that indicates that we can start looking for FCoE L2 queue
* completions in the default status block.
*/
bool fcoe_init;
int pm_cap;
int mrrs;
struct delayed_work sp_task;
atomic_t interrupt_occurred;
struct delayed_work sp_rtnl_task;
struct delayed_work period_task;
struct timer_list timer;
int current_interval;
u16 fw_seq;
u16 fw_drv_pulse_wr_seq;
u32 func_stx;
struct link_params link_params;
struct link_vars link_vars;
u32 link_cnt;
struct bnx2x_link_report_data last_reported_link;
struct mdio_if_info mdio;
struct bnx2x_common common;
struct bnx2x_port port;
struct cmng_init cmng;
u32 mf_config[E1HVN_MAX];
u32 mf_ext_config;
u32 path_has_ovlan; /* E3 */
u16 mf_ov;
u8 mf_mode;
#define IS_MF(bp) (bp->mf_mode != 0)
#define IS_MF_SI(bp) (bp->mf_mode == MULTI_FUNCTION_SI)
#define IS_MF_SD(bp) (bp->mf_mode == MULTI_FUNCTION_SD)
#define IS_MF_AFEX(bp) (bp->mf_mode == MULTI_FUNCTION_AFEX)
u8 wol;
int rx_ring_size;
u16 tx_quick_cons_trip_int;
u16 tx_quick_cons_trip;
u16 tx_ticks_int;
u16 tx_ticks;
u16 rx_quick_cons_trip_int;
u16 rx_quick_cons_trip;
u16 rx_ticks_int;
u16 rx_ticks;
/* Maximal coalescing timeout in us */
#define BNX2X_MAX_COALESCE_TOUT (0xf0*12)
u32 lin_cnt;
u16 state;
#define BNX2X_STATE_CLOSED 0
#define BNX2X_STATE_OPENING_WAIT4_LOAD 0x1000
#define BNX2X_STATE_OPENING_WAIT4_PORT 0x2000
#define BNX2X_STATE_OPEN 0x3000
#define BNX2X_STATE_CLOSING_WAIT4_HALT 0x4000
#define BNX2X_STATE_CLOSING_WAIT4_DELETE 0x5000
#define BNX2X_STATE_DIAG 0xe000
#define BNX2X_STATE_ERROR 0xf000
#define BNX2X_MAX_PRIORITY 8
#define BNX2X_MAX_ENTRIES_PER_PRI 16
#define BNX2X_MAX_COS 3
#define BNX2X_MAX_TX_COS 2
int num_queues;
uint num_ethernet_queues;
uint num_cnic_queues;
int num_napi_queues;
int disable_tpa;
u32 rx_mode;
#define BNX2X_RX_MODE_NONE 0
#define BNX2X_RX_MODE_NORMAL 1
#define BNX2X_RX_MODE_ALLMULTI 2
#define BNX2X_RX_MODE_PROMISC 3
#define BNX2X_MAX_MULTICAST 64
u8 igu_dsb_id;
u8 igu_base_sb;
u8 igu_sb_cnt;
u8 min_msix_vec_cnt;
u32 igu_base_addr;
dma_addr_t def_status_blk_mapping;
struct bnx2x_slowpath *slowpath;
dma_addr_t slowpath_mapping;
/* Total number of FW statistics requests */
u8 fw_stats_num;
/*
* This is a memory buffer that will contain both statistics
* ramrod request and data.
*/
void *fw_stats;
dma_addr_t fw_stats_mapping;
/*
* FW statistics request shortcut (points at the
* beginning of fw_stats buffer).
*/
struct bnx2x_fw_stats_req *fw_stats_req;
dma_addr_t fw_stats_req_mapping;
int fw_stats_req_sz;
/*
* FW statistics data shortcut (points at the beginning of
* fw_stats buffer + fw_stats_req_sz).
*/
struct bnx2x_fw_stats_data *fw_stats_data;
dma_addr_t fw_stats_data_mapping;
int fw_stats_data_sz;
/* For max 196 cids (64*3 + non-eth), 32KB ILT page size and 1KB
* context size we need 8 ILT entries.
*/
#define ILT_MAX_L2_LINES 8
struct hw_context context[ILT_MAX_L2_LINES];
struct bnx2x_ilt *ilt;
#define BP_ILT(bp) ((bp)->ilt)
#define ILT_MAX_LINES 256
/*
* Maximum supported number of RSS queues: number of IGU SBs minus one that goes
* to CNIC.
