blob: 75266ff4cc3317e332c124bce569533f15485f04 [file] [log] [blame]
#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) || \
defined(CONFIG_CPU_R10000) || defined(CONFIG_CPU_SB1)
#define M_CONFIG1_PC (1 << 4)
#define M_PERFCTL_EXL (1UL << 0)
#define M_PERFCTL_KERNEL (1UL << 1)
#define M_PERFCTL_SUPERVISOR (1UL << 2)
#define M_PERFCTL_USER (1UL << 3)
#define M_PERFCTL_INTERRUPT_ENABLE (1UL << 4)
#define M_PERFCTL_EVENT(event) (((event) & 0x3ff) << 5)
#define M_PERFCTL_VPEID(vpe) ((vpe) << 16)
#define M_PERFCTL_MT_EN(filter) ((filter) << 20)
#define M_TC_EN_ALL M_PERFCTL_MT_EN(0)
#define M_TC_EN_VPE M_PERFCTL_MT_EN(1)
#define M_TC_EN_TC M_PERFCTL_MT_EN(2)
#define M_PERFCTL_TCID(tcid) ((tcid) << 22)
#define M_PERFCTL_WIDE (1UL << 30)
#define M_PERFCTL_MORE (1UL << 31)
#define M_PERFCTL_COUNT_EVENT_WHENEVER (M_PERFCTL_EXL | \
M_PERFCTL_KERNEL | \
M_PERFCTL_USER | \
M_PERFCTL_SUPERVISOR | \
M_PERFCTL_INTERRUPT_ENABLE)
#ifdef CONFIG_MIPS_MT_SMP
#define M_PERFCTL_CONFIG_MASK 0x3fff801f
#else
#define M_PERFCTL_CONFIG_MASK 0x1f
#endif
#define M_PERFCTL_EVENT_MASK 0xfe0
#define M_COUNTER_OVERFLOW (1UL << 31)
#ifdef CONFIG_MIPS_MT_SMP
static int cpu_has_mipsmt_pertccounters;
/*
* FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
* cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
*/
#if defined(CONFIG_HW_PERF_EVENTS)
#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
0 : smp_processor_id())
#else
#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
0 : cpu_data[smp_processor_id()].vpe_id)
#endif
/* Copied from op_model_mipsxx.c */
static inline unsigned int vpe_shift(void)
{
if (num_possible_cpus() > 1)
return 1;
return 0;
}
#else /* !CONFIG_MIPS_MT_SMP */
#define vpe_id() 0
static inline unsigned int vpe_shift(void)
{
return 0;
}
#endif /* CONFIG_MIPS_MT_SMP */
static inline unsigned int
counters_total_to_per_cpu(unsigned int counters)
{
return counters >> vpe_shift();
}
static inline unsigned int
counters_per_cpu_to_total(unsigned int counters)
{
return counters << vpe_shift();
}
#define __define_perf_accessors(r, n, np) \
\
static inline unsigned int r_c0_ ## r ## n(void) \
{ \
unsigned int cpu = vpe_id(); \
\
switch (cpu) { \
case 0: \
return read_c0_ ## r ## n(); \
case 1: \
return read_c0_ ## r ## np(); \
default: \
BUG(); \
} \
return 0; \
} \
\
static inline void w_c0_ ## r ## n(unsigned int value) \
{ \
unsigned int cpu = vpe_id(); \
\
switch (cpu) { \
case 0: \
write_c0_ ## r ## n(value); \
return; \
case 1: \
write_c0_ ## r ## np(value); \
return; \
default: \
BUG(); \
} \
return; \
} \
__define_perf_accessors(perfcntr, 0, 2)
__define_perf_accessors(perfcntr, 1, 3)
__define_perf_accessors(perfcntr, 2, 0)
__define_perf_accessors(perfcntr, 3, 1)
__define_perf_accessors(perfctrl, 0, 2)
__define_perf_accessors(perfctrl, 1, 3)
__define_perf_accessors(perfctrl, 2, 0)
__define_perf_accessors(perfctrl, 3, 1)
static inline int __n_counters(void)
{
if (!(read_c0_config1() & M_CONFIG1_PC))
return 0;
if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
return 1;
if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
return 2;
if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
return 3;
return 4;
}
static inline int n_counters(void)
{
int counters;
switch (current_cpu_type()) {
case CPU_R10000:
counters = 2;
break;
case CPU_R12000:
case CPU_R14000:
counters = 4;
break;
default:
counters = __n_counters();
}
return counters;
}
static void reset_counters(void *arg)
{
int counters = (int)(long)arg;
switch (counters) {
case 4:
w_c0_perfctrl3(0);
w_c0_perfcntr3(0);
case 3:
w_c0_perfctrl2(0);
w_c0_perfcntr2(0);
case 2:
w_c0_perfctrl1(0);
w_c0_perfcntr1(0);
case 1:
w_c0_perfctrl0(0);
w_c0_perfcntr0(0);
}
}
static inline u64
mipsxx_pmu_read_counter(unsigned int idx)
{
switch (idx) {
case 0:
return r_c0_perfcntr0();
case 1:
return r_c0_perfcntr1();
case 2:
return r_c0_perfcntr2();
case 3:
return r_c0_perfcntr3();
default:
WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
return 0;
}
}
static inline void
mipsxx_pmu_write_counter(unsigned int idx, u64 val)
{
switch (idx) {
case 0:
w_c0_perfcntr0(val);
return;
case 1:
w_c0_perfcntr1(val);
return;
case 2:
w_c0_perfcntr2(val);
return;
case 3:
w_c0_perfcntr3(val);
return;
}
}
