| /* |
| * S390 version |
| * Copyright IBM Corp. 1999, 2000 |
| * Author(s): Hartmut Penner (hp@de.ibm.com) |
| * Ulrich Weigand (weigand@de.ibm.com) |
| * Martin Schwidefsky (schwidefsky@de.ibm.com) |
| * |
| * Derived from "include/asm-i386/pgtable.h" |
| */ |
| |
| #ifndef _ASM_S390_PGTABLE_H |
| #define _ASM_S390_PGTABLE_H |
| |
| /* |
| * The Linux memory management assumes a three-level page table setup. |
| * For s390 64 bit we use up to four of the five levels the hardware |
| * provides (region first tables are not used). |
| * |
| * The "pgd_xxx()" functions are trivial for a folded two-level |
| * setup: the pgd is never bad, and a pmd always exists (as it's folded |
| * into the pgd entry) |
| * |
| * This file contains the functions and defines necessary to modify and use |
| * the S390 page table tree. |
| */ |
| #ifndef __ASSEMBLY__ |
| #include <linux/sched.h> |
| #include <linux/mm_types.h> |
| #include <linux/page-flags.h> |
| #include <linux/radix-tree.h> |
| #include <asm/bug.h> |
| #include <asm/page.h> |
| |
| extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096))); |
| extern void paging_init(void); |
| extern void vmem_map_init(void); |
| |
| /* |
| * The S390 doesn't have any external MMU info: the kernel page |
| * tables contain all the necessary information. |
| */ |
| #define update_mmu_cache(vma, address, ptep) do { } while (0) |
| #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0) |
| |
| /* |
| * ZERO_PAGE is a global shared page that is always zero; used |
| * for zero-mapped memory areas etc.. |
| */ |
| |
| extern unsigned long empty_zero_page; |
| extern unsigned long zero_page_mask; |
| |
| #define ZERO_PAGE(vaddr) \ |
| (virt_to_page((void *)(empty_zero_page + \ |
| (((unsigned long)(vaddr)) &zero_page_mask)))) |
| #define __HAVE_COLOR_ZERO_PAGE |
| |
| /* TODO: s390 cannot support io_remap_pfn_range... */ |
| #endif /* !__ASSEMBLY__ */ |
| |
| /* |
| * PMD_SHIFT determines the size of the area a second-level page |
| * table can map |
| * PGDIR_SHIFT determines what a third-level page table entry can map |
| */ |
| #define PMD_SHIFT 20 |
| #define PUD_SHIFT 31 |
| #define PGDIR_SHIFT 42 |
| |
| #define PMD_SIZE (1UL << PMD_SHIFT) |
| #define PMD_MASK (~(PMD_SIZE-1)) |
| #define PUD_SIZE (1UL << PUD_SHIFT) |
| #define PUD_MASK (~(PUD_SIZE-1)) |
| #define PGDIR_SIZE (1UL << PGDIR_SHIFT) |
| #define PGDIR_MASK (~(PGDIR_SIZE-1)) |
| |
| /* |
| * entries per page directory level: the S390 is two-level, so |
| * we don't really have any PMD directory physically. |
| * for S390 segment-table entries are combined to one PGD |
| * that leads to 1024 pte per pgd |
| */ |
| #define PTRS_PER_PTE 256 |
| #define PTRS_PER_PMD 2048 |
| #define PTRS_PER_PUD 2048 |
| #define PTRS_PER_PGD 2048 |
| |
| #define FIRST_USER_ADDRESS 0UL |
| |
| #define pte_ERROR(e) \ |
| printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e)) |
| #define pmd_ERROR(e) \ |
| printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e)) |
| #define pud_ERROR(e) \ |
| printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e)) |
| #define pgd_ERROR(e) \ |
| printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e)) |
| |
| #ifndef __ASSEMBLY__ |
| /* |
| * The vmalloc and module area will always be on the topmost area of the |
| * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules. |
| * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where |
| * modules will reside. That makes sure that inter module branches always |
| * happen without trampolines and in addition the placement within a 2GB frame |
| * is branch prediction unit friendly. |
| */ |
| extern unsigned long VMALLOC_START; |
| extern unsigned long VMALLOC_END; |
| extern struct page *vmemmap; |
| |
| #define VMEM_MAX_PHYS ((unsigned long) vmemmap) |
| |
| extern unsigned long MODULES_VADDR; |
| extern unsigned long MODULES_END; |
| #define MODULES_VADDR MODULES_VADDR |
| #define MODULES_END MODULES_END |
| #define MODULES_LEN (1UL << 31) |
| |
| static inline int is_module_addr(void *addr) |
| { |
| BUILD_BUG_ON(MODULES_LEN > (1UL << 31)); |
| if (addr < (void *)MODULES_VADDR) |
| return 0; |
| if (addr > (void *)MODULES_END) |
| return 0; |
| return 1; |
| } |
| |
| /* |
| * A 64 bit pagetable entry of S390 has following format: |
| * | PFRA |0IPC| OS | |
| * 0000000000111111111122222222223333333333444444444455555555556666 |
| * 0123456789012345678901234567890123456789012345678901234567890123 |
| * |
| * I Page-Invalid Bit: Page is not available for address-translation |
| * P Page-Protection Bit: Store access not possible for page |
| * C Change-bit override: HW is not required to set change bit |
| * |
| * A 64 bit segmenttable entry of S390 has following format: |
| * | P-table origin | TT |
| * 0000000000111111111122222222223333333333444444444455555555556666 |
| * 0123456789012345678901234567890123456789012345678901234567890123 |
| * |
| * I Segment-Invalid Bit: Segment is not available for address-translation |
| * C Common-Segment Bit: Segment is not private (PoP 3-30) |
| * P Page-Protection Bit: Store access not possible for page |
| * TT Type 00 |
| * |
| * A 64 bit region table entry of S390 has following format: |
| * | S-table origin | TF TTTL |
| * 0000000000111111111122222222223333333333444444444455555555556666 |
| * 0123456789012345678901234567890123456789012345678901234567890123 |
| * |
| * I Segment-Invalid Bit: Segment is not available for address-translation |
| * TT Type 01 |
| * TF |
| * TL Table length |
| * |
| * The 64 bit regiontable origin of S390 has following format: |
| * | region table origon | DTTL |
| * 0000000000111111111122222222223333333333444444444455555555556666 |
| * 0123456789012345678901234567890123456789012345678901234567890123 |
| * |
| * X Space-Switch event: |
| * G Segment-Invalid Bit: |
| * P Private-Space Bit: |
| * S Storage-Alteration: |
| * R Real space |
| * TL Table-Length: |
| * |
| * A storage key has the following format: |
| * | ACC |F|R|C|0| |
| * 0 3 4 5 6 7 |
| * ACC: access key |
| * F : fetch protection bit |
| * R : referenced bit |
| * C : changed bit |
| */ |
| |
| /* Hardware bits in the page table entry */ |
| #define _PAGE_PROTECT 0x200 /* HW read-only bit */ |
| #define _PAGE_INVALID 0x400 /* HW invalid bit */ |
| #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */ |
| |
| /* Software bits in the page table entry */ |
| #define _PAGE_PRESENT 0x001 /* SW pte present bit */ |
| #define _PAGE_YOUNG 0x004 /* SW pte young bit */ |
| #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */ |
| #define _PAGE_READ 0x010 /* SW pte read bit */ |
| #define _PAGE_WRITE 0x020 /* SW pte write bit */ |
| #define _PAGE_SPECIAL 0x040 /* SW associated with special page */ |
