| /* arch/sparc64/kernel/kprobes.c |
| * |
| * Copyright (C) 2004 David S. Miller <davem@davemloft.net> |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/kprobes.h> |
| #include <linux/module.h> |
| #include <linux/kdebug.h> |
| #include <linux/slab.h> |
| #include <linux/context_tracking.h> |
| #include <asm/signal.h> |
| #include <asm/cacheflush.h> |
| #include <asm/uaccess.h> |
| |
| /* We do not have hardware single-stepping on sparc64. |
| * So we implement software single-stepping with breakpoint |
| * traps. The top-level scheme is similar to that used |
| * in the x86 kprobes implementation. |
| * |
| * In the kprobe->ainsn.insn[] array we store the original |
| * instruction at index zero and a break instruction at |
| * index one. |
| * |
| * When we hit a kprobe we: |
| * - Run the pre-handler |
| * - Remember "regs->tnpc" and interrupt level stored in |
| * "regs->tstate" so we can restore them later |
| * - Disable PIL interrupts |
| * - Set regs->tpc to point to kprobe->ainsn.insn[0] |
| * - Set regs->tnpc to point to kprobe->ainsn.insn[1] |
| * - Mark that we are actively in a kprobe |
| * |
| * At this point we wait for the second breakpoint at |
| * kprobe->ainsn.insn[1] to hit. When it does we: |
| * - Run the post-handler |
| * - Set regs->tpc to "remembered" regs->tnpc stored above, |
| * restore the PIL interrupt level in "regs->tstate" as well |
| * - Make any adjustments necessary to regs->tnpc in order |
| * to handle relative branches correctly. See below. |
| * - Mark that we are no longer actively in a kprobe. |
| */ |
| |
| DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; |
| DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); |
| |
| struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}}; |
| |
| int __kprobes arch_prepare_kprobe(struct kprobe *p) |
| { |
| if ((unsigned long) p->addr & 0x3UL) |
| return -EILSEQ; |
| |
| p->ainsn.insn[0] = *p->addr; |
| flushi(&p->ainsn.insn[0]); |
| |
| p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2; |
| flushi(&p->ainsn.insn[1]); |
| |
| p->opcode = *p->addr; |
| return 0; |
| } |
| |
| void __kprobes arch_arm_kprobe(struct kprobe *p) |
| { |
| *p->addr = BREAKPOINT_INSTRUCTION; |
| flushi(p->addr); |
| } |
| |
| void __kprobes arch_disarm_kprobe(struct kprobe *p) |
| { |
| *p->addr = p->opcode; |
| flushi(p->addr); |
| } |
| |
| static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) |
| { |
| kcb->prev_kprobe.kp = kprobe_running(); |
| kcb->prev_kprobe.status = kcb->kprobe_status; |
| kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc; |
| kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil; |
| } |
| |
| static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) |
| { |
| __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); |
| kcb->kprobe_status = kcb->prev_kprobe.status; |
| kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc; |
| kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil; |
| } |
| |
| static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, |
| struct kprobe_ctlblk *kcb) |
| { |
| __this_cpu_write(current_kprobe, p); |
| kcb->kprobe_orig_tnpc = regs->tnpc; |
| kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL); |
| } |
| |
| static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs, |
| struct kprobe_ctlblk *kcb) |
| { |
| regs->tstate |= TSTATE_PIL; |
| |
| /*single step inline, if it a breakpoint instruction*/ |
| if (p->opcode == BREAKPOINT_INSTRUCTION) { |
| regs->tpc = (unsigned long) p->addr; |