*/
#define BNX2X_MAX_RSS_COUNT(bp) ((bp)->igu_sb_cnt - CNIC_SUPPORT(bp))
/*
* Maximum CID count that might be required by the bnx2x:
* Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI
*/
#define BNX2X_L2_CID_COUNT(bp) (BNX2X_NUM_ETH_QUEUES(bp) * BNX2X_MULTI_TX_COS \
+ 2 * CNIC_SUPPORT(bp))
#define BNX2X_L2_MAX_CID(bp) (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS \
+ 2 * CNIC_SUPPORT(bp))
#define L2_ILT_LINES(bp) (DIV_ROUND_UP(BNX2X_L2_CID_COUNT(bp),\
ILT_PAGE_CIDS))
int qm_cid_count;
bool dropless_fc;
void *t2;
dma_addr_t t2_mapping;
struct cnic_ops __rcu *cnic_ops;
void *cnic_data;
u32 cnic_tag;
struct cnic_eth_dev cnic_eth_dev;
union host_hc_status_block cnic_sb;
dma_addr_t cnic_sb_mapping;
struct eth_spe *cnic_kwq;
struct eth_spe *cnic_kwq_prod;
struct eth_spe *cnic_kwq_cons;
struct eth_spe *cnic_kwq_last;
u16 cnic_kwq_pending;
u16 cnic_spq_pending;
u8 fip_mac[ETH_ALEN];
struct mutex cnic_mutex;
struct bnx2x_vlan_mac_obj iscsi_l2_mac_obj;
/* Start index of the "special" (CNIC related) L2 clients */
u8 cnic_base_cl_id;
int dmae_ready;
/* used to synchronize dmae accesses */
spinlock_t dmae_lock;
/* used to protect the FW mail box */
struct mutex fw_mb_mutex;
/* used to synchronize stats collecting */
int stats_state;
/* used for synchronization of concurrent threads statistics handling */
spinlock_t stats_lock;
/* used by dmae command loader */
struct dmae_command stats_dmae;
int executer_idx;
u16 stats_counter;
struct bnx2x_eth_stats eth_stats;
struct host_func_stats func_stats;
struct bnx2x_eth_stats_old eth_stats_old;
struct bnx2x_net_stats_old net_stats_old;
struct bnx2x_fw_port_stats_old fw_stats_old;
bool stats_init;
struct z_stream_s *strm;
void *gunzip_buf;
dma_addr_t gunzip_mapping;
int gunzip_outlen;
#define FW_BUF_SIZE 0x8000
#define GUNZIP_BUF(bp) (bp->gunzip_buf)
#define GUNZIP_PHYS(bp) (bp->gunzip_mapping)
#define GUNZIP_OUTLEN(bp) (bp->gunzip_outlen)
struct raw_op *init_ops;
/* Init blocks offsets inside init_ops */
u16 *init_ops_offsets;
/* Data blob - has 32 bit granularity */
u32 *init_data;
u32 init_mode_flags;
#define INIT_MODE_FLAGS(bp) (bp->init_mode_flags)
/* Zipped PRAM blobs - raw data */
const u8 *tsem_int_table_data;
const u8 *tsem_pram_data;
const u8 *usem_int_table_data;
const u8 *usem_pram_data;
const u8 *xsem_int_table_data;
const u8 *xsem_pram_data;
const u8 *csem_int_table_data;
const u8 *csem_pram_data;
#define INIT_OPS(bp) (bp->init_ops)
#define INIT_OPS_OFFSETS(bp) (bp->init_ops_offsets)
#define INIT_DATA(bp) (bp->init_data)
#define INIT_TSEM_INT_TABLE_DATA(bp) (bp->tsem_int_table_data)
#define INIT_TSEM_PRAM_DATA(bp) (bp->tsem_pram_data)
#define INIT_USEM_INT_TABLE_DATA(bp) (bp->usem_int_table_data)
#define INIT_USEM_PRAM_DATA(bp) (bp->usem_pram_data)
#define INIT_XSEM_INT_TABLE_DATA(bp) (bp->xsem_int_table_data)
#define INIT_XSEM_PRAM_DATA(bp) (bp->xsem_pram_data)
#define INIT_CSEM_INT_TABLE_DATA(bp) (bp->csem_int_table_data)
#define INIT_CSEM_PRAM_DATA(bp) (bp->csem_pram_data)
#define PHY_FW_VER_LEN 20
char fw_ver[32];
const struct firmware *firmware;
struct bnx2x_vfdb *vfdb;