| #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */ |
| #define __HAVE_ARCH_PTE_SPECIAL |
| |
| #ifdef CONFIG_MEM_SOFT_DIRTY |
| #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */ |
| #else |
| #define _PAGE_SOFT_DIRTY 0x000 |
| #endif |
| |
| /* Set of bits not changed in pte_modify */ |
| #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \ |
| _PAGE_YOUNG | _PAGE_SOFT_DIRTY) |
| |
| /* |
| * handle_pte_fault uses pte_present and pte_none to find out the pte type |
| * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to |
| * distinguish present from not-present ptes. It is changed only with the page |
| * table lock held. |
| * |
| * The following table gives the different possible bit combinations for |
| * the pte hardware and software bits in the last 12 bits of a pte |
| * (. unassigned bit, x don't care, t swap type): |
| * |
| * 842100000000 |
| * 000084210000 |
| * 000000008421 |
| * .IR.uswrdy.p |
| * empty .10.00000000 |
| * swap .11..ttttt.0 |
| * prot-none, clean, old .11.xx0000.1 |
| * prot-none, clean, young .11.xx0001.1 |
| * prot-none, dirty, old .10.xx0010.1 |
| * prot-none, dirty, young .10.xx0011.1 |
| * read-only, clean, old .11.xx0100.1 |
| * read-only, clean, young .01.xx0101.1 |
| * read-only, dirty, old .11.xx0110.1 |
| * read-only, dirty, young .01.xx0111.1 |
| * read-write, clean, old .11.xx1100.1 |
| * read-write, clean, young .01.xx1101.1 |
| * read-write, dirty, old .10.xx1110.1 |
| * read-write, dirty, young .00.xx1111.1 |
| * HW-bits: R read-only, I invalid |
| * SW-bits: p present, y young, d dirty, r read, w write, s special, |
| * u unused, l large |
| * |
| * pte_none is true for the bit pattern .10.00000000, pte == 0x400 |
| * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200 |
| * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001 |
| */ |
| |
| /* Bits in the segment/region table address-space-control-element */ |
| #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */ |
| #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */ |
| #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */ |
| #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */ |
| #define _ASCE_REAL_SPACE 0x20 /* real space control */ |
| #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */ |
| #define _ASCE_TYPE_REGION1 0x0c /* region first table type */ |
| #define _ASCE_TYPE_REGION2 0x08 /* region second table type */ |
| #define _ASCE_TYPE_REGION3 0x04 /* region third table type */ |
| #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */ |
| #define _ASCE_TABLE_LENGTH 0x03 /* region table length */ |
| |
| /* Bits in the region table entry */ |
| #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */ |
| #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */ |
| #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */ |
| #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */ |
| #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */ |
| #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */ |
| #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */ |
| #define _REGION_ENTRY_LENGTH 0x03 /* region third length */ |
| |
| #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH) |
| #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID) |
| #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH) |
| #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID) |
| #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH) |
| #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID) |
| |
| #define _REGION3_ENTRY_LARGE 0x400 /* RTTE-format control, large page */ |
| #define _REGION3_ENTRY_RO 0x200 /* page protection bit */ |
| |
| /* Bits in the segment table entry */ |
| #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL |
| #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL |
| #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */ |
| #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */ |
| #define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */ |
| #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */ |
| |
| #define _SEGMENT_ENTRY (0) |
| #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID) |
| |
| #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */ |
| #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */ |
| #define _SEGMENT_ENTRY_SPLIT 0x0800 /* THP splitting bit */ |
| #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */ |
| #define _SEGMENT_ENTRY_READ 0x0002 /* SW segment read bit */ |
| #define _SEGMENT_ENTRY_WRITE 0x0001 /* SW segment write bit */ |
| |
| #ifdef CONFIG_MEM_SOFT_DIRTY |
| #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */ |
| #else |
| #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */ |
| #endif |
| |
| /* |
| * Segment table entry encoding (R = read-only, I = invalid, y = young bit): |
| * dy..R...I...wr |
| * prot-none, clean, old 00..1...1...00 |
| * prot-none, clean, young 01..1...1...00 |
| * prot-none, dirty, old 10..1...1...00 |
| * prot-none, dirty, young 11..1...1...00 |
| * read-only, clean, old 00..1...1...01 |
| * read-only, clean, young 01..1...0...01 |
| * read-only, dirty, old 10..1...1...01 |
| * read-only, dirty, young 11..1...0...01 |
| * read-write, clean, old 00..1...1...11 |
| * read-write, clean, young 01..1...0...11 |
| * read-write, dirty, old 10..0...1...11 |
| * read-write, dirty, young 11..0...0...11 |
| * The segment table origin is used to distinguish empty (origin==0) from |
| * read-write, old segment table entries (origin!=0) |
| * HW-bits: R read-only, I invalid |
| * SW-bits: y young, d dirty, r read, w write |
| */ |
| |
| #define _SEGMENT_ENTRY_SPLIT_BIT 11 /* THP splitting bit number */ |
| |
| /* Page status table bits for virtualization */ |
| #define PGSTE_ACC_BITS 0xf000000000000000UL |
| #define PGSTE_FP_BIT 0x0800000000000000UL |
| #define PGSTE_PCL_BIT 0x0080000000000000UL |
| #define PGSTE_HR_BIT 0x0040000000000000UL |
| #define PGSTE_HC_BIT 0x0020000000000000UL |
| #define PGSTE_GR_BIT 0x0004000000000000UL |
| #define PGSTE_GC_BIT 0x0002000000000000UL |
| #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */ |
| #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */ |
| |
| /* Guest Page State used for virtualization */ |
| #define _PGSTE_GPS_ZERO 0x0000000080000000UL |
| #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL |
| #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL |
| #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL |
| |
| /* |
| * A user page table pointer has the space-switch-event bit, the |
| * private-space-control bit and the storage-alteration-event-control |
| * bit set. A kernel page table pointer doesn't need them. |
| */ |
| #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \ |
| _ASCE_ALT_EVENT) |
| |
| /* |
| * Page protection definitions. |
| */ |
| #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID) |
| #define PAGE_READ __pgprot(_PAGE_PRESENT | _PAGE_READ | \ |
| _PAGE_INVALID | _PAGE_PROTECT) |
| #define PAGE_WRITE __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ |
| _PAGE_INVALID | _PAGE_PROTECT) |
| |
| #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ |
| _PAGE_YOUNG | _PAGE_DIRTY) |
| #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ |
| _PAGE_YOUNG | _PAGE_DIRTY) |
| #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \ |
| _PAGE_PROTECT) |
| |
| /* |
| * On s390 the page table entry has an invalid bit and a read-only bit. |
| * Read permission implies execute permission and write permission |
| * implies read permission. |
| */ |
| /*xwr*/ |
| #define __P000 PAGE_NONE |
| #define __P001 PAGE_READ |
| #define __P010 PAGE_READ |
| #define __P011 PAGE_READ |
| #define __P100 PAGE_READ |
| #define __P101 PAGE_READ |
| #define __P110 PAGE_READ |
| #define __P111 PAGE_READ |
| |
| #define __S000 PAGE_NONE |
| #define __S001 PAGE_READ |
| #define __S010 PAGE_WRITE |
| #define __S011 PAGE_WRITE |
| #define __S100 PAGE_READ |
| #define __S101 PAGE_READ |
| #define __S110 PAGE_WRITE |
| #define __S111 PAGE_WRITE |
| |
| /* |
| * Segment entry (large page) protection definitions. |
| */ |
| #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \ |
| _SEGMENT_ENTRY_PROTECT) |
| #define SEGMENT_READ __pgprot(_SEGMENT_ENTRY_PROTECT | \ |
| _SEGMENT_ENTRY_READ) |
| #define SEGMENT_WRITE __pgprot(_SEGMENT_ENTRY_READ | \ |
| _SEGMENT_ENTRY_WRITE) |
| |
| static inline int mm_has_pgste(struct mm_struct *mm) |
| { |
| #ifdef CONFIG_PGSTE |
| if (unlikely(mm->context.has_pgste)) |
| return 1; |
| #endif |
| return 0; |
| } |
| |
| static inline int mm_alloc_pgste(struct mm_struct *mm) |
| { |
| #ifdef CONFIG_PGSTE |
| if (unlikely(mm->context.alloc_pgste)) |
| return 1; |
| #endif |
| return 0; |
| } |
| |
| /* |
| * In the case that a guest uses storage keys |
| * faults should no longer be backed by zero pages |
| */ |
| #define mm_forbids_zeropage mm_use_skey |
| static inline int mm_use_skey(struct mm_struct *mm) |
| { |
| #ifdef CONFIG_PGSTE |
| if (mm->context.use_skey) |
| return 1; |
| #endif |
| return 0; |
| } |
| |
| /* |
| * pgd/pmd/pte query functions |
| */ |
| static inline int pgd_present(pgd_t pgd) |
| { |
| if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2) |
| return 1; |
| return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL; |
| } |
| |
| static inline int pgd_none(pgd_t pgd) |
| { |
| if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2) |
| return 0; |
| return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL; |
| } |
| |
| static inline int pgd_bad(pgd_t pgd) |
| { |
| /* |
| * With dynamic page table levels the pgd can be a region table |
| * entry or a segment table entry. Check for the bit that are |
| * invalid for either table entry. |
| */ |
| unsigned long mask = |
| ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID & |
| ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH; |
| return (pgd_val(pgd) & mask) != 0; |
| } |
| |
| static inline int pud_present(pud_t pud) |
| { |
| if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3) |
| return 1; |
| return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL; |
| } |
| |
| static inline int pud_none(pud_t pud) |
| { |
| if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3) |
| return 0; |
| return (pud_val(pud) & _REGION_ENTRY_INVALID) != 0UL; |
| } |
| |
| static inline int pud_large(pud_t pud) |
| { |
| if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3) |
| return 0; |
| return !!(pud_val(pud) & _REGION3_ENTRY_LARGE); |
| } |
| |
| static inline int pud_bad(pud_t pud) |
| { |
| /* |
| * With dynamic page table levels the pud can be a region table |
| * entry or a segment table entry. Check for the bit that are |
| * invalid for either table entry. |
| */ |
| unsigned long mask = |
| ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID & |
| ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH; |
| return (pud_val(pud) & mask) != 0; |
| } |
| |
| static inline int pmd_present(pmd_t pmd) |
| { |
| return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID; |
| } |
| |
| static inline int pmd_none(pmd_t pmd) |
| { |
| return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID; |
| } |
| |
| static inline int pmd_large(pmd_t pmd) |
| { |
| return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0; |
| } |
| |
| static inline unsigned long pmd_pfn(pmd_t pmd) |
| { |
| unsigned long origin_mask; |
| |
| origin_mask = _SEGMENT_ENTRY_ORIGIN; |
| if (pmd_large(pmd)) |
| origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE; |
| return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT; |
| } |
| |
| static inline int pmd_bad(pmd_t pmd) |
| { |
| if (pmd_large(pmd)) |
| return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0; |
| return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0; |
| } |
| |
| #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH |
| extern void pmdp_splitting_flush(struct vm_area_struct *vma, |
| unsigned long addr, pmd_t *pmdp); |
| |
| #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS |
| extern int pmdp_set_access_flags(struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmdp, |
| pmd_t entry, int dirty); |
| |
| #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH |
| extern int pmdp_clear_flush_young(struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmdp); |
| |
| #define __HAVE_ARCH_PMD_WRITE |
| static inline int pmd_write(pmd_t pmd) |
| { |
| return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0; |
| } |
| |
| static inline int pmd_dirty(pmd_t pmd) |
| { |
| int dirty = 1; |
| if (pmd_large(pmd)) |
| dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0; |
| return dirty; |
| } |
| |
| static inline int pmd_young(pmd_t pmd) |
| { |
| int young = 1; |
| if (pmd_large(pmd)) |
| young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0; |
| return young; |
| } |
| |
| static inline int pte_present(pte_t pte) |
| { |
| /* Bit pattern: (pte & 0x001) == 0x001 */ |
| return (pte_val(pte) & _PAGE_PRESENT) != 0; |
| } |
| |
| static inline int pte_none(pte_t pte) |
| { |
| /* Bit pattern: pte == 0x400 */ |
| return pte_val(pte) == _PAGE_INVALID; |
| } |
| |
| static inline int pte_swap(pte_t pte) |
| { |
| /* Bit pattern: (pte & 0x201) == 0x200 */ |
| return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT)) |
| == _PAGE_PROTECT; |
| } |
| |
| static inline int pte_special(pte_t pte) |
| { |
| return (pte_val(pte) & _PAGE_SPECIAL); |
| } |