| regs->tnpc = kcb->kprobe_orig_tnpc; |
| } else { |
| regs->tpc = (unsigned long) &p->ainsn.insn[0]; |
| regs->tnpc = (unsigned long) &p->ainsn.insn[1]; |
| } |
| } |
| |
| static int __kprobes kprobe_handler(struct pt_regs *regs) |
| { |
| struct kprobe *p; |
| void *addr = (void *) regs->tpc; |
| int ret = 0; |
| struct kprobe_ctlblk *kcb; |
| |
| /* |
| * We don't want to be preempted for the entire |
| * duration of kprobe processing |
| */ |
| preempt_disable(); |
| kcb = get_kprobe_ctlblk(); |
| |
| if (kprobe_running()) { |
| p = get_kprobe(addr); |
| if (p) { |
| if (kcb->kprobe_status == KPROBE_HIT_SS) { |
| regs->tstate = ((regs->tstate & ~TSTATE_PIL) | |
| kcb->kprobe_orig_tstate_pil); |
| goto no_kprobe; |
| } |
| /* We have reentered the kprobe_handler(), since |
| * another probe was hit while within the handler. |
| * We here save the original kprobes variables and |
| * just single step on the instruction of the new probe |
| * without calling any user handlers. |
| */ |
| save_previous_kprobe(kcb); |
| set_current_kprobe(p, regs, kcb); |
| kprobes_inc_nmissed_count(p); |
| kcb->kprobe_status = KPROBE_REENTER; |
| prepare_singlestep(p, regs, kcb); |
| return 1; |
| } else { |
| if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) { |
| /* The breakpoint instruction was removed by |
| * another cpu right after we hit, no further |
| * handling of this interrupt is appropriate |
| */ |
| ret = 1; |
| goto no_kprobe; |
| } |
| p = __this_cpu_read(current_kprobe); |
| if (p->break_handler && p->break_handler(p, regs)) |
| goto ss_probe; |
| } |
| goto no_kprobe; |
| } |
| |
| p = get_kprobe(addr); |
| if (!p) { |
| if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) { |
| /* |
| * The breakpoint instruction was removed right |
| * after we hit it. Another cpu has removed |
| * either a probepoint or a debugger breakpoint |
| * at this address. In either case, no further |
| * handling of this interrupt is appropriate. |
| */ |
| ret = 1; |
| } |
| /* Not one of ours: let kernel handle it */ |
| goto no_kprobe; |
| } |
| |
| set_current_kprobe(p, regs, kcb); |
| kcb->kprobe_status = KPROBE_HIT_ACTIVE; |
| if (p->pre_handler && p->pre_handler(p, regs)) |
| return 1; |
| |
| ss_probe: |
| prepare_singlestep(p, regs, kcb); |
| kcb->kprobe_status = KPROBE_HIT_SS; |
| return 1; |
| |
| no_kprobe: |
| preempt_enable_no_resched(); |
| return ret; |
| } |
| |
| /* If INSN is a relative control transfer instruction, |
| * return the corrected branch destination value. |
| * |
| * regs->tpc and regs->tnpc still hold the values of the |
| * program counters at the time of trap due to the execution |
| * of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1] |
| * |
| */ |
| static unsigned long __kprobes relbranch_fixup(u32 insn, struct kprobe *p, |
| struct pt_regs *regs) |
| { |
| unsigned long real_pc = (unsigned long) p->addr; |
| |
| /* Branch not taken, no mods necessary. */ |
| if (regs->tnpc == regs->tpc + 0x4UL) |
| return real_pc + 0x8UL; |
| |
| /* The three cases are call, branch w/prediction, |
| * and traditional branch. |
| */ |
| if ((insn & 0xc0000000) == 0x40000000 || |
| (insn & 0xc1c00000) == 0x00400000 || |
| (insn & 0xc1c00000) == 0x00800000) { |
| unsigned long ainsn_addr; |
| |
| ainsn_addr = (unsigned long) &p->ainsn.insn[0]; |
| |
| /* The instruction did all the work for us |
| * already, just apply the offset to the correct |
| * instruction location. |
| */ |
| return (real_pc + (regs->tnpc - ainsn_addr)); |
| } |
| |