#define IS_SRIOV(bp) ((bp)->vfdb)
/* DCB support on/off */
u16 dcb_state;
#define BNX2X_DCB_STATE_OFF 0
#define BNX2X_DCB_STATE_ON 1
/* DCBX engine mode */
int dcbx_enabled;
#define BNX2X_DCBX_ENABLED_OFF 0
#define BNX2X_DCBX_ENABLED_ON_NEG_OFF 1
#define BNX2X_DCBX_ENABLED_ON_NEG_ON 2
#define BNX2X_DCBX_ENABLED_INVALID (-1)
bool dcbx_mode_uset;
struct bnx2x_config_dcbx_params dcbx_config_params;
struct bnx2x_dcbx_port_params dcbx_port_params;
int dcb_version;
/* CAM credit pools */
/* used only in sriov */
struct bnx2x_credit_pool_obj vlans_pool;
struct bnx2x_credit_pool_obj macs_pool;
/* RX_MODE object */
struct bnx2x_rx_mode_obj rx_mode_obj;
/* MCAST object */
struct bnx2x_mcast_obj mcast_obj;
/* RSS configuration object */
struct bnx2x_rss_config_obj rss_conf_obj;
/* Function State controlling object */
struct bnx2x_func_sp_obj func_obj;
unsigned long sp_state;
/* operation indication for the sp_rtnl task */
unsigned long sp_rtnl_state;
/* DCBX Negotiation results */
struct dcbx_features dcbx_local_feat;
u32 dcbx_error;
#ifdef BCM_DCBNL
struct dcbx_features dcbx_remote_feat;
u32 dcbx_remote_flags;
#endif
/* AFEX: store default vlan used */
int afex_def_vlan_tag;
enum mf_cfg_afex_vlan_mode afex_vlan_mode;
u32 pending_max;
/* multiple tx classes of service */
u8 max_cos;
/* priority to cos mapping */
u8 prio_to_cos[8];
int fp_array_size;
u32 dump_preset_idx;
bool stats_started;
struct semaphore stats_sema;
};
/* Tx queues may be less or equal to Rx queues */
extern int num_queues;
#define BNX2X_NUM_QUEUES(bp) (bp->num_queues)
#define BNX2X_NUM_ETH_QUEUES(bp) ((bp)->num_ethernet_queues)
#define BNX2X_NUM_NON_CNIC_QUEUES(bp) (BNX2X_NUM_QUEUES(bp) - \
(bp)->num_cnic_queues)
#define BNX2X_NUM_RX_QUEUES(bp) BNX2X_NUM_QUEUES(bp)
#define is_multi(bp) (BNX2X_NUM_QUEUES(bp) > 1)
#define BNX2X_MAX_QUEUES(bp) BNX2X_MAX_RSS_COUNT(bp)
/* #define is_eth_multi(bp) (BNX2X_NUM_ETH_QUEUES(bp) > 1) */
#define RSS_IPV4_CAP_MASK \
TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_CAPABILITY
#define RSS_IPV4_TCP_CAP_MASK \
TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_TCP_CAPABILITY
#define RSS_IPV6_CAP_MASK \
TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_CAPABILITY
#define RSS_IPV6_TCP_CAP_MASK \
TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_TCP_CAPABILITY
/* func init flags */
#define FUNC_FLG_RSS 0x0001
#define FUNC_FLG_STATS 0x0002
/* removed FUNC_FLG_UNMATCHED 0x0004 */
#define FUNC_FLG_TPA 0x0008
#define FUNC_FLG_SPQ 0x0010
#define FUNC_FLG_LEADING 0x0020 /* PF only */
struct bnx2x_func_init_params {
/* dma */
dma_addr_t fw_stat_map; /* valid iff FUNC_FLG_STATS */
dma_addr_t spq_map; /* valid iff FUNC_FLG_SPQ */
u16 func_flgs;
u16 func_id; /* abs fid */
u16 pf_id;
u16 spq_prod; /* valid iff FUNC_FLG_SPQ */
};
#define for_each_cnic_queue(bp, var) \
for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \
(var)++) \
if (skip_queue(bp, var)) \
continue; \
else
#define for_each_eth_queue(bp, var) \
for ((var) = 0; (var) < BNX2X_NUM_ETH_QUEUES(bp); (var)++)
#define for_each_nondefault_eth_queue(bp, var) \
for ((var) = 1; (var) < BNX2X_NUM_ETH_QUEUES(bp); (var)++)