| |
| #define __HAVE_ARCH_PTE_SAME |
| static inline int pte_same(pte_t a, pte_t b) |
| { |
| return pte_val(a) == pte_val(b); |
| } |
| |
| #ifdef CONFIG_NUMA_BALANCING |
| static inline int pte_protnone(pte_t pte) |
| { |
| return pte_present(pte) && !(pte_val(pte) & _PAGE_READ); |
| } |
| |
| static inline int pmd_protnone(pmd_t pmd) |
| { |
| /* pmd_large(pmd) implies pmd_present(pmd) */ |
| return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ); |
| } |
| #endif |
| |
| static inline int pte_soft_dirty(pte_t pte) |
| { |
| return pte_val(pte) & _PAGE_SOFT_DIRTY; |
| } |
| #define pte_swp_soft_dirty pte_soft_dirty |
| |
| static inline pte_t pte_mksoft_dirty(pte_t pte) |
| { |
| pte_val(pte) |= _PAGE_SOFT_DIRTY; |
| return pte; |
| } |
| #define pte_swp_mksoft_dirty pte_mksoft_dirty |
| |
| static inline pte_t pte_clear_soft_dirty(pte_t pte) |
| { |
| pte_val(pte) &= ~_PAGE_SOFT_DIRTY; |
| return pte; |
| } |
| #define pte_swp_clear_soft_dirty pte_clear_soft_dirty |
| |
| static inline int pmd_soft_dirty(pmd_t pmd) |
| { |
| return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY; |
| } |
| |
| static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) |
| { |
| pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY; |
| return pmd; |
| } |
| |
| static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) |
| { |
| pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY; |
| return pmd; |
| } |
| |
| static inline pgste_t pgste_get_lock(pte_t *ptep) |
| { |
| unsigned long new = 0; |
| #ifdef CONFIG_PGSTE |
| unsigned long old; |
| |
| preempt_disable(); |
| asm( |
| " lg %0,%2\n" |
| "0: lgr %1,%0\n" |
| " nihh %0,0xff7f\n" /* clear PCL bit in old */ |
| " oihh %1,0x0080\n" /* set PCL bit in new */ |
| " csg %0,%1,%2\n" |
| " jl 0b\n" |
| : "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE]) |
| : "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory"); |
| #endif |
| return __pgste(new); |
| } |
| |
| static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste) |
| { |
| #ifdef CONFIG_PGSTE |
| asm( |
| " nihh %1,0xff7f\n" /* clear PCL bit */ |
| " stg %1,%0\n" |
| : "=Q" (ptep[PTRS_PER_PTE]) |
| : "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE]) |
| : "cc", "memory"); |
| preempt_enable(); |
| #endif |
| } |
| |
| static inline pgste_t pgste_get(pte_t *ptep) |
| { |
| unsigned long pgste = 0; |
| #ifdef CONFIG_PGSTE |
| pgste = *(unsigned long *)(ptep + PTRS_PER_PTE); |
| #endif |
| return __pgste(pgste); |
| } |
| |
| static inline void pgste_set(pte_t *ptep, pgste_t pgste) |
| { |
| #ifdef CONFIG_PGSTE |
| *(pgste_t *)(ptep + PTRS_PER_PTE) = pgste; |
| #endif |
| } |
| |
| static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste, |
| struct mm_struct *mm) |
| { |
| #ifdef CONFIG_PGSTE |
| unsigned long address, bits, skey; |
| |
| if (!mm_use_skey(mm) || pte_val(*ptep) & _PAGE_INVALID) |
| return pgste; |
| address = pte_val(*ptep) & PAGE_MASK; |
| skey = (unsigned long) page_get_storage_key(address); |
| bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED); |
| /* Transfer page changed & referenced bit to guest bits in pgste */ |
| pgste_val(pgste) |= bits << 48; /* GR bit & GC bit */ |
| /* Copy page access key and fetch protection bit to pgste */ |
| pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT); |
| pgste_val(pgste) |= (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56; |
| #endif |
| return pgste; |
| |
| } |
| |
| static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry, |
| struct mm_struct *mm) |
| { |
| #ifdef CONFIG_PGSTE |
| unsigned long address; |
| unsigned long nkey; |
| |
| if (!mm_use_skey(mm) || pte_val(entry) & _PAGE_INVALID) |
| return; |
| VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID)); |
| address = pte_val(entry) & PAGE_MASK; |
| /* |
| * Set page access key and fetch protection bit from pgste. |
| * The guest C/R information is still in the PGSTE, set real |
| * key C/R to 0. |
| */ |
| nkey = (pgste_val(pgste) & (PGSTE_ACC_BITS | PGSTE_FP_BIT)) >> 56; |
| nkey |= (pgste_val(pgste) & (PGSTE_GR_BIT | PGSTE_GC_BIT)) >> 48; |
| page_set_storage_key(address, nkey, 0); |
| #endif |
| } |
| |
| static inline pgste_t pgste_set_pte(pte_t *ptep, pgste_t pgste, pte_t entry) |
| { |
| if ((pte_val(entry) & _PAGE_PRESENT) && |
| (pte_val(entry) & _PAGE_WRITE) && |
| !(pte_val(entry) & _PAGE_INVALID)) { |
| if (!MACHINE_HAS_ESOP) { |
| /* |
| * Without enhanced suppression-on-protection force |
| * the dirty bit on for all writable ptes. |
| */ |
| pte_val(entry) |= _PAGE_DIRTY; |
| pte_val(entry) &= ~_PAGE_PROTECT; |
| } |
| if (!(pte_val(entry) & _PAGE_PROTECT)) |
| /* This pte allows write access, set user-dirty */ |
| pgste_val(pgste) |= PGSTE_UC_BIT; |
| } |
| *ptep = entry; |
| return pgste; |
| } |
| |
| /** |
| * struct gmap_struct - guest address space |
| * @crst_list: list of all crst tables used in the guest address space |
| * @mm: pointer to the parent mm_struct |
| * @guest_to_host: radix tree with guest to host address translation |
| * @host_to_guest: radix tree with pointer to segment table entries |
| * @guest_table_lock: spinlock to protect all entries in the guest page table |
| * @table: pointer to the page directory |
| * @asce: address space control element for gmap page table |
| * @pfault_enabled: defines if pfaults are applicable for the guest |
| */ |
| struct gmap { |
| struct list_head list; |
| struct list_head crst_list; |
| struct mm_struct *mm; |
| struct radix_tree_root guest_to_host; |
| struct radix_tree_root host_to_guest; |
| spinlock_t guest_table_lock; |
| unsigned long *table; |
| unsigned long asce; |
| unsigned long asce_end; |
| void *private; |
| bool pfault_enabled; |
| }; |
| |
| /** |
| * struct gmap_notifier - notify function block for page invalidation |
| * @notifier_call: address of callback function |
| */ |
| struct gmap_notifier { |
| struct list_head list; |
| void (*notifier_call)(struct gmap *gmap, unsigned long gaddr); |
| }; |
| |
| struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit); |
| void gmap_free(struct gmap *gmap); |
| void gmap_enable(struct gmap *gmap); |
| void gmap_disable(struct gmap *gmap); |
| int gmap_map_segment(struct gmap *gmap, unsigned long from, |
| unsigned long to, unsigned long len); |
| int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len); |
| unsigned long __gmap_translate(struct gmap *, unsigned long gaddr); |
| unsigned long gmap_translate(struct gmap *, unsigned long gaddr); |
| int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr); |
| int gmap_fault(struct gmap *, unsigned long gaddr, unsigned int fault_flags); |
| void gmap_discard(struct gmap *, unsigned long from, unsigned long to); |