static inline unsigned int
mipsxx_pmu_read_control(unsigned int idx)
{
switch (idx) {
case 0:
return r_c0_perfctrl0();
case 1:
return r_c0_perfctrl1();
case 2:
return r_c0_perfctrl2();
case 3:
return r_c0_perfctrl3();
default:
WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
return 0;
}
}
static inline void
mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
{
switch (idx) {
case 0:
w_c0_perfctrl0(val);
return;
case 1:
w_c0_perfctrl1(val);
return;
case 2:
w_c0_perfctrl2(val);
return;
case 3:
w_c0_perfctrl3(val);
return;
}
}
#ifdef CONFIG_MIPS_MT_SMP
static DEFINE_RWLOCK(pmuint_rwlock);
#endif
/* 24K/34K/1004K cores can share the same event map. */
static const struct mips_perf_event mipsxxcore_event_map
[PERF_COUNT_HW_MAX] = {
[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
[PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
[PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
[PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
};
/* 74K core has different branch event code. */
static const struct mips_perf_event mipsxx74Kcore_event_map
[PERF_COUNT_HW_MAX] = {
[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
[PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
[PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
[PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
[PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
};
/* 24K/34K/1004K cores can share the same cache event map. */
static const struct mips_perf_event mipsxxcore_cache_map
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
/*
* Like some other architectures (e.g. ARM), the performance
* counters don't differentiate between read and write
* accesses/misses, so this isn't strictly correct, but it's the
* best we can do. Writes and reads get combined.
*/
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
},
},
[C(L1I)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = { 0x14, CNTR_EVEN, T },
/*
* Note that MIPS has only "hit" events countable for
* the prefetch operation.
*/
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
},
},
[C(LL)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
[C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
[C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
},
},
[C(DTLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
},
},
[C(ITLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
},
},
[C(BPU)] = {
/* Using the same code for *HW_BRANCH* */
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
},
},
};
/* 74K core has completely different cache event map. */
static const struct mips_perf_event mipsxx74Kcore_cache_map
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
/*
* Like some other architectures (e.g. ARM), the performance
* counters don't differentiate between read and write
* accesses/misses, so this isn't strictly correct, but it's the
* best we can do. Writes and reads get combined.
*/
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
[C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
[C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
},
},
[C(L1I)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = { 0x34, CNTR_EVEN, T },
/*
* Note that MIPS has only "hit" events countable for
* the prefetch operation.
*/
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
},
},
[C(LL)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
[C(RESULT_MISS)] = { 0x1d, CNTR_EVEN | CNTR_ODD, P },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
[C(RESULT_MISS)] = { 0x1d, CNTR_EVEN | CNTR_ODD, P },
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
},
},
[C(DTLB)] = {
/* 74K core does not have specific DTLB events. */
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
},
},
[C(ITLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
},
},
[C(BPU)] = {
/* Using the same code for *HW_BRANCH* */
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
},
},
};
#ifdef CONFIG_MIPS_MT_SMP
static void
check_and_calc_range(struct perf_event *event,
const struct mips_perf_event *pev)
{
struct hw_perf_event *hwc = &event->hw;
if (event->cpu >= 0) {
if (pev->range > V) {
/*
* The user selected an event that is processor
* wide, while expecting it to be VPE wide.