| /* It is jmpl or some other absolute PC modification instruction, |
| * leave NPC as-is. |
| */ |
| return regs->tnpc; |
| } |
| |
| /* If INSN is an instruction which writes it's PC location |
| * into a destination register, fix that up. |
| */ |
| static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn, |
| unsigned long real_pc) |
| { |
| unsigned long *slot = NULL; |
| |
| /* Simplest case is 'call', which always uses %o7 */ |
| if ((insn & 0xc0000000) == 0x40000000) { |
| slot = ®s->u_regs[UREG_I7]; |
| } |
| |
| /* 'jmpl' encodes the register inside of the opcode */ |
| if ((insn & 0xc1f80000) == 0x81c00000) { |
| unsigned long rd = ((insn >> 25) & 0x1f); |
| |
| if (rd <= 15) { |
| slot = ®s->u_regs[rd]; |
| } else { |
| /* Hard case, it goes onto the stack. */ |
| flushw_all(); |
| |
| rd -= 16; |
| slot = (unsigned long *) |
| (regs->u_regs[UREG_FP] + STACK_BIAS); |
| slot += rd; |
| } |
| } |
| if (slot != NULL) |
| *slot = real_pc; |
| } |
| |
| /* |
| * Called after single-stepping. p->addr is the address of the |
| * instruction which has been replaced by the breakpoint |
| * instruction. To avoid the SMP problems that can occur when we |
| * temporarily put back the original opcode to single-step, we |
| * single-stepped a copy of the instruction. The address of this |
| * copy is &p->ainsn.insn[0]. |
| * |
| * This function prepares to return from the post-single-step |
| * breakpoint trap. |
| */ |
| static void __kprobes resume_execution(struct kprobe *p, |
| struct pt_regs *regs, struct kprobe_ctlblk *kcb) |
| { |
| u32 insn = p->ainsn.insn[0]; |
| |
| regs->tnpc = relbranch_fixup(insn, p, regs); |
| |
| /* This assignment must occur after relbranch_fixup() */ |
| regs->tpc = kcb->kprobe_orig_tnpc; |
| |
| retpc_fixup(regs, insn, (unsigned long) p->addr); |
| |
| regs->tstate = ((regs->tstate & ~TSTATE_PIL) | |
| kcb->kprobe_orig_tstate_pil); |
| } |
| |
| static int __kprobes post_kprobe_handler(struct pt_regs *regs) |
| { |
| struct kprobe *cur = kprobe_running(); |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| |
| if (!cur) |
| return 0; |
| |
| if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { |
| kcb->kprobe_status = KPROBE_HIT_SSDONE; |
| cur->post_handler(cur, regs, 0); |
| } |
| |
| resume_execution(cur, regs, kcb); |
| |
| /*Restore back the original saved kprobes variables and continue. */ |
| if (kcb->kprobe_status == KPROBE_REENTER) { |
| restore_previous_kprobe(kcb); |
| goto out; |
| } |
| reset_current_kprobe(); |
| out: |
| preempt_enable_no_resched(); |
| |
| return 1; |
| } |
| |
| int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) |
| { |
| struct kprobe *cur = kprobe_running(); |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| const struct exception_table_entry *entry; |
| |
| switch(kcb->kprobe_status) { |
| case KPROBE_HIT_SS: |
| case KPROBE_REENTER: |
| /* |
| * We are here because the instruction being single |
| * stepped caused a page fault. We reset the current |
| * kprobe and the tpc points back to the probe address |
| * and allow the page fault handler to continue as a |
| * normal page fault. |
| */ |
| regs->tpc = (unsigned long)cur->addr; |
| regs->tnpc = kcb->kprobe_orig_tnpc; |
| regs->tstate = ((regs->tstate & ~TSTATE_PIL) | |
| kcb->kprobe_orig_tstate_pil); |
| if (kcb->kprobe_status == KPROBE_REENTER) |
| restore_previous_kprobe(kcb); |
| else |
| reset_current_kprobe(); |
| preempt_enable_no_resched(); |
| break; |
| case KPROBE_HIT_ACTIVE: |
| case KPROBE_HIT_SSDONE: |
| /* |