| void __gmap_zap(struct gmap *, unsigned long gaddr); |
| bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *); |
| |
| |
| void gmap_register_ipte_notifier(struct gmap_notifier *); |
| void gmap_unregister_ipte_notifier(struct gmap_notifier *); |
| int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len); |
| void gmap_do_ipte_notify(struct mm_struct *, unsigned long addr, pte_t *); |
| |
| static inline pgste_t pgste_ipte_notify(struct mm_struct *mm, |
| unsigned long addr, |
| pte_t *ptep, pgste_t pgste) |
| { |
| #ifdef CONFIG_PGSTE |
| if (pgste_val(pgste) & PGSTE_IN_BIT) { |
| pgste_val(pgste) &= ~PGSTE_IN_BIT; |
| gmap_do_ipte_notify(mm, addr, ptep); |
| } |
| #endif |
| return pgste; |
| } |
| |
| /* |
| * Certain architectures need to do special things when PTEs |
| * within a page table are directly modified. Thus, the following |
| * hook is made available. |
| */ |
| static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep, pte_t entry) |
| { |
| pgste_t pgste; |
| |
| if (pte_present(entry)) |
| pte_val(entry) &= ~_PAGE_UNUSED; |
| if (mm_has_pgste(mm)) { |
| pgste = pgste_get_lock(ptep); |
| pgste_val(pgste) &= ~_PGSTE_GPS_ZERO; |
| pgste_set_key(ptep, pgste, entry, mm); |
| pgste = pgste_set_pte(ptep, pgste, entry); |
| pgste_set_unlock(ptep, pgste); |
| } else { |
| *ptep = entry; |
| } |
| } |
| |
| /* |
| * query functions pte_write/pte_dirty/pte_young only work if |
| * pte_present() is true. Undefined behaviour if not.. |
| */ |
| static inline int pte_write(pte_t pte) |
| { |
| return (pte_val(pte) & _PAGE_WRITE) != 0; |
| } |
| |
| static inline int pte_dirty(pte_t pte) |
| { |
| return (pte_val(pte) & _PAGE_DIRTY) != 0; |
| } |
| |
| static inline int pte_young(pte_t pte) |
| { |
| return (pte_val(pte) & _PAGE_YOUNG) != 0; |
| } |
| |
| #define __HAVE_ARCH_PTE_UNUSED |
| static inline int pte_unused(pte_t pte) |
| { |
| return pte_val(pte) & _PAGE_UNUSED; |
| } |
| |
| /* |
| * pgd/pmd/pte modification functions |
| */ |
| |
| static inline void pgd_clear(pgd_t *pgd) |
| { |
| if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) |
| pgd_val(*pgd) = _REGION2_ENTRY_EMPTY; |
| } |
| |
| static inline void pud_clear(pud_t *pud) |
| { |
| if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) |
| pud_val(*pud) = _REGION3_ENTRY_EMPTY; |
| } |
| |
| static inline void pmd_clear(pmd_t *pmdp) |
| { |
| pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID; |
| } |
| |
| static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) |
| { |
| pte_val(*ptep) = _PAGE_INVALID; |
| } |
| |
| /* |
| * The following pte modification functions only work if |
| * pte_present() is true. Undefined behaviour if not.. |
| */ |
| static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) |
| { |
| pte_val(pte) &= _PAGE_CHG_MASK; |
| pte_val(pte) |= pgprot_val(newprot); |
| /* |
| * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the |
| * invalid bit set, clear it again for readable, young pages |
| */ |
| if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ)) |
| pte_val(pte) &= ~_PAGE_INVALID; |
| /* |
| * newprot for PAGE_READ and PAGE_WRITE has the page protection |
| * bit set, clear it again for writable, dirty pages |
| */ |
| if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE)) |
| pte_val(pte) &= ~_PAGE_PROTECT; |
| return pte; |
| } |
| |
| static inline pte_t pte_wrprotect(pte_t pte) |
| { |
| pte_val(pte) &= ~_PAGE_WRITE; |
| pte_val(pte) |= _PAGE_PROTECT; |
| return pte; |
| } |
| |
| static inline pte_t pte_mkwrite(pte_t pte) |
| { |
| pte_val(pte) |= _PAGE_WRITE; |
| if (pte_val(pte) & _PAGE_DIRTY) |
| pte_val(pte) &= ~_PAGE_PROTECT; |
| return pte; |
| } |
| |
| static inline pte_t pte_mkclean(pte_t pte) |
| { |
| pte_val(pte) &= ~_PAGE_DIRTY; |
| pte_val(pte) |= _PAGE_PROTECT; |
| return pte; |
| } |
| |
| static inline pte_t pte_mkdirty(pte_t pte) |
| { |
| pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY; |
| if (pte_val(pte) & _PAGE_WRITE) |
| pte_val(pte) &= ~_PAGE_PROTECT; |
| return pte; |
| } |
| |
| static inline pte_t pte_mkold(pte_t pte) |
| { |
| pte_val(pte) &= ~_PAGE_YOUNG; |
| pte_val(pte) |= _PAGE_INVALID; |
| return pte; |
| } |
| |
| static inline pte_t pte_mkyoung(pte_t pte) |
| { |
| pte_val(pte) |= _PAGE_YOUNG; |
| if (pte_val(pte) & _PAGE_READ) |
| pte_val(pte) &= ~_PAGE_INVALID; |
| return pte; |
| } |
| |
| static inline pte_t pte_mkspecial(pte_t pte) |
| { |
| pte_val(pte) |= _PAGE_SPECIAL; |
| return pte; |
| } |
| |
| #ifdef CONFIG_HUGETLB_PAGE |
| static inline pte_t pte_mkhuge(pte_t pte) |
| { |
| pte_val(pte) |= _PAGE_LARGE; |
| return pte; |
| } |
| #endif |
| |
| static inline void __ptep_ipte(unsigned long address, pte_t *ptep) |
| { |
| unsigned long pto = (unsigned long) ptep; |
| |
| /* Invalidation + global TLB flush for the pte */ |
| asm volatile( |
| " ipte %2,%3" |
| : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address)); |
| } |
| |
| static inline void __ptep_ipte_local(unsigned long address, pte_t *ptep) |
| { |
| unsigned long pto = (unsigned long) ptep; |
| |
| /* Invalidation + local TLB flush for the pte */ |
| asm volatile( |
| " .insn rrf,0xb2210000,%2,%3,0,1" |
| : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address)); |
| } |
| |
| static inline void __ptep_ipte_range(unsigned long address, int nr, pte_t *ptep) |
| { |
| unsigned long pto = (unsigned long) ptep; |
| |
| /* Invalidate a range of ptes + global TLB flush of the ptes */ |
| do { |
| asm volatile( |
| " .insn rrf,0xb2210000,%2,%0,%1,0" |
| : "+a" (address), "+a" (nr) : "a" (pto) : "memory"); |
| } while (nr != 255); |
| } |
| |
| static inline void ptep_flush_direct(struct mm_struct *mm, |
| unsigned long address, pte_t *ptep) |
| { |
| int active, count; |
| |
| if (pte_val(*ptep) & _PAGE_INVALID) |
| return; |
| active = (mm == current->active_mm) ? 1 : 0; |
| count = atomic_add_return(0x10000, &mm->context.attach_count); |
| if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active && |
| cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id()))) |
| __ptep_ipte_local(address, ptep); |
| else |
| __ptep_ipte(address, ptep); |
| atomic_sub(0x10000, &mm->context.attach_count); |
| } |
| |
| static inline void ptep_flush_lazy(struct mm_struct *mm, |
| unsigned long address, pte_t *ptep) |
| { |
| int active, count; |
| |
| if (pte_val(*ptep) & _PAGE_INVALID) |
| return; |
| active = (mm == current->active_mm) ? 1 : 0; |
| count = atomic_add_return(0x10000, &mm->context.attach_count); |
| if ((count & 0xffff) <= active) { |
| pte_val(*ptep) |= _PAGE_INVALID; |
| mm->context.flush_mm = 1; |
| } else |
| __ptep_ipte(address, ptep); |
| atomic_sub(0x10000, &mm->context.attach_count); |
| } |
| |
| /* |
| * Get (and clear) the user dirty bit for a pte. |