*/
hwc->config_base |= M_TC_EN_ALL;
} else {
/*
* FIXME: cpu_data[event->cpu].vpe_id reports 0
* for both CPUs.
*/
hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
hwc->config_base |= M_TC_EN_VPE;
}
} else
hwc->config_base |= M_TC_EN_ALL;
}
#else
static void
check_and_calc_range(struct perf_event *event,
const struct mips_perf_event *pev)
{
}
#endif
static int __hw_perf_event_init(struct perf_event *event)
{
struct perf_event_attr *attr = &event->attr;
struct hw_perf_event *hwc = &event->hw;
const struct mips_perf_event *pev;
int err;
/* Returning MIPS event descriptor for generic perf event. */
if (PERF_TYPE_HARDWARE == event->attr.type) {
if (event->attr.config >= PERF_COUNT_HW_MAX)
return -EINVAL;
pev = mipspmu_map_general_event(event->attr.config);
} else if (PERF_TYPE_HW_CACHE == event->attr.type) {
pev = mipspmu_map_cache_event(event->attr.config);
} else if (PERF_TYPE_RAW == event->attr.type) {
/* We are working on the global raw event. */
mutex_lock(&raw_event_mutex);
pev = mipspmu->map_raw_event(event->attr.config);
} else {
/* The event type is not (yet) supported. */
return -EOPNOTSUPP;
}
if (IS_ERR(pev)) {
if (PERF_TYPE_RAW == event->attr.type)
mutex_unlock(&raw_event_mutex);
return PTR_ERR(pev);
}
/*
* We allow max flexibility on how each individual counter shared
* by the single CPU operates (the mode exclusion and the range).
*/
hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
/* Calculate range bits and validate it. */
if (num_possible_cpus() > 1)
check_and_calc_range(event, pev);
hwc->event_base = mipspmu_perf_event_encode(pev);
if (PERF_TYPE_RAW == event->attr.type)
mutex_unlock(&raw_event_mutex);
if (!attr->exclude_user)
hwc->config_base |= M_PERFCTL_USER;
if (!attr->exclude_kernel) {
hwc->config_base |= M_PERFCTL_KERNEL;
/* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
hwc->config_base |= M_PERFCTL_EXL;
}
if (!attr->exclude_hv)
hwc->config_base |= M_PERFCTL_SUPERVISOR;
hwc->config_base &= M_PERFCTL_CONFIG_MASK;
/*
* The event can belong to another cpu. We do not assign a local
* counter for it for now.
*/
hwc->idx = -1;
hwc->config = 0;
if (!hwc->sample_period) {
hwc->sample_period = MAX_PERIOD;
hwc->last_period = hwc->sample_period;
local64_set(&hwc->period_left, hwc->sample_period);
}
err = 0;
if (event->group_leader != event) {
err = validate_group(event);
if (err)
return -EINVAL;
}
event->destroy = hw_perf_event_destroy;
return err;
}
static void pause_local_counters(void)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
int counters = mipspmu->num_counters;
unsigned long flags;
local_irq_save(flags);
switch (counters) {
case 4:
cpuc->saved_ctrl[3] = r_c0_perfctrl3();
w_c0_perfctrl3(cpuc->saved_ctrl[3] &
~M_PERFCTL_COUNT_EVENT_WHENEVER);
case 3:
cpuc->saved_ctrl[2] = r_c0_perfctrl2();
w_c0_perfctrl2(cpuc->saved_ctrl[2] &
~M_PERFCTL_COUNT_EVENT_WHENEVER);
case 2:
cpuc->saved_ctrl[1] = r_c0_perfctrl1();
w_c0_perfctrl1(cpuc->saved_ctrl[1] &
~M_PERFCTL_COUNT_EVENT_WHENEVER);
case 1:
cpuc->saved_ctrl[0] = r_c0_perfctrl0();
w_c0_perfctrl0(cpuc->saved_ctrl[0] &
~M_PERFCTL_COUNT_EVENT_WHENEVER);
}
local_irq_restore(flags);
}
static void resume_local_counters(void)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
int counters = mipspmu->num_counters;
unsigned long flags;
local_irq_save(flags);
switch (counters) {
case 4:
w_c0_perfctrl3(cpuc->saved_ctrl[3]);
case 3:
w_c0_perfctrl2(cpuc->saved_ctrl[2]);
case 2:
w_c0_perfctrl1(cpuc->saved_ctrl[1]);
case 1:
w_c0_perfctrl0(cpuc->saved_ctrl[0]);
}
local_irq_restore(flags);
}
static int mipsxx_pmu_handle_shared_irq(void)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
struct perf_sample_data data;
unsigned int counters = mipspmu->num_counters;
unsigned int counter;
int handled = IRQ_NONE;
struct pt_regs *regs;
if (cpu_has_mips_r2 && !(read_c0_cause() & (1 << 26)))
return handled;
/*
* First we pause the local counters, so that when we are locked
* here, the counters are all paused. When it gets locked due to
* perf_disable(), the timer interrupt handler will be delayed.
