| /* |
| * Blackfin performance counters |
| * |
| * Copyright 2011 Analog Devices Inc. |
| * |
| * Ripped from SuperH version: |
| * |
| * Copyright (C) 2009 Paul Mundt |
| * |
| * Heavily based on the x86 and PowerPC implementations. |
| * |
| * x86: |
| * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> |
| * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar |
| * Copyright (C) 2009 Jaswinder Singh Rajput |
| * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter |
| * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra |
| * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com> |
| * |
| * ppc: |
| * Copyright 2008-2009 Paul Mackerras, IBM Corporation. |
| * |
| * Licensed under the GPL-2 or later. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/export.h> |
| #include <linux/init.h> |
| #include <linux/perf_event.h> |
| #include <asm/bfin_pfmon.h> |
| |
| /* |
| * We have two counters, and each counter can support an event type. |
| * The 'o' is PFCNTx=1 and 's' is PFCNTx=0 |
| * |
| * 0x04 o pc invariant branches |
| * 0x06 o mispredicted branches |
| * 0x09 o predicted branches taken |
| * 0x0B o EXCPT insn |
| * 0x0C o CSYNC/SSYNC insn |
| * 0x0D o Insns committed |
| * 0x0E o Interrupts taken |
| * 0x0F o Misaligned address exceptions |
| * 0x80 o Code memory fetches stalled due to DMA |
| * 0x83 o 64bit insn fetches delivered |
| * 0x9A o data cache fills (bank a) |
| * 0x9B o data cache fills (bank b) |
| * 0x9C o data cache lines evicted (bank a) |
| * 0x9D o data cache lines evicted (bank b) |
| * 0x9E o data cache high priority fills |
| * 0x9F o data cache low priority fills |
| * 0x00 s loop 0 iterations |
| * 0x01 s loop 1 iterations |
| * 0x0A s CSYNC/SSYNC stalls |
| * 0x10 s DAG read/after write hazards |
| * 0x13 s RAW data hazards |
| * 0x81 s code TAG stalls |
| * 0x82 s code fill stalls |
| * 0x90 s processor to memory stalls |
| * 0x91 s data memory stalls not hidden by 0x90 |
| * 0x92 s data store buffer full stalls |
| * 0x93 s data memory write buffer full stalls due to high->low priority |
| * 0x95 s data memory fill buffer stalls |
| * 0x96 s data TAG collision stalls |
| * 0x97 s data collision stalls |
| * 0x98 s data stalls |
| * 0x99 s data stalls sent to processor |
| */ |
| |
| static const int event_map[] = { |
| /* use CYCLES cpu register */ |
| [PERF_COUNT_HW_CPU_CYCLES] = -1, |
| [PERF_COUNT_HW_INSTRUCTIONS] = 0x0D, |
| [PERF_COUNT_HW_CACHE_REFERENCES] = -1, |
| [PERF_COUNT_HW_CACHE_MISSES] = 0x83, |
| [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x09, |
| [PERF_COUNT_HW_BRANCH_MISSES] = 0x06, |
| [PERF_COUNT_HW_BUS_CYCLES] = -1, |
| }; |
| |
| #define C(x) PERF_COUNT_HW_CACHE_##x |
| |
| static const int cache_events[PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = |
| { |
| [C(L1D)] = { /* Data bank A */ |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = 0, |
| [C(RESULT_MISS) ] = 0x9A, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = 0, |
| [C(RESULT_MISS) ] = 0, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = 0, |
| [C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| |
| [C(L1I)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = 0, |
| [C(RESULT_MISS) ] = 0x83, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = -1, |
| [C(RESULT_MISS) ] = -1, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = 0, |
| [C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| |
| [C(LL)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = -1, |
| [C(RESULT_MISS) ] = -1, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = -1, |
| [C(RESULT_MISS) ] = -1, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = -1, |
| [C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| |
| [C(DTLB)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = -1, |
| [C(RESULT_MISS) ] = -1, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = -1, |
| [C(RESULT_MISS) ] = -1, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = -1, |
| [C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| |
| [C(ITLB)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = -1, |
| [C(RESULT_MISS) ] = -1, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = -1, |
| [C(RESULT_MISS) ] = -1, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = -1, |