| */ |
| static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm, |
| unsigned long addr, |
| pte_t *ptep) |
| { |
| pgste_t pgste; |
| pte_t pte; |
| int dirty; |
| |
| if (!mm_has_pgste(mm)) |
| return 0; |
| pgste = pgste_get_lock(ptep); |
| dirty = !!(pgste_val(pgste) & PGSTE_UC_BIT); |
| pgste_val(pgste) &= ~PGSTE_UC_BIT; |
| pte = *ptep; |
| if (dirty && (pte_val(pte) & _PAGE_PRESENT)) { |
| pgste = pgste_ipte_notify(mm, addr, ptep, pgste); |
| __ptep_ipte(addr, ptep); |
| if (MACHINE_HAS_ESOP || !(pte_val(pte) & _PAGE_WRITE)) |
| pte_val(pte) |= _PAGE_PROTECT; |
| else |
| pte_val(pte) |= _PAGE_INVALID; |
| *ptep = pte; |
| } |
| pgste_set_unlock(ptep, pgste); |
| return dirty; |
| } |
| |
| #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG |
| static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, |
| unsigned long addr, pte_t *ptep) |
| { |
| pgste_t pgste; |
| pte_t pte, oldpte; |
| int young; |
| |
| if (mm_has_pgste(vma->vm_mm)) { |
| pgste = pgste_get_lock(ptep); |
| pgste = pgste_ipte_notify(vma->vm_mm, addr, ptep, pgste); |
| } |
| |
| oldpte = pte = *ptep; |
| ptep_flush_direct(vma->vm_mm, addr, ptep); |
| young = pte_young(pte); |
| pte = pte_mkold(pte); |
| |
| if (mm_has_pgste(vma->vm_mm)) { |
| pgste = pgste_update_all(&oldpte, pgste, vma->vm_mm); |
| pgste = pgste_set_pte(ptep, pgste, pte); |
| pgste_set_unlock(ptep, pgste); |
| } else |
| *ptep = pte; |
| |
| return young; |
| } |
| |
| #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH |
| static inline int ptep_clear_flush_young(struct vm_area_struct *vma, |
| unsigned long address, pte_t *ptep) |
| { |
| return ptep_test_and_clear_young(vma, address, ptep); |
| } |
| |
| /* |
| * This is hard to understand. ptep_get_and_clear and ptep_clear_flush |
| * both clear the TLB for the unmapped pte. The reason is that |
| * ptep_get_and_clear is used in common code (e.g. change_pte_range) |
| * to modify an active pte. The sequence is |
| * 1) ptep_get_and_clear |
| * 2) set_pte_at |
| * 3) flush_tlb_range |
| * On s390 the tlb needs to get flushed with the modification of the pte |
| * if the pte is active. The only way how this can be implemented is to |
| * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range |
| * is a nop. |
| */ |
| #define __HAVE_ARCH_PTEP_GET_AND_CLEAR |
| static inline pte_t ptep_get_and_clear(struct mm_struct *mm, |
| unsigned long address, pte_t *ptep) |
| { |
| pgste_t pgste; |
| pte_t pte; |
| |
| if (mm_has_pgste(mm)) { |
| pgste = pgste_get_lock(ptep); |
| pgste = pgste_ipte_notify(mm, address, ptep, pgste); |
| } |
| |
| pte = *ptep; |
| ptep_flush_lazy(mm, address, ptep); |
| pte_val(*ptep) = _PAGE_INVALID; |
| |
| if (mm_has_pgste(mm)) { |
| pgste = pgste_update_all(&pte, pgste, mm); |
| pgste_set_unlock(ptep, pgste); |
| } |
| return pte; |
| } |
| |
| #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION |
| static inline pte_t ptep_modify_prot_start(struct mm_struct *mm, |
| unsigned long address, |
| pte_t *ptep) |
| { |
| pgste_t pgste; |
| pte_t pte; |
| |
| if (mm_has_pgste(mm)) { |
| pgste = pgste_get_lock(ptep); |
| pgste_ipte_notify(mm, address, ptep, pgste); |
| } |
| |
| pte = *ptep; |
| ptep_flush_lazy(mm, address, ptep); |
| |
| if (mm_has_pgste(mm)) { |
| pgste = pgste_update_all(&pte, pgste, mm); |
| pgste_set(ptep, pgste); |
| } |
| return pte; |
| } |
| |
| static inline void ptep_modify_prot_commit(struct mm_struct *mm, |
| unsigned long address, |
| pte_t *ptep, pte_t pte) |
| { |
| pgste_t pgste; |
| |
| if (mm_has_pgste(mm)) { |
| pgste = pgste_get(ptep); |
| pgste_set_key(ptep, pgste, pte, mm); |
| pgste = pgste_set_pte(ptep, pgste, pte); |
| pgste_set_unlock(ptep, pgste); |
| } else |
| *ptep = pte; |
| } |
| |
| #define __HAVE_ARCH_PTEP_CLEAR_FLUSH |
| static inline pte_t ptep_clear_flush(struct vm_area_struct *vma, |
| unsigned long address, pte_t *ptep) |
| { |
| pgste_t pgste; |
| pte_t pte; |
| |
| if (mm_has_pgste(vma->vm_mm)) { |
| pgste = pgste_get_lock(ptep); |
| pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste); |
| } |
| |
| pte = *ptep; |
| ptep_flush_direct(vma->vm_mm, address, ptep); |
| pte_val(*ptep) = _PAGE_INVALID; |
| |
| if (mm_has_pgste(vma->vm_mm)) { |
| if ((pgste_val(pgste) & _PGSTE_GPS_USAGE_MASK) == |
| _PGSTE_GPS_USAGE_UNUSED) |
| pte_val(pte) |= _PAGE_UNUSED; |
| pgste = pgste_update_all(&pte, pgste, vma->vm_mm); |
| pgste_set_unlock(ptep, pgste); |
| } |
| return pte; |
| } |
| |
| /* |
| * The batched pte unmap code uses ptep_get_and_clear_full to clear the |
| * ptes. Here an optimization is possible. tlb_gather_mmu flushes all |
| * tlbs of an mm if it can guarantee that the ptes of the mm_struct |
| * cannot be accessed while the batched unmap is running. In this case |
| * full==1 and a simple pte_clear is enough. See tlb.h. |
| */ |
| #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL |
| static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, |
| unsigned long address, |
| pte_t *ptep, int full) |
| { |
| pgste_t pgste; |
| pte_t pte; |
| |
| if (!full && mm_has_pgste(mm)) { |
| pgste = pgste_get_lock(ptep); |
| pgste = pgste_ipte_notify(mm, address, ptep, pgste); |
| } |
| |
| pte = *ptep; |
| if (!full) |
| ptep_flush_lazy(mm, address, ptep); |
| pte_val(*ptep) = _PAGE_INVALID; |
| |
| if (!full && mm_has_pgste(mm)) { |
| pgste = pgste_update_all(&pte, pgste, mm); |
| pgste_set_unlock(ptep, pgste); |
| } |
| return pte; |
| } |
| |
| #define __HAVE_ARCH_PTEP_SET_WRPROTECT |
| static inline pte_t ptep_set_wrprotect(struct mm_struct *mm, |
| unsigned long address, pte_t *ptep) |
| { |
| pgste_t pgste; |
| pte_t pte = *ptep; |
| |
| if (pte_write(pte)) { |
| if (mm_has_pgste(mm)) { |
| pgste = pgste_get_lock(ptep); |
| pgste = pgste_ipte_notify(mm, address, ptep, pgste); |
| } |
| |
| ptep_flush_lazy(mm, address, ptep); |
| pte = pte_wrprotect(pte); |
| |
| if (mm_has_pgste(mm)) { |
| pgste = pgste_set_pte(ptep, pgste, pte); |
| pgste_set_unlock(ptep, pgste); |
| } else |
| *ptep = pte; |
| } |
| return pte; |
| } |
| |
| #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS |
| static inline int ptep_set_access_flags(struct vm_area_struct *vma, |
| unsigned long address, pte_t *ptep, |
| pte_t entry, int dirty) |
| { |
| pgste_t pgste; |
| pte_t oldpte; |
| |
| oldpte = *ptep; |
| if (pte_same(oldpte, entry)) |
| return 0; |
| if (mm_has_pgste(vma->vm_mm)) { |
| pgste = pgste_get_lock(ptep); |
| pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste); |
| } |
| |
| ptep_flush_direct(vma->vm_mm, address, ptep); |
| |
| if (mm_has_pgste(vma->vm_mm)) { |
| if (pte_val(oldpte) & _PAGE_INVALID) |
| pgste_set_key(ptep, pgste, entry, vma->vm_mm); |
| pgste = pgste_set_pte(ptep, pgste, entry); |