*
* See also mipsxx_pmu_start().
*/
pause_local_counters();
#ifdef CONFIG_MIPS_MT_SMP
read_lock(&pmuint_rwlock);
#endif
regs = get_irq_regs();
perf_sample_data_init(&data, 0);
switch (counters) {
#define HANDLE_COUNTER(n) \
case n + 1: \
if (test_bit(n, cpuc->used_mask)) { \
counter = r_c0_perfcntr ## n(); \
if (counter & M_COUNTER_OVERFLOW) { \
w_c0_perfcntr ## n(counter & \
VALID_COUNT); \
if (test_and_change_bit(n, cpuc->msbs)) \
handle_associated_event(cpuc, \
n, &data, regs); \
handled = IRQ_HANDLED; \
} \
}
HANDLE_COUNTER(3)
HANDLE_COUNTER(2)
HANDLE_COUNTER(1)
HANDLE_COUNTER(0)
}
/*
* Do all the work for the pending perf events. We can do this
* in here because the performance counter interrupt is a regular
* interrupt, not NMI.
*/
if (handled == IRQ_HANDLED)
irq_work_run();
#ifdef CONFIG_MIPS_MT_SMP
read_unlock(&pmuint_rwlock);
#endif
resume_local_counters();
return handled;
}
static irqreturn_t
mipsxx_pmu_handle_irq(int irq, void *dev)
{
return mipsxx_pmu_handle_shared_irq();
}
static void mipsxx_pmu_start(void)
{
#ifdef CONFIG_MIPS_MT_SMP
write_unlock(&pmuint_rwlock);
#endif
resume_local_counters();
}
/*
* MIPS performance counters can be per-TC. The control registers can
* not be directly accessed across CPUs. Hence if we want to do global
* control, we need cross CPU calls. on_each_cpu() can help us, but we
* can not make sure this function is called with interrupts enabled. So
* here we pause local counters and then grab a rwlock and leave the
* counters on other CPUs alone. If any counter interrupt raises while
* we own the write lock, simply pause local counters on that CPU and
* spin in the handler. Also we know we won't be switched to another
* CPU after pausing local counters and before grabbing the lock.
*/
static void mipsxx_pmu_stop(void)
{
pause_local_counters();
#ifdef CONFIG_MIPS_MT_SMP
write_lock(&pmuint_rwlock);
#endif
}
static int
mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
struct hw_perf_event *hwc)
{
int i;
/*
* We only need to care the counter mask. The range has been
* checked definitely.
*/
unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
for (i = mipspmu->num_counters - 1; i >= 0; i--) {
/*
* Note that some MIPS perf events can be counted by both
* even and odd counters, wheresas many other are only by
* even _or_ odd counters. This introduces an issue that
* when the former kind of event takes the counter the
* latter kind of event wants to use, then the "counter
* allocation" for the latter event will fail. In fact if
* they can be dynamically swapped, they both feel happy.
* But here we leave this issue alone for now.
*/
if (test_bit(i, &cntr_mask) &&
!test_and_set_bit(i, cpuc->used_mask))
return i;
}
return -EAGAIN;
}
static void
mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
unsigned long flags;
WARN_ON(idx < 0 || idx >= mipspmu->num_counters);
local_irq_save(flags);
cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
(evt->config_base & M_PERFCTL_CONFIG_MASK) |
/* Make sure interrupt enabled. */
M_PERFCTL_INTERRUPT_ENABLE;
/*
* We do not actually let the counter run. Leave it until start().