#define for_each_queue(bp, var) \
for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
if (skip_queue(bp, var)) \
continue; \
else
/* Skip forwarding FP */
#define for_each_valid_rx_queue(bp, var) \
for ((var) = 0; \
(var) < (CNIC_LOADED(bp) ? BNX2X_NUM_QUEUES(bp) : \
BNX2X_NUM_ETH_QUEUES(bp)); \
(var)++) \
if (skip_rx_queue(bp, var)) \
continue; \
else
#define for_each_rx_queue_cnic(bp, var) \
for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \
(var)++) \
if (skip_rx_queue(bp, var)) \
continue; \
else
#define for_each_rx_queue(bp, var) \
for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
if (skip_rx_queue(bp, var)) \
continue; \
else
/* Skip OOO FP */
#define for_each_valid_tx_queue(bp, var) \
for ((var) = 0; \
(var) < (CNIC_LOADED(bp) ? BNX2X_NUM_QUEUES(bp) : \
BNX2X_NUM_ETH_QUEUES(bp)); \
(var)++) \
if (skip_tx_queue(bp, var)) \
continue; \
else
#define for_each_tx_queue_cnic(bp, var) \
for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \
(var)++) \
if (skip_tx_queue(bp, var)) \
continue; \
else
#define for_each_tx_queue(bp, var) \
for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
if (skip_tx_queue(bp, var)) \
continue; \
else
#define for_each_nondefault_queue(bp, var) \
for ((var) = 1; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
if (skip_queue(bp, var)) \
continue; \
else
#define for_each_cos_in_tx_queue(fp, var) \
for ((var) = 0; (var) < (fp)->max_cos; (var)++)
/* skip rx queue
* if FCOE l2 support is disabled and this is the fcoe L2 queue
*/
#define skip_rx_queue(bp, idx) (NO_FCOE(bp) && IS_FCOE_IDX(idx))
/* skip tx queue
* if FCOE l2 support is disabled and this is the fcoe L2 queue
*/
#define skip_tx_queue(bp, idx) (NO_FCOE(bp) && IS_FCOE_IDX(idx))
#define skip_queue(bp, idx) (NO_FCOE(bp) && IS_FCOE_IDX(idx))
/**
* bnx2x_set_mac_one - configure a single MAC address
*
* @bp: driver handle
* @mac: MAC to configure
* @obj: MAC object handle
* @set: if 'true' add a new MAC, otherwise - delete
* @mac_type: the type of the MAC to configure (e.g. ETH, UC list)
* @ramrod_flags: RAMROD_XXX flags (e.g. RAMROD_CONT, RAMROD_COMP_WAIT)
*
* Configures one MAC according to provided parameters or continues the
* execution of previously scheduled commands if RAMROD_CONT is set in
* ramrod_flags.
*
* Returns zero if operation has successfully completed, a positive value if the
* operation has been successfully scheduled and a negative - if a requested
* operations has failed.
*/
int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
struct bnx2x_vlan_mac_obj *obj, bool set,
int mac_type, unsigned long *ramrod_flags);
/**
* bnx2x_del_all_macs - delete all MACs configured for the specific MAC object
*
* @bp: driver handle
* @mac_obj: MAC object handle
* @mac_type: type of the MACs to clear (BNX2X_XXX_MAC)
* @wait_for_comp: if 'true' block until completion
*
* Deletes all MACs of the specific type (e.g. ETH, UC list).
*
* Returns zero if operation has successfully completed, a positive value if the
* operation has been successfully scheduled and a negative - if a requested
* operations has failed.