| [C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| |
| [C(BPU)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = -1, |
| [C(RESULT_MISS) ] = -1, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = -1, |
| [C(RESULT_MISS) ] = -1, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = -1, |
| [C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| }; |
| |
| const char *perf_pmu_name(void) |
| { |
| return "bfin"; |
| } |
| EXPORT_SYMBOL(perf_pmu_name); |
| |
| int perf_num_counters(void) |
| { |
| return ARRAY_SIZE(event_map); |
| } |
| EXPORT_SYMBOL(perf_num_counters); |
| |
| static u64 bfin_pfmon_read(int idx) |
| { |
| return bfin_read32(PFCNTR0 + (idx * 4)); |
| } |
| |
| static void bfin_pfmon_disable(struct hw_perf_event *hwc, int idx) |
| { |
| bfin_write_PFCTL(bfin_read_PFCTL() & ~PFCEN(idx, PFCEN_MASK)); |
| } |
| |
| static void bfin_pfmon_enable(struct hw_perf_event *hwc, int idx) |
| { |
| u32 val, mask; |
| |
| val = PFPWR; |
| if (idx) { |
| mask = ~(PFCNT1 | PFMON1 | PFCEN1 | PEMUSW1); |
| /* The packed config is for event0, so shift it to event1 slots */ |
| val |= (hwc->config << (PFMON1_P - PFMON0_P)); |
| val |= (hwc->config & PFCNT0) << (PFCNT1_P - PFCNT0_P); |
| bfin_write_PFCNTR1(0); |
| } else { |
| mask = ~(PFCNT0 | PFMON0 | PFCEN0 | PEMUSW0); |
| val |= hwc->config; |
| bfin_write_PFCNTR0(0); |
| } |
| |
| bfin_write_PFCTL((bfin_read_PFCTL() & mask) | val); |
| } |
| |
| static void bfin_pfmon_disable_all(void) |
| { |
| bfin_write_PFCTL(bfin_read_PFCTL() & ~PFPWR); |
| } |
| |
| static void bfin_pfmon_enable_all(void) |
| { |
| bfin_write_PFCTL(bfin_read_PFCTL() | PFPWR); |
| } |
| |
| struct cpu_hw_events { |
| struct perf_event *events[MAX_HWEVENTS]; |
| unsigned long used_mask[BITS_TO_LONGS(MAX_HWEVENTS)]; |
| }; |
| DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); |
| |
| static int hw_perf_cache_event(int config, int *evp) |
| { |
| unsigned long type, op, result; |
| int ev; |
| |
| /* unpack config */ |
| type = config & 0xff; |
| op = (config >> 8) & 0xff; |
| result = (config >> 16) & 0xff; |
| |
| if (type >= PERF_COUNT_HW_CACHE_MAX || |
| op >= PERF_COUNT_HW_CACHE_OP_MAX || |
| result >= PERF_COUNT_HW_CACHE_RESULT_MAX) |
| return -EINVAL; |
| |
| ev = cache_events[type][op][result]; |
| if (ev == 0) |
| return -EOPNOTSUPP; |
| if (ev == -1) |
| return -EINVAL; |
| *evp = ev; |
| return 0; |
| } |
| |
| static void bfin_perf_event_update(struct perf_event *event, |
| struct hw_perf_event *hwc, int idx) |
| { |
| u64 prev_raw_count, new_raw_count; |
| s64 delta; |
| int shift = 0; |
| |
| /* |
| * Depending on the counter configuration, they may or may not |
| * be chained, in which case the previous counter value can be |
| * updated underneath us if the lower-half overflows. |
| * |
| * Our tactic to handle this is to first atomically read and |
| * exchange a new raw count - then add that new-prev delta |
| * count to the generic counter atomically. |
| * |
| * As there is no interrupt associated with the overflow events, |
| * this is the simplest approach for maintaining consistency. |
| */ |
| again: |
| prev_raw_count = local64_read(&hwc->prev_count); |
| new_raw_count = bfin_pfmon_read(idx); |
| |
| if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, |
| new_raw_count) != prev_raw_count) |
| goto again; |
| |
| /* |
| * Now we have the new raw value and have updated the prev |
| * timestamp already. We can now calculate the elapsed delta |
| * (counter-)time and add that to the generic counter. |
| * |
| * Careful, not all hw sign-extends above the physical width |
| * of the count. |
| */ |
| delta = (new_raw_count << shift) - (prev_raw_count << shift); |
| delta >>= shift; |
| |
| local64_add(delta, &event->count); |
| } |
| |
| static void bfin_pmu_stop(struct perf_event *event, int flags) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| struct hw_perf_event *hwc = &event->hw; |
| int idx = hwc->idx; |
| |
| if (!(event->hw.state & PERF_HES_STOPPED)) { |
| bfin_pfmon_disable(hwc, idx); |
| cpuc->events[idx] = NULL; |
| event->hw.state |= PERF_HES_STOPPED; |
| } |
| |
| if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) { |
| bfin_perf_event_update(event, &event->hw, idx); |
| event->hw.state |= PERF_HES_UPTODATE; |
| } |
| } |
| |