| pgste_set_unlock(ptep, pgste); |
| } else |
| *ptep = entry; |
| return 1; |
| } |
| |
| /* |
| * Conversion functions: convert a page and protection to a page entry, |
| * and a page entry and page directory to the page they refer to. |
| */ |
| static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) |
| { |
| pte_t __pte; |
| pte_val(__pte) = physpage + pgprot_val(pgprot); |
| return pte_mkyoung(__pte); |
| } |
| |
| static inline pte_t mk_pte(struct page *page, pgprot_t pgprot) |
| { |
| unsigned long physpage = page_to_phys(page); |
| pte_t __pte = mk_pte_phys(physpage, pgprot); |
| |
| if (pte_write(__pte) && PageDirty(page)) |
| __pte = pte_mkdirty(__pte); |
| return __pte; |
| } |
| |
| #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) |
| #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1)) |
| #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) |
| #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1)) |
| |
| #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) |
| #define pgd_offset_k(address) pgd_offset(&init_mm, address) |
| |
| #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) |
| #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN) |
| #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) |
| |
| static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address) |
| { |
| pud_t *pud = (pud_t *) pgd; |
| if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) |
| pud = (pud_t *) pgd_deref(*pgd); |
| return pud + pud_index(address); |
| } |
| |
| static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) |
| { |
| pmd_t *pmd = (pmd_t *) pud; |
| if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) |
| pmd = (pmd_t *) pud_deref(*pud); |
| return pmd + pmd_index(address); |
| } |
| |
| #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot)) |
| #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT) |
| #define pte_page(x) pfn_to_page(pte_pfn(x)) |
| |
| #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) |
| |
| /* Find an entry in the lowest level page table.. */ |
| #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr)) |
| #define pte_offset_kernel(pmd, address) pte_offset(pmd,address) |
| #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address) |
| #define pte_unmap(pte) do { } while (0) |
| |
| #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE) |
| static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot) |
| { |
| /* |
| * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx) |
| * Convert to segment table entry format. |
| */ |
| if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE)) |
| return pgprot_val(SEGMENT_NONE); |
| if (pgprot_val(pgprot) == pgprot_val(PAGE_READ)) |
| return pgprot_val(SEGMENT_READ); |
| return pgprot_val(SEGMENT_WRITE); |
| } |
| |
| static inline pmd_t pmd_wrprotect(pmd_t pmd) |
| { |
| pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE; |
| pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; |
| return pmd; |
| } |
| |
| static inline pmd_t pmd_mkwrite(pmd_t pmd) |
| { |
| pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE; |
| if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)) |
| return pmd; |
| pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT; |
| return pmd; |
| } |
| |
| static inline pmd_t pmd_mkclean(pmd_t pmd) |
| { |
| if (pmd_large(pmd)) { |
| pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY; |
| pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; |
| } |
| return pmd; |
| } |
| |
| static inline pmd_t pmd_mkdirty(pmd_t pmd) |
| { |
| if (pmd_large(pmd)) { |
| pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY | |
| _SEGMENT_ENTRY_SOFT_DIRTY; |
| if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) |
| pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT; |
| } |
| return pmd; |
| } |
| |
| static inline pmd_t pmd_mkyoung(pmd_t pmd) |
| { |
| if (pmd_large(pmd)) { |
| pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG; |
| if (pmd_val(pmd) & _SEGMENT_ENTRY_READ) |
| pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID; |
| } |
| return pmd; |
| } |
| |
| static inline pmd_t pmd_mkold(pmd_t pmd) |
| { |
| if (pmd_large(pmd)) { |
| pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG; |
| pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID; |
| } |
| return pmd; |
| } |
| |
| static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) |
| { |
| if (pmd_large(pmd)) { |
| pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE | |
| _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG | |
| _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SPLIT | |
| _SEGMENT_ENTRY_SOFT_DIRTY; |
| pmd_val(pmd) |= massage_pgprot_pmd(newprot); |
| if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)) |
| pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; |
| if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG)) |
| pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID; |
| return pmd; |
| } |
| pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN; |
| pmd_val(pmd) |= massage_pgprot_pmd(newprot); |
| return pmd; |
| } |
| |
| static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot) |
| { |
| pmd_t __pmd; |
| pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot); |
| return __pmd; |
| } |
| |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */ |
| |
| static inline void __pmdp_csp(pmd_t *pmdp) |
| { |
| register unsigned long reg2 asm("2") = pmd_val(*pmdp); |
| register unsigned long reg3 asm("3") = pmd_val(*pmdp) | |
| _SEGMENT_ENTRY_INVALID; |
| register unsigned long reg4 asm("4") = ((unsigned long) pmdp) + 5; |
| |
| asm volatile( |
| " csp %1,%3" |
| : "=m" (*pmdp) |
| : "d" (reg2), "d" (reg3), "d" (reg4), "m" (*pmdp) : "cc"); |
| } |
| |
| static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp) |
| { |
| unsigned long sto; |
| |
| sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t); |
| asm volatile( |
| " .insn rrf,0xb98e0000,%2,%3,0,0" |
| : "=m" (*pmdp) |
| : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK)) |
| : "cc" ); |
| } |
| |
| static inline void __pmdp_idte_local(unsigned long address, pmd_t *pmdp) |
| { |
| unsigned long sto; |
| |
| sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t); |
| asm volatile( |
| " .insn rrf,0xb98e0000,%2,%3,0,1" |
| : "=m" (*pmdp) |
| : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK)) |
| : "cc" ); |
| } |
| |
| static inline void pmdp_flush_direct(struct mm_struct *mm, |
| unsigned long address, pmd_t *pmdp) |
| { |
| int active, count; |
| |
| if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID) |
| return; |
| if (!MACHINE_HAS_IDTE) { |
| __pmdp_csp(pmdp); |
| return; |
| } |