*/
int bnx2x_del_all_macs(struct bnx2x *bp,
struct bnx2x_vlan_mac_obj *mac_obj,
int mac_type, bool wait_for_comp);
/* Init Function API */
void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p);
void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
u8 vf_valid, int fw_sb_id, int igu_sb_id);
u32 bnx2x_get_pretend_reg(struct bnx2x *bp);
int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port);
int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port);
int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode);
int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port);
void bnx2x_read_mf_cfg(struct bnx2x *bp);
int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val);
/* dmae */
void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32);
void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
u32 len32);
void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx);
u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type);
u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode);
u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
bool with_comp, u8 comp_type);
void bnx2x_prep_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
u8 src_type, u8 dst_type);
int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae);
/* FLR related routines */
u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp);
void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count);
int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt);
u8 bnx2x_is_pcie_pending(struct pci_dev *dev);
int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
char *msg, u32 poll_cnt);
void bnx2x_calc_fc_adv(struct bnx2x *bp);
int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
u32 data_hi, u32 data_lo, int cmd_type);
void bnx2x_update_coalesce(struct bnx2x *bp);
int bnx2x_get_cur_phy_idx(struct bnx2x *bp);
bool bnx2x_port_after_undi(struct bnx2x *bp);
static inline u32 reg_poll(struct bnx2x *bp, u32 reg, u32 expected, int ms,
int wait)
{
u32 val;
do {
val = REG_RD(bp, reg);
if (val == expected)
break;
ms -= wait;
msleep(wait);
} while (ms > 0);
return val;
}
void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id,
bool is_pf);
#define BNX2X_ILT_ZALLOC(x, y, size) \
x = dma_alloc_coherent(&bp->pdev->dev, size, y, \
GFP_KERNEL | __GFP_ZERO)
#define BNX2X_ILT_FREE(x, y, size) \
do { \
if (x) { \
dma_free_coherent(&bp->pdev->dev, size, x, y); \
x = NULL; \
y = 0; \
} \
} while (0)
#define ILOG2(x) (ilog2((x)))
#define ILT_NUM_PAGE_ENTRIES (3072)
/* In 57710/11 we use whole table since we have 8 func
* In 57712 we have only 4 func, but use same size per func, then only half of
* the table in use
*/
#define ILT_PER_FUNC (ILT_NUM_PAGE_ENTRIES/8)
#define FUNC_ILT_BASE(func) (func * ILT_PER_FUNC)
/*
* the phys address is shifted right 12 bits and has an added
* 1=valid bit added to the 53rd bit
* then since this is a wide register(TM)
* we split it into two 32 bit writes
*/
#define ONCHIP_ADDR1(x) ((u32)(((u64)x >> 12) & 0xFFFFFFFF))
#define ONCHIP_ADDR2(x) ((u32)((1 << 20) | ((u64)x >> 44)))
/* load/unload mode */
#define LOAD_NORMAL 0
#define LOAD_OPEN 1
#define LOAD_DIAG 2
#define LOAD_LOOPBACK_EXT 3
#define UNLOAD_NORMAL 0
#define UNLOAD_CLOSE 1
#define UNLOAD_RECOVERY 2
/* DMAE command defines */
#define DMAE_TIMEOUT -1
#define DMAE_PCI_ERROR -2 /* E2 and onward */
#define DMAE_NOT_RDY -3
#define DMAE_PCI_ERR_FLAG 0x80000000
#define DMAE_SRC_PCI 0
#define DMAE_SRC_GRC 1
#define DMAE_DST_NONE 0
#define DMAE_DST_PCI 1
#define DMAE_DST_GRC 2
#define DMAE_COMP_PCI 0
#define DMAE_COMP_GRC 1
/* E2 and onward - PCI error handling in the completion */
#define DMAE_COMP_REGULAR 0
#define DMAE_COM_SET_ERR 1
#define DMAE_CMD_SRC_PCI (DMAE_SRC_PCI << \
DMAE_COMMAND_SRC_SHIFT)
#define DMAE_CMD_SRC_GRC (DMAE_SRC_GRC << \