*/
local_irq_restore(flags);
}
static void
mipsxx_pmu_disable_event(int idx)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
unsigned long flags;
WARN_ON(idx < 0 || idx >= mipspmu->num_counters);
local_irq_save(flags);
cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
~M_PERFCTL_COUNT_EVENT_WHENEVER;
mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
local_irq_restore(flags);
}
/* 24K */
#define IS_UNSUPPORTED_24K_EVENT(r, b) \
((b) == 12 || (r) == 151 || (r) == 152 || (b) == 26 || \
(b) == 27 || (r) == 28 || (r) == 158 || (b) == 31 || \
(b) == 32 || (b) == 34 || (b) == 36 || (r) == 168 || \
(r) == 172 || (b) == 47 || ((b) >= 56 && (b) <= 63) || \
((b) >= 68 && (b) <= 127))
#define IS_BOTH_COUNTERS_24K_EVENT(b) \
((b) == 0 || (b) == 1 || (b) == 11)
/* 34K */
#define IS_UNSUPPORTED_34K_EVENT(r, b) \
((b) == 12 || (r) == 27 || (r) == 158 || (b) == 36 || \
(b) == 38 || (r) == 175 || ((b) >= 56 && (b) <= 63) || \
((b) >= 68 && (b) <= 127))
#define IS_BOTH_COUNTERS_34K_EVENT(b) \
((b) == 0 || (b) == 1 || (b) == 11)
#ifdef CONFIG_MIPS_MT_SMP
#define IS_RANGE_P_34K_EVENT(r, b) \
((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
(b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \
(r) == 176 || ((b) >= 50 && (b) <= 55) || \
((b) >= 64 && (b) <= 67))
#define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
#endif
/* 74K */
#define IS_UNSUPPORTED_74K_EVENT(r, b) \
((r) == 5 || ((r) >= 135 && (r) <= 137) || \
((b) >= 10 && (b) <= 12) || (b) == 22 || (b) == 27 || \
(b) == 33 || (b) == 34 || ((b) >= 47 && (b) <= 49) || \
(r) == 178 || (b) == 55 || (b) == 57 || (b) == 60 || \
(b) == 61 || (r) == 62 || (r) == 191 || \
((b) >= 64 && (b) <= 127))
#define IS_BOTH_COUNTERS_74K_EVENT(b) \
((b) == 0 || (b) == 1)
/* 1004K */
#define IS_UNSUPPORTED_1004K_EVENT(r, b) \
((b) == 12 || (r) == 27 || (r) == 158 || (b) == 38 || \
(r) == 175 || (b) == 63 || ((b) >= 68 && (b) <= 127))
#define IS_BOTH_COUNTERS_1004K_EVENT(b) \
((b) == 0 || (b) == 1 || (b) == 11)
#ifdef CONFIG_MIPS_MT_SMP
#define IS_RANGE_P_1004K_EVENT(r, b) \
((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
(b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \
(r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \
(r) == 188 || (b) == 61 || (b) == 62 || \
((b) >= 64 && (b) <= 67))
#define IS_RANGE_V_1004K_EVENT(r) ((r) == 47)
#endif
/*
* User can use 0-255 raw events, where 0-127 for the events of even
* counters, and 128-255 for odd counters. Note that bit 7 is used to
* indicate the parity. So, for example, when user wants to take the
* Event Num of 15 for odd counters (by referring to the user manual),
* then 128 needs to be added to 15 as the input for the event config,
* i.e., 143 (0x8F) to be used.
*/
static const struct mips_perf_event *
mipsxx_pmu_map_raw_event(u64 config)
{
unsigned int raw_id = config & 0xff;
unsigned int base_id = raw_id & 0x7f;
switch (current_cpu_type()) {
case CPU_24K:
if (IS_UNSUPPORTED_24K_EVENT(raw_id, base_id))
return ERR_PTR(-EOPNOTSUPP);
raw_event.event_id = base_id;
if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
else
raw_event.cntr_mask =
raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
#ifdef CONFIG_MIPS_MT_SMP
/*
* This is actually doing nothing. Non-multithreading
* CPUs will not check and calculate the range.