| * We increment the nmissed count for accounting, |
| * we can also use npre/npostfault count for accounting |
| * these specific fault cases. |
| */ |
| kprobes_inc_nmissed_count(cur); |
| |
| /* |
| * We come here because instructions in the pre/post |
| * handler caused the page_fault, this could happen |
| * if handler tries to access user space by |
| * copy_from_user(), get_user() etc. Let the |
| * user-specified handler try to fix it first. |
| */ |
| if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) |
| return 1; |
| |
| /* |
| * In case the user-specified fault handler returned |
| * zero, try to fix up. |
| */ |
| |
| entry = search_exception_tables(regs->tpc); |
| if (entry) { |
| regs->tpc = entry->fixup; |
| regs->tnpc = regs->tpc + 4; |
| return 1; |
| } |
| |
| /* |
| * fixup_exception() could not handle it, |
| * Let do_page_fault() fix it. |
| */ |
| break; |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Wrapper routine to for handling exceptions. |
| */ |
| int __kprobes kprobe_exceptions_notify(struct notifier_block *self, |
| unsigned long val, void *data) |
| { |
| struct die_args *args = (struct die_args *)data; |
| int ret = NOTIFY_DONE; |
| |
| if (args->regs && user_mode(args->regs)) |
| return ret; |
| |
| switch (val) { |
| case DIE_DEBUG: |
| if (kprobe_handler(args->regs)) |
| ret = NOTIFY_STOP; |
| break; |
| case DIE_DEBUG_2: |
| if (post_kprobe_handler(args->regs)) |
| ret = NOTIFY_STOP; |
| break; |
| default: |
| break; |
| } |
| return ret; |
| } |
| |
| asmlinkage void __kprobes kprobe_trap(unsigned long trap_level, |
| struct pt_regs *regs) |
| { |
| enum ctx_state prev_state = exception_enter(); |
| |
| BUG_ON(trap_level != 0x170 && trap_level != 0x171); |
| |
| if (user_mode(regs)) { |
| local_irq_enable(); |
| bad_trap(regs, trap_level); |
| goto out; |
| } |
| |
| /* trap_level == 0x170 --> ta 0x70 |
| * trap_level == 0x171 --> ta 0x71 |
| */ |
| if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2, |
| (trap_level == 0x170) ? "debug" : "debug_2", |
| regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP) |
| bad_trap(regs, trap_level); |
| out: |
| exception_exit(prev_state); |
| } |
| |
| /* Jprobes support. */ |
| int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| struct jprobe *jp = container_of(p, struct jprobe, kp); |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| |
| memcpy(&(kcb->jprobe_saved_regs), regs, sizeof(*regs)); |
| |
| regs->tpc = (unsigned long) jp->entry; |
| regs->tnpc = ((unsigned long) jp->entry) + 0x4UL; |
| regs->tstate |= TSTATE_PIL; |
| |
| return 1; |
| } |
| |
| void __kprobes jprobe_return(void) |
| { |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| register unsigned long orig_fp asm("g1"); |
| |
| orig_fp = kcb->jprobe_saved_regs.u_regs[UREG_FP]; |
| __asm__ __volatile__("\n" |
| "1: cmp %%sp, %0\n\t" |
| "blu,a,pt %%xcc, 1b\n\t" |
| " restore\n\t" |
| ".globl jprobe_return_trap_instruction\n" |
| "jprobe_return_trap_instruction:\n\t" |
| "ta 0x70" |
| : /* no outputs */ |
| : "r" (orig_fp)); |
| } |
| |
| extern void jprobe_return_trap_instruction(void); |
| |
| int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| u32 *addr = (u32 *) regs->tpc; |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| |
| if (addr == (u32 *) jprobe_return_trap_instruction) { |
| memcpy(regs, &(kcb->jprobe_saved_regs), sizeof(*regs)); |
| preempt_enable_no_resched(); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* The value stored in the return address register is actually 2 |