| active = (mm == current->active_mm) ? 1 : 0; |
| count = atomic_add_return(0x10000, &mm->context.attach_count); |
| if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active && |
| cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id()))) |
| __pmdp_idte_local(address, pmdp); |
| else |
| __pmdp_idte(address, pmdp); |
| atomic_sub(0x10000, &mm->context.attach_count); |
| } |
| |
| static inline void pmdp_flush_lazy(struct mm_struct *mm, |
| unsigned long address, pmd_t *pmdp) |
| { |
| int active, count; |
| |
| if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID) |
| return; |
| active = (mm == current->active_mm) ? 1 : 0; |
| count = atomic_add_return(0x10000, &mm->context.attach_count); |
| if ((count & 0xffff) <= active) { |
| pmd_val(*pmdp) |= _SEGMENT_ENTRY_INVALID; |
| mm->context.flush_mm = 1; |
| } else if (MACHINE_HAS_IDTE) |
| __pmdp_idte(address, pmdp); |
| else |
| __pmdp_csp(pmdp); |
| atomic_sub(0x10000, &mm->context.attach_count); |
| } |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| |
| #define __HAVE_ARCH_PGTABLE_DEPOSIT |
| extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, |
| pgtable_t pgtable); |
| |
| #define __HAVE_ARCH_PGTABLE_WITHDRAW |
| extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); |
| |
| static inline int pmd_trans_splitting(pmd_t pmd) |
| { |
| return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) && |
| (pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT); |
| } |
| |
| static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, |
| pmd_t *pmdp, pmd_t entry) |
| { |
| *pmdp = entry; |
| } |
| |
| static inline pmd_t pmd_mkhuge(pmd_t pmd) |
| { |
| pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE; |
| pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG; |
| pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; |
| return pmd; |
| } |
| |
| #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG |
| static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmdp) |
| { |
| pmd_t pmd; |
| |
| pmd = *pmdp; |
| pmdp_flush_direct(vma->vm_mm, address, pmdp); |
| *pmdp = pmd_mkold(pmd); |
| return pmd_young(pmd); |
| } |
| |
| #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR |
| static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, |
| unsigned long address, pmd_t *pmdp) |
| { |
| pmd_t pmd = *pmdp; |
| |
| pmdp_flush_direct(mm, address, pmdp); |
| pmd_clear(pmdp); |
| return pmd; |
| } |
| |
| #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL |
| static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm, |
| unsigned long address, |
| pmd_t *pmdp, int full) |
| { |
| pmd_t pmd = *pmdp; |
| |
| if (!full) |
| pmdp_flush_lazy(mm, address, pmdp); |
| pmd_clear(pmdp); |
| return pmd; |
| } |
| |
| #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH |
| static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmdp) |
| { |
| return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); |
| } |
| |
| #define __HAVE_ARCH_PMDP_INVALIDATE |
| static inline void pmdp_invalidate(struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmdp) |
| { |
| pmdp_flush_direct(vma->vm_mm, address, pmdp); |
| } |
| |
| #define __HAVE_ARCH_PMDP_SET_WRPROTECT |
| static inline void pmdp_set_wrprotect(struct mm_struct *mm, |
| unsigned long address, pmd_t *pmdp) |
| { |
| pmd_t pmd = *pmdp; |
| |
| if (pmd_write(pmd)) { |
| pmdp_flush_direct(mm, address, pmdp); |
| set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd)); |
| } |
| } |
| |
| static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, |
| unsigned long address, |
| pmd_t *pmdp) |
| { |
| return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); |
| } |
| #define pmdp_collapse_flush pmdp_collapse_flush |
| |
| #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot)) |
| #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) |
| |
| static inline int pmd_trans_huge(pmd_t pmd) |
| { |
| return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE; |
| } |
| |
| static inline int has_transparent_hugepage(void) |
| { |
| return MACHINE_HAS_HPAGE ? 1 : 0; |
| } |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| |
| /* |
| * 64 bit swap entry format: |
| * A page-table entry has some bits we have to treat in a special way. |
| * Bits 52 and bit 55 have to be zero, otherwise a specification |
| * exception will occur instead of a page translation exception. The |
| * specification exception has the bad habit not to store necessary |
| * information in the lowcore. |
| * Bits 54 and 63 are used to indicate the page type. |
| * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200 |
| * This leaves the bits 0-51 and bits 56-62 to store type and offset. |
| * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51 |
| * for the offset. |
| * | offset |01100|type |00| |
| * |0000000000111111111122222222223333333333444444444455|55555|55566|66| |
| * |0123456789012345678901234567890123456789012345678901|23456|78901|23| |
| */ |
| |
| #define __SWP_OFFSET_MASK ((1UL << 52) - 1) |
| #define __SWP_OFFSET_SHIFT 12 |
| #define __SWP_TYPE_MASK ((1UL << 5) - 1) |
| #define __SWP_TYPE_SHIFT 2 |
| |
| static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) |
| { |
| pte_t pte; |
| |
| pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT; |
| pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT; |
| pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT; |
| return pte; |
| } |
| |
| static inline unsigned long __swp_type(swp_entry_t entry) |
| { |
| return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK; |
| } |
| |
| static inline unsigned long __swp_offset(swp_entry_t entry) |
| { |
| return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK; |
| } |
| |
| static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset) |
| { |
| return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) }; |
| } |
| |
| #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) |
| #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| #define kern_addr_valid(addr) (1) |
| |
| extern int vmem_add_mapping(unsigned long start, unsigned long size); |
| extern int vmem_remove_mapping(unsigned long start, unsigned long size); |
| extern int s390_enable_sie(void); |
| extern int s390_enable_skey(void); |
| extern void s390_reset_cmma(struct mm_struct *mm); |
| |
| /* s390 has a private copy of get unmapped area to deal with cache synonyms */ |
| #define HAVE_ARCH_UNMAPPED_AREA |
| #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN |
| |
| /* |
| * No page table caches to initialise |
| */ |
| static inline void pgtable_cache_init(void) { } |
| static inline void check_pgt_cache(void) { } |
| |
| #include <asm-generic/pgtable.h> |
| |
| #endif /* _S390_PAGE_H */ |