*/
raw_event.range = P;
#endif
break;
case CPU_34K:
if (IS_UNSUPPORTED_34K_EVENT(raw_id, base_id))
return ERR_PTR(-EOPNOTSUPP);
raw_event.event_id = base_id;
if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
else
raw_event.cntr_mask =
raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
#ifdef CONFIG_MIPS_MT_SMP
if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
raw_event.range = P;
else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
raw_event.range = V;
else
raw_event.range = T;
#endif
break;
case CPU_74K:
if (IS_UNSUPPORTED_74K_EVENT(raw_id, base_id))
return ERR_PTR(-EOPNOTSUPP);
raw_event.event_id = base_id;
if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
else
raw_event.cntr_mask =
raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
#ifdef CONFIG_MIPS_MT_SMP
raw_event.range = P;
#endif
break;
case CPU_1004K:
if (IS_UNSUPPORTED_1004K_EVENT(raw_id, base_id))
return ERR_PTR(-EOPNOTSUPP);
raw_event.event_id = base_id;
if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
else
raw_event.cntr_mask =
raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
#ifdef CONFIG_MIPS_MT_SMP
if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
raw_event.range = P;
else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
raw_event.range = V;
else
raw_event.range = T;
#endif
break;
}
return &raw_event;
}
static struct mips_pmu mipsxxcore_pmu = {
.handle_irq = mipsxx_pmu_handle_irq,
.handle_shared_irq = mipsxx_pmu_handle_shared_irq,
.start = mipsxx_pmu_start,
.stop = mipsxx_pmu_stop,
.alloc_counter = mipsxx_pmu_alloc_counter,
.read_counter = mipsxx_pmu_read_counter,
.write_counter = mipsxx_pmu_write_counter,
.enable_event = mipsxx_pmu_enable_event,
.disable_event = mipsxx_pmu_disable_event,
.map_raw_event = mipsxx_pmu_map_raw_event,
.general_event_map = &mipsxxcore_event_map,
.cache_event_map = &mipsxxcore_cache_map,
};
static struct mips_pmu mipsxx74Kcore_pmu = {
.handle_irq = mipsxx_pmu_handle_irq,
.handle_shared_irq = mipsxx_pmu_handle_shared_irq,
.start = mipsxx_pmu_start,
.stop = mipsxx_pmu_stop,
.alloc_counter = mipsxx_pmu_alloc_counter,
.read_counter = mipsxx_pmu_read_counter,
.write_counter = mipsxx_pmu_write_counter,
.enable_event = mipsxx_pmu_enable_event,
.disable_event = mipsxx_pmu_disable_event,
.map_raw_event = mipsxx_pmu_map_raw_event,
.general_event_map = &mipsxx74Kcore_event_map,
.cache_event_map = &mipsxx74Kcore_cache_map,
};
static int __init
init_hw_perf_events(void)
{
int counters, irq;
pr_info("Performance counters: ");
counters = n_counters();
if (counters == 0) {
pr_cont("No available PMU.\n");
return -ENODEV;
}
#ifdef CONFIG_MIPS_MT_SMP
cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
if (!cpu_has_mipsmt_pertccounters)
counters = counters_total_to_per_cpu(counters);
#endif
#ifdef MSC01E_INT_BASE
if (cpu_has_veic) {
/*
* Using platform specific interrupt controller defines.
*/
irq = MSC01E_INT_BASE + MSC01E_INT_PERFCTR;
} else {
#endif
if (cp0_perfcount_irq >= 0)
irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
else
irq = -1;
#ifdef MSC01E_INT_BASE
}
#endif
on_each_cpu(reset_counters, (void *)(long)counters, 1);
switch (current_cpu_type()) {
case CPU_24K:
mipsxxcore_pmu.name = "mips/24K";
mipsxxcore_pmu.num_counters = counters;
mipsxxcore_pmu.irq = irq;
mipspmu = &mipsxxcore_pmu;
break;
case CPU_34K:
mipsxxcore_pmu.name = "mips/34K";
mipsxxcore_pmu.num_counters = counters;
mipsxxcore_pmu.irq = irq;
mipspmu = &mipsxxcore_pmu;
break;
case CPU_74K:
mipsxx74Kcore_pmu.name = "mips/74K";
mipsxx74Kcore_pmu.num_counters = counters;
mipsxx74Kcore_pmu.irq = irq;
mipspmu = &mipsxx74Kcore_pmu;
break;
case CPU_1004K:
mipsxxcore_pmu.name = "mips/1004K";
mipsxxcore_pmu.num_counters = counters;
mipsxxcore_pmu.irq = irq;
mipspmu = &mipsxxcore_pmu;
break;
default:
pr_cont("Either hardware does not support performance "
"counters, or not yet implemented.\n");
return -ENODEV;
}
if (mipspmu)
pr_cont("%s PMU enabled, %d counters available to each "
"CPU, irq %d%s\n", mipspmu->name, counters, irq,
irq < 0 ? " (share with timer interrupt)" : "");
perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
return 0;
}
early_initcall(init_hw_perf_events);
#endif /* defined(CONFIG_CPU_MIPS32)... */