| static void bfin_pmu_start(struct perf_event *event, int flags) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| struct hw_perf_event *hwc = &event->hw; |
| int idx = hwc->idx; |
| |
| if (WARN_ON_ONCE(idx == -1)) |
| return; |
| |
| if (flags & PERF_EF_RELOAD) |
| WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); |
| |
| cpuc->events[idx] = event; |
| event->hw.state = 0; |
| bfin_pfmon_enable(hwc, idx); |
| } |
| |
| static void bfin_pmu_del(struct perf_event *event, int flags) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| |
| bfin_pmu_stop(event, PERF_EF_UPDATE); |
| __clear_bit(event->hw.idx, cpuc->used_mask); |
| |
| perf_event_update_userpage(event); |
| } |
| |
| static int bfin_pmu_add(struct perf_event *event, int flags) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| struct hw_perf_event *hwc = &event->hw; |
| int idx = hwc->idx; |
| int ret = -EAGAIN; |
| |
| perf_pmu_disable(event->pmu); |
| |
| if (__test_and_set_bit(idx, cpuc->used_mask)) { |
| idx = find_first_zero_bit(cpuc->used_mask, MAX_HWEVENTS); |
| if (idx == MAX_HWEVENTS) |
| goto out; |
| |
| __set_bit(idx, cpuc->used_mask); |
| hwc->idx = idx; |
| } |
| |
| bfin_pfmon_disable(hwc, idx); |
| |
| event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED; |
| if (flags & PERF_EF_START) |
| bfin_pmu_start(event, PERF_EF_RELOAD); |
| |
| perf_event_update_userpage(event); |
| ret = 0; |
| out: |
| perf_pmu_enable(event->pmu); |
| return ret; |
| } |
| |
| static void bfin_pmu_read(struct perf_event *event) |
| { |
| bfin_perf_event_update(event, &event->hw, event->hw.idx); |
| } |
| |
| static int bfin_pmu_event_init(struct perf_event *event) |
| { |
| struct perf_event_attr *attr = &event->attr; |
| struct hw_perf_event *hwc = &event->hw; |
| int config = -1; |
| int ret; |
| |
| if (attr->exclude_hv || attr->exclude_idle) |
| return -EPERM; |
| |
| ret = 0; |
| switch (attr->type) { |
| case PERF_TYPE_RAW: |
| config = PFMON(0, attr->config & PFMON_MASK) | |
| PFCNT(0, !(attr->config & 0x100)); |
| break; |
| case PERF_TYPE_HW_CACHE: |
| ret = hw_perf_cache_event(attr->config, &config); |
| break; |
| case PERF_TYPE_HARDWARE: |
| if (attr->config >= ARRAY_SIZE(event_map)) |
| return -EINVAL; |
| |
| config = event_map[attr->config]; |
| break; |
| } |
| |
| if (config == -1) |
| return -EINVAL; |
| |
| if (!attr->exclude_kernel) |
| config |= PFCEN(0, PFCEN_ENABLE_SUPV); |
| if (!attr->exclude_user) |
| config |= PFCEN(0, PFCEN_ENABLE_USER); |
| |
| hwc->config |= config; |
| |
| return ret; |
| } |
| |
| static void bfin_pmu_enable(struct pmu *pmu) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| struct perf_event *event; |
| struct hw_perf_event *hwc; |
| int i; |
| |
| for (i = 0; i < MAX_HWEVENTS; ++i) { |
| event = cpuc->events[i]; |
| if (!event) |
| continue; |
| hwc = &event->hw; |
| bfin_pfmon_enable(hwc, hwc->idx); |
| } |
| |
| bfin_pfmon_enable_all(); |
| } |
| |
| static void bfin_pmu_disable(struct pmu *pmu) |
| { |
| bfin_pfmon_disable_all(); |
| } |
| |
| static struct pmu pmu = { |
| .pmu_enable = bfin_pmu_enable, |
| .pmu_disable = bfin_pmu_disable, |
| .event_init = bfin_pmu_event_init, |
| .add = bfin_pmu_add, |
| .del = bfin_pmu_del, |
| .start = bfin_pmu_start, |
| .stop = bfin_pmu_stop, |
| .read = bfin_pmu_read, |
| }; |
| |
| static void bfin_pmu_setup(int cpu) |
| { |
| struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); |
| |
| memset(cpuhw, 0, sizeof(struct cpu_hw_events)); |
| } |
| |
| static int |
| bfin_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu) |
| { |
| unsigned int cpu = (long)hcpu; |
| |
| switch (action & ~CPU_TASKS_FROZEN) { |
| case CPU_UP_PREPARE: |
| bfin_write_PFCTL(0); |
| bfin_pmu_setup(cpu); |
| break; |
| |
| default: |
| break; |
| } |
| |
| return NOTIFY_OK; |
| } |
| |
| static int __init bfin_pmu_init(void) |
| { |
| int ret; |
| |
| /* |
| * All of the on-chip counters are "limited", in that they have |
| * no interrupts, and are therefore unable to do sampling without |
| * further work and timer assistance. |
| */ |
| pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT; |
| |
| ret = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW); |
| if (!ret) |
| perf_cpu_notifier(bfin_pmu_notifier); |
| |
| return ret; |
| } |
| early_initcall(bfin_pmu_init); |