DMAE_COMMAND_SRC_SHIFT)
#define DMAE_CMD_DST_PCI (DMAE_DST_PCI << \
DMAE_COMMAND_DST_SHIFT)
#define DMAE_CMD_DST_GRC (DMAE_DST_GRC << \
DMAE_COMMAND_DST_SHIFT)
#define DMAE_CMD_C_DST_PCI (DMAE_COMP_PCI << \
DMAE_COMMAND_C_DST_SHIFT)
#define DMAE_CMD_C_DST_GRC (DMAE_COMP_GRC << \
DMAE_COMMAND_C_DST_SHIFT)
#define DMAE_CMD_C_ENABLE DMAE_COMMAND_C_TYPE_ENABLE
#define DMAE_CMD_ENDIANITY_NO_SWAP (0 << DMAE_COMMAND_ENDIANITY_SHIFT)
#define DMAE_CMD_ENDIANITY_B_SWAP (1 << DMAE_COMMAND_ENDIANITY_SHIFT)
#define DMAE_CMD_ENDIANITY_DW_SWAP (2 << DMAE_COMMAND_ENDIANITY_SHIFT)
#define DMAE_CMD_ENDIANITY_B_DW_SWAP (3 << DMAE_COMMAND_ENDIANITY_SHIFT)
#define DMAE_CMD_PORT_0 0
#define DMAE_CMD_PORT_1 DMAE_COMMAND_PORT
#define DMAE_CMD_SRC_RESET DMAE_COMMAND_SRC_RESET
#define DMAE_CMD_DST_RESET DMAE_COMMAND_DST_RESET
#define DMAE_CMD_E1HVN_SHIFT DMAE_COMMAND_E1HVN_SHIFT
#define DMAE_SRC_PF 0
#define DMAE_SRC_VF 1
#define DMAE_DST_PF 0
#define DMAE_DST_VF 1
#define DMAE_C_SRC 0
#define DMAE_C_DST 1
#define DMAE_LEN32_RD_MAX 0x80
#define DMAE_LEN32_WR_MAX(bp) (CHIP_IS_E1(bp) ? 0x400 : 0x2000)
#define DMAE_COMP_VAL 0x60d0d0ae /* E2 and on - upper bit
* indicates error
*/
#define MAX_DMAE_C_PER_PORT 8
#define INIT_DMAE_C(bp) (BP_PORT(bp) * MAX_DMAE_C_PER_PORT + \
BP_VN(bp))
#define PMF_DMAE_C(bp) (BP_PORT(bp) * MAX_DMAE_C_PER_PORT + \
E1HVN_MAX)
/* PCIE link and speed */
#define PCICFG_LINK_WIDTH 0x1f00000
#define PCICFG_LINK_WIDTH_SHIFT 20
#define PCICFG_LINK_SPEED 0xf0000
#define PCICFG_LINK_SPEED_SHIFT 16
#define BNX2X_NUM_TESTS_SF 7
#define BNX2X_NUM_TESTS_MF 3
#define BNX2X_NUM_TESTS(bp) (IS_MF(bp) ? BNX2X_NUM_TESTS_MF : \
BNX2X_NUM_TESTS_SF)
#define BNX2X_PHY_LOOPBACK 0
#define BNX2X_MAC_LOOPBACK 1
#define BNX2X_EXT_LOOPBACK 2
#define BNX2X_PHY_LOOPBACK_FAILED 1
#define BNX2X_MAC_LOOPBACK_FAILED 2
#define BNX2X_EXT_LOOPBACK_FAILED 3
#define BNX2X_LOOPBACK_FAILED (BNX2X_MAC_LOOPBACK_FAILED | \
BNX2X_PHY_LOOPBACK_FAILED)
#define STROM_ASSERT_ARRAY_SIZE 50
/* must be used on a CID before placing it on a HW ring */
#define HW_CID(bp, x) ((BP_PORT(bp) << 23) | \
(BP_VN(bp) << BNX2X_SWCID_SHIFT) | \
(x))
#define SP_DESC_CNT (BCM_PAGE_SIZE / sizeof(struct eth_spe))
#define MAX_SP_DESC_CNT (SP_DESC_CNT - 1)
#define BNX2X_BTR 4
#define MAX_SPQ_PENDING 8
/* CMNG constants, as derived from system spec calculations */
/* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */
#define DEF_MIN_RATE 100
/* resolution of the rate shaping timer - 400 usec */
#define RS_PERIODIC_TIMEOUT_USEC 400
/* number of bytes in single QM arbitration cycle -
* coefficient for calculating the fairness timer */
#define QM_ARB_BYTES 160000
/* resolution of Min algorithm 1:100 */
#define MIN_RES 100
/* how many bytes above threshold for the minimal credit of Min algorithm*/
#define MIN_ABOVE_THRESH 32768
/* Fairness algorithm integration time coefficient -
* for calculating the actual Tfair */
#define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
/* Memory of fairness algorithm . 2 cycles */
#define FAIR_MEM 2
#define ATTN_NIG_FOR_FUNC (1L << 8)
#define ATTN_SW_TIMER_4_FUNC (1L << 9)
#define GPIO_2_FUNC (1L << 10)
#define GPIO_3_FUNC (1L << 11)
#define GPIO_4_FUNC (1L << 12)
#define ATTN_GENERAL_ATTN_1 (1L << 13)
#define ATTN_GENERAL_ATTN_2 (1L << 14)
#define ATTN_GENERAL_ATTN_3 (1L << 15)
#define ATTN_GENERAL_ATTN_4 (1L << 13)
#define ATTN_GENERAL_ATTN_5 (1L << 14)
#define ATTN_GENERAL_ATTN_6 (1L << 15)
#define ATTN_HARD_WIRED_MASK 0xff00
#define ATTENTION_ID 4
#define IS_MF_STORAGE_ONLY(bp) (IS_MF_STORAGE_SD(bp) || \
IS_MF_FCOE_AFEX(bp))
/* stuff added to make the code fit 80Col */
#define BNX2X_PMF_LINK_ASSERT \
GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + BP_FUNC(bp))
#define BNX2X_MC_ASSERT_BITS \
(GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \
GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT))
#define BNX2X_MCP_ASSERT \
GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT)
#define BNX2X_GRC_TIMEOUT GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC)
#define BNX2X_GRC_RSV (GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \
GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \
GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \
GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \
GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \
GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC))
#define HW_INTERRUT_ASSERT_SET_0 \
(AEU_INPUTS_ATTN_BITS_TSDM_HW_INTERRUPT | \
AEU_INPUTS_ATTN_BITS_TCM_HW_INTERRUPT | \
AEU_INPUTS_ATTN_BITS_TSEMI_HW_INTERRUPT | \
AEU_INPUTS_ATTN_BITS_BRB_HW_INTERRUPT | \
AEU_INPUTS_ATTN_BITS_PBCLIENT_HW_INTERRUPT)
#define HW_PRTY_ASSERT_SET_0 (AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR | \
AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR | \
AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR | \
AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR |\
AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR |\
AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR |\
AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR)
#define HW_INTERRUT_ASSERT_SET_1 \
(AEU_INPUTS_ATTN_BITS_QM_HW_INTERRUPT | \
AEU_INPUTS_ATTN_BITS_TIMERS_HW_INTERRUPT | \
AEU_INPUTS_ATTN_BITS_XSDM_HW_INTERRUPT | \
AEU_INPUTS_ATTN_BITS_XCM_HW_INTERRUPT | \
AEU_INPUTS_ATTN_BITS_XSEMI_HW_INTERRUPT | \
AEU_INPUTS_ATTN_BITS_USDM_HW_INTERRUPT | \
AEU_INPUTS_ATTN_BITS_UCM_HW_INTERRUPT | \
AEU_INPUTS_ATTN_BITS_USEMI_HW_INTERRUPT | \
AEU_INPUTS_ATTN_BITS_UPB_HW_INTERRUPT | \
AEU_INPUTS_ATTN_BITS_CSDM_HW_INTERRUPT | \
AEU_INPUTS_ATTN_BITS_CCM_HW_INTERRUPT)
#define HW_PRTY_ASSERT_SET_1 (AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR |\
AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR | \
AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR |\
AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR | \
AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR |\
AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR | \
AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR |\
AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR |\
AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR |\
AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR | \
AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR | \
AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR |\
AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR | \
AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR | \
AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR |\
AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR)
#define HW_INTERRUT_ASSERT_SET_2 \
(AEU_INPUTS_ATTN_BITS_CSEMI_HW_INTERRUPT | \
AEU_INPUTS_ATTN_BITS_CDU_HW_INTERRUPT | \
AEU_INPUTS_ATTN_BITS_DMAE_HW_INTERRUPT | \
AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT |\
AEU_INPUTS_ATTN_BITS_MISC_HW_INTERRUPT)
#define HW_PRTY_ASSERT_SET_2 (AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR | \
AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR | \
AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR |\
AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR | \
AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR | \
AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR |\
AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR | \
AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR)
#define HW_PRTY_ASSERT_SET_3 (AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY | \
AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
#define HW_PRTY_ASSERT_SET_4 (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | \
AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)
#define MULTI_MASK 0x7f
#define DEF_USB_FUNC_OFF offsetof(struct cstorm_def_status_block_u, func)
#define DEF_CSB_FUNC_OFF offsetof(struct cstorm_def_status_block_c, func)
#define DEF_XSB_FUNC_OFF offsetof(struct xstorm_def_status_block, func)
#define DEF_TSB_FUNC_OFF offsetof(struct tstorm_def_status_block, func)
#define DEF_USB_IGU_INDEX_OFF \
offsetof(struct cstorm_def_status_block_u, igu_index)
#define DEF_CSB_IGU_INDEX_OFF \
offsetof(struct cstorm_def_status_block_c, igu_index)
#define DEF_XSB_IGU_INDEX_OFF \
offsetof(struct xstorm_def_status_block, igu_index)
#define DEF_TSB_IGU_INDEX_OFF \
offsetof(struct tstorm_def_status_block, igu_index)
#define DEF_USB_SEGMENT_OFF \
offsetof(struct cstorm_def_status_block_u, segment)
#define DEF_CSB_SEGMENT_OFF \
offsetof(struct cstorm_def_status_block_c, segment)
#define DEF_XSB_SEGMENT_OFF \
offsetof(struct xstorm_def_status_block, segment)
#define DEF_TSB_SEGMENT_OFF \
offsetof(struct tstorm_def_status_block, segment)
#define BNX2X_SP_DSB_INDEX \
(&bp->def_status_blk->sp_sb.\
index_values[HC_SP_INDEX_ETH_DEF_CONS])
#define CAM_IS_INVALID(x) \
(GET_FLAG(x.flags, \
MAC_CONFIGURATION_ENTRY_ACTION_TYPE) == \
(T_ETH_MAC_COMMAND_INVALIDATE))
/* Number of u32 elements in MC hash array */
#define MC_HASH_SIZE 8
#define MC_HASH_OFFSET(bp, i) (BAR_TSTRORM_INTMEM + \
TSTORM_APPROXIMATE_MATCH_MULTICAST_FILTERING_OFFSET(BP_FUNC(bp)) + i*4)
#ifndef PXP2_REG_PXP2_INT_STS
#define PXP2_REG_PXP2_INT_STS PXP2_REG_PXP2_INT_STS_0
#endif
#ifndef ETH_MAX_RX_CLIENTS_E2
#define ETH_MAX_RX_CLIENTS_E2 ETH_MAX_RX_CLIENTS_E1H
#endif
#define BNX2X_VPD_LEN 128
#define VENDOR_ID_LEN 4
#define VF_ACQUIRE_THRESH 3
#define VF_ACQUIRE_MAC_FILTERS 1
#define VF_ACQUIRE_MC_FILTERS 10
#define GOOD_ME_REG(me_reg) (((me_reg) & ME_REG_VF_VALID) && \
(!((me_reg) & ME_REG_VF_ERR)))
int bnx2x_nic_load_analyze_req(struct bnx2x *bp, u32 load_code);
/* Congestion management fairness mode */
#define CMNG_FNS_NONE 0
#define CMNG_FNS_MINMAX 1
#define HC_SEG_ACCESS_DEF 0 /*Driver decision 0-3*/
#define HC_SEG_ACCESS_ATTN 4
#define HC_SEG_ACCESS_NORM 0 /*Driver decision 0-1*/
static const u32 dmae_reg_go_c[] = {
DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
};
void bnx2x_set_ethtool_ops(struct bnx2x *bp, struct net_device *netdev);
void bnx2x_notify_link_changed(struct bnx2x *bp);
#define BNX2X_MF_SD_PROTOCOL(bp) \
((bp)->mf_config[BP_VN(bp)] & FUNC_MF_CFG_PROTOCOL_MASK)
#define BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp) \
(BNX2X_MF_SD_PROTOCOL(bp) == FUNC_MF_CFG_PROTOCOL_ISCSI)
#define BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) \
(BNX2X_MF_SD_PROTOCOL(bp) == FUNC_MF_CFG_PROTOCOL_FCOE)
#define IS_MF_ISCSI_SD(bp) (IS_MF_SD(bp) && BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp))
#define IS_MF_FCOE_SD(bp) (IS_MF_SD(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))
#define BNX2X_MF_EXT_PROTOCOL_FCOE(bp) ((bp)->mf_ext_config & \
MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)
#define IS_MF_FCOE_AFEX(bp) (IS_MF_AFEX(bp) && BNX2X_MF_EXT_PROTOCOL_FCOE(bp))
#define IS_MF_STORAGE_SD(bp) (IS_MF_SD(bp) && \
(BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp) || \
BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
#define SET_FLAG(value, mask, flag) \
do {\
(value) &= ~(mask);\
(value) |= ((flag) << (mask##_SHIFT));\
} while (0)
#define GET_FLAG(value, mask) \
(((value) & (mask)) >> (mask##_SHIFT))
#define GET_FIELD(value, fname) \
(((value) & (fname##_MASK)) >> (fname##_SHIFT))
enum {
SWITCH_UPDATE,
AFEX_UPDATE,
};
#define NUM_MACS 8
enum bnx2x_pci_bus_speed {
BNX2X_PCI_LINK_SPEED_2500 = 2500,
BNX2X_PCI_LINK_SPEED_5000 = 5000,
BNX2X_PCI_LINK_SPEED_8000 = 8000
};
void bnx2x_set_local_cmng(struct bnx2x *bp);
#endif /* bnx2x.h */