| * instructions before where the callee will return to. |
| * Sequences usually look something like this |
| * |
| * call some_function <--- return register points here |
| * nop <--- call delay slot |
| * whatever <--- where callee returns to |
| * |
| * To keep trampoline_probe_handler logic simpler, we normalize the |
| * value kept in ri->ret_addr so we don't need to keep adjusting it |
| * back and forth. |
| */ |
| void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, |
| struct pt_regs *regs) |
| { |
| ri->ret_addr = (kprobe_opcode_t *)(regs->u_regs[UREG_RETPC] + 8); |
| |
| /* Replace the return addr with trampoline addr */ |
| regs->u_regs[UREG_RETPC] = |
| ((unsigned long)kretprobe_trampoline) - 8; |
| } |
| |
| /* |
| * Called when the probe at kretprobe trampoline is hit |
| */ |
| static int __kprobes trampoline_probe_handler(struct kprobe *p, |
| struct pt_regs *regs) |
| { |
| struct kretprobe_instance *ri = NULL; |
| struct hlist_head *head, empty_rp; |
| struct hlist_node *tmp; |
| unsigned long flags, orig_ret_address = 0; |
| unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline; |
| |
| INIT_HLIST_HEAD(&empty_rp); |
| kretprobe_hash_lock(current, &head, &flags); |
| |
| /* |
| * It is possible to have multiple instances associated with a given |
| * task either because an multiple functions in the call path |
| * have a return probe installed on them, and/or more than one return |
| * return probe was registered for a target function. |
| * |
| * We can handle this because: |
| * - instances are always inserted at the head of the list |
| * - when multiple return probes are registered for the same |
| * function, the first instance's ret_addr will point to the |
| * real return address, and all the rest will point to |
| * kretprobe_trampoline |
| */ |
| hlist_for_each_entry_safe(ri, tmp, head, hlist) { |
| if (ri->task != current) |
| /* another task is sharing our hash bucket */ |
| continue; |
| |
| if (ri->rp && ri->rp->handler) |
| ri->rp->handler(ri, regs); |
| |
| orig_ret_address = (unsigned long)ri->ret_addr; |
| recycle_rp_inst(ri, &empty_rp); |
| |
| if (orig_ret_address != trampoline_address) |
| /* |
| * This is the real return address. Any other |
| * instances associated with this task are for |
| * other calls deeper on the call stack |
| */ |
| break; |
| } |
| |
| kretprobe_assert(ri, orig_ret_address, trampoline_address); |
| regs->tpc = orig_ret_address; |
| regs->tnpc = orig_ret_address + 4; |
| |
| reset_current_kprobe(); |
| kretprobe_hash_unlock(current, &flags); |
| preempt_enable_no_resched(); |
| |
| hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { |
| hlist_del(&ri->hlist); |
| kfree(ri); |
| } |
| /* |
| * By returning a non-zero value, we are telling |
| * kprobe_handler() that we don't want the post_handler |
| * to run (and have re-enabled preemption) |
| */ |
| return 1; |
| } |
| |
| static void __used kretprobe_trampoline_holder(void) |
| { |
| asm volatile(".global kretprobe_trampoline\n" |
| "kretprobe_trampoline:\n" |
| "\tnop\n" |
| "\tnop\n"); |
| } |
| static struct kprobe trampoline_p = { |
| .addr = (kprobe_opcode_t *) &kretprobe_trampoline, |
| .pre_handler = trampoline_probe_handler |
| }; |
| |
| int __init arch_init_kprobes(void) |
| { |
| return register_kprobe(&trampoline_p); |
| } |
| |
| int __kprobes arch_trampoline_kprobe(struct kprobe *p) |
| { |
| if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline) |
| return 1; |
| |
| return 0; |
| } |