| /* |
| * Extensible Firmware Interface |
| * |
| * Based on Extensible Firmware Interface Specification version 0.9 |
| * April 30, 1999 |
| * |
| * Copyright (C) 1999 VA Linux Systems |
| * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> |
| * Copyright (C) 1999-2003 Hewlett-Packard Co. |
| * David Mosberger-Tang <davidm@hpl.hp.com> |
| * Stephane Eranian <eranian@hpl.hp.com> |
| * (c) Copyright 2006 Hewlett-Packard Development Company, L.P. |
| * Bjorn Helgaas <bjorn.helgaas@hp.com> |
| * |
| * All EFI Runtime Services are not implemented yet as EFI only |
| * supports physical mode addressing on SoftSDV. This is to be fixed |
| * in a future version. --drummond 1999-07-20 |
| * |
| * Implemented EFI runtime services and virtual mode calls. --davidm |
| * |
| * Goutham Rao: <goutham.rao@intel.com> |
| * Skip non-WB memory and ignore empty memory ranges. |
| */ |
| #include <linux/module.h> |
| #include <linux/bootmem.h> |
| #include <linux/crash_dump.h> |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/types.h> |
| #include <linux/slab.h> |
| #include <linux/time.h> |
| #include <linux/efi.h> |
| #include <linux/kexec.h> |
| #include <linux/mm.h> |
| |
| #include <asm/io.h> |
| #include <asm/kregs.h> |
| #include <asm/meminit.h> |
| #include <asm/pgtable.h> |
| #include <asm/processor.h> |
| #include <asm/mca.h> |
| #include <asm/setup.h> |
| #include <asm/tlbflush.h> |
| |
| #define EFI_DEBUG 0 |
| |
| static __initdata unsigned long palo_phys; |
| |
| static __initdata efi_config_table_type_t arch_tables[] = { |
| {PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID, "PALO", &palo_phys}, |
| {NULL_GUID, NULL, 0}, |
| }; |
| |
| extern efi_status_t efi_call_phys (void *, ...); |
| |
| static efi_runtime_services_t *runtime; |
| static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL; |
| |
| #define efi_call_virt(f, args...) (*(f))(args) |
| |
| #define STUB_GET_TIME(prefix, adjust_arg) \ |
| static efi_status_t \ |
| prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \ |
| { \ |
| struct ia64_fpreg fr[6]; \ |
| efi_time_cap_t *atc = NULL; \ |
| efi_status_t ret; \ |
| \ |
| if (tc) \ |
| atc = adjust_arg(tc); \ |
| ia64_save_scratch_fpregs(fr); \ |
| ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), \ |
| adjust_arg(tm), atc); \ |
| ia64_load_scratch_fpregs(fr); \ |
| return ret; \ |
| } |
| |
| #define STUB_SET_TIME(prefix, adjust_arg) \ |
| static efi_status_t \ |
| prefix##_set_time (efi_time_t *tm) \ |
| { \ |
| struct ia64_fpreg fr[6]; \ |
| efi_status_t ret; \ |
| \ |
| ia64_save_scratch_fpregs(fr); \ |
| ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), \ |
| adjust_arg(tm)); \ |
| ia64_load_scratch_fpregs(fr); \ |
| return ret; \ |
| } |
| |
| #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \ |
| static efi_status_t \ |
| prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, \ |
| efi_time_t *tm) \ |
| { \ |
| struct ia64_fpreg fr[6]; \ |
| efi_status_t ret; \ |
| \ |
| ia64_save_scratch_fpregs(fr); \ |
| ret = efi_call_##prefix( \ |
| (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \ |
| adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \ |
| ia64_load_scratch_fpregs(fr); \ |
| return ret; \ |
| } |
| |
| #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \ |
| static efi_status_t \ |
| prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \ |
| { \ |
| struct ia64_fpreg fr[6]; \ |
| efi_time_t *atm = NULL; \ |
| efi_status_t ret; \ |
| \ |
| if (tm) \ |
| atm = adjust_arg(tm); \ |
| ia64_save_scratch_fpregs(fr); \ |
| ret = efi_call_##prefix( \ |
| (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \ |
| enabled, atm); \ |
| ia64_load_scratch_fpregs(fr); \ |
| return ret; \ |
| } |
| |
| #define STUB_GET_VARIABLE(prefix, adjust_arg) \ |
| static efi_status_t \ |
| prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \ |
| unsigned long *data_size, void *data) \ |
| { \ |
| struct ia64_fpreg fr[6]; \ |
| u32 *aattr = NULL; \ |
| efi_status_t ret; \ |
| \ |
| if (attr) \ |
| aattr = adjust_arg(attr); \ |
| ia64_save_scratch_fpregs(fr); \ |
| ret = efi_call_##prefix( \ |
| (efi_get_variable_t *) __va(runtime->get_variable), \ |
| adjust_arg(name), adjust_arg(vendor), aattr, \ |
| adjust_arg(data_size), adjust_arg(data)); \ |
| ia64_load_scratch_fpregs(fr); \ |
| return ret; \ |
| } |
| |
| #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \ |
| static efi_status_t \ |
| prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, \ |
| efi_guid_t *vendor) \ |
| { \ |
| struct ia64_fpreg fr[6]; \ |
| efi_status_t ret; \ |
| \ |
| ia64_save_scratch_fpregs(fr); \ |
| ret = efi_call_##prefix( \ |
| (efi_get_next_variable_t *) __va(runtime->get_next_variable), \ |
| adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \ |
| ia64_load_scratch_fpregs(fr); \ |
| return ret; \ |
| } |
| |
| #define STUB_SET_VARIABLE(prefix, adjust_arg) \ |
| static efi_status_t \ |
| prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, \ |
| u32 attr, unsigned long data_size, \ |
| void *data) \ |
| { \ |
| struct ia64_fpreg fr[6]; \ |
| efi_status_t ret; \ |
| \ |
| ia64_save_scratch_fpregs(fr); \ |
| ret = efi_call_##prefix( \ |
| (efi_set_variable_t *) __va(runtime->set_variable), \ |
| adjust_arg(name), adjust_arg(vendor), attr, data_size, \ |
| adjust_arg(data)); \ |
| ia64_load_scratch_fpregs(fr); \ |
| return ret; \ |
| } |
| |
| #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \ |
| static efi_status_t \ |
| prefix##_get_next_high_mono_count (u32 *count) \ |
| { \ |
| struct ia64_fpreg fr[6]; \ |
| efi_status_t ret; \ |
| \ |
| ia64_save_scratch_fpregs(fr); \ |
| ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \ |
| __va(runtime->get_next_high_mono_count), \ |
| adjust_arg(count)); \ |
| ia64_load_scratch_fpregs(fr); \ |
| return ret; \ |
| } |
| |
| #define STUB_RESET_SYSTEM(prefix, adjust_arg) \ |
| static void \ |
| prefix##_reset_system (int reset_type, efi_status_t status, \ |
| unsigned long data_size, efi_char16_t *data) \ |
| { \ |
| struct ia64_fpreg fr[6]; \ |
| efi_char16_t *adata = NULL; \ |
| \ |
| if (data) \ |
| adata = adjust_arg(data); \ |
| \ |
| ia64_save_scratch_fpregs(fr); \ |
| efi_call_##prefix( \ |
| (efi_reset_system_t *) __va(runtime->reset_system), \ |
| reset_type, status, data_size, adata); \ |
| /* should not return, but just in case... */ \ |
| ia64_load_scratch_fpregs(fr); \ |
| } |
| |
| #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg)) |
| |
| STUB_GET_TIME(phys, phys_ptr) |
| STUB_SET_TIME(phys, phys_ptr) |
| STUB_GET_WAKEUP_TIME(phys, phys_ptr) |
| STUB_SET_WAKEUP_TIME(phys, phys_ptr) |
| STUB_GET_VARIABLE(phys, phys_ptr) |
| STUB_GET_NEXT_VARIABLE(phys, phys_ptr) |
| STUB_SET_VARIABLE(phys, phys_ptr) |
| STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr) |
| STUB_RESET_SYSTEM(phys, phys_ptr) |
| |
| #define id(arg) arg |
| |
| STUB_GET_TIME(virt, id) |
| STUB_SET_TIME(virt, id) |
| STUB_GET_WAKEUP_TIME(virt, id) |
| STUB_SET_WAKEUP_TIME(virt, id) |
| STUB_GET_VARIABLE(virt, id) |
| STUB_GET_NEXT_VARIABLE(virt, id) |
| STUB_SET_VARIABLE(virt, id) |
| STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id) |
| STUB_RESET_SYSTEM(virt, id) |
| |
| void |
| efi_gettimeofday (struct timespec *ts) |
| { |
| efi_time_t tm; |
| |
| if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) { |
| memset(ts, 0, sizeof(*ts)); |
| return; |
| } |
| |
| ts->tv_sec = mktime(tm.year, tm.month, tm.day, |
| tm.hour, tm.minute, tm.second); |
| ts->tv_nsec = tm.nanosecond; |
| } |
| |
| static int |
| is_memory_available (efi_memory_desc_t *md) |
| { |
| if (!(md->attribute & EFI_MEMORY_WB)) |
| return 0; |
| |
| switch (md->type) { |
| case EFI_LOADER_CODE: |
| case EFI_LOADER_DATA: |
| case EFI_BOOT_SERVICES_CODE: |
| case EFI_BOOT_SERVICES_DATA: |
| case EFI_CONVENTIONAL_MEMORY: |
| return 1; |
| } |
| return 0; |
| } |
| |
| typedef struct kern_memdesc { |
| u64 attribute; |
| u64 start; |
| u64 num_pages; |
| } kern_memdesc_t; |
| |
| static kern_memdesc_t *kern_memmap; |
| |
| #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT) |
| |
| static inline u64 |
| kmd_end(kern_memdesc_t *kmd) |
| { |
| return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT)); |
| } |
| |
| static inline u64 |
| efi_md_end(efi_memory_desc_t *md) |
| { |
| return (md->phys_addr + efi_md_size(md)); |
| } |
| |
| static inline int |
| efi_wb(efi_memory_desc_t *md) |
| { |
| return (md->attribute & EFI_MEMORY_WB); |
| } |
| |
| static inline int |
| efi_uc(efi_memory_desc_t *md) |
| { |
| return (md->attribute & EFI_MEMORY_UC); |
| } |
| |
| static void |
| walk (efi_freemem_callback_t callback, void *arg, u64 attr) |
| { |
| kern_memdesc_t *k; |
| u64 start, end, voff; |
| |
| voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET; |
| for (k = kern_memmap; k->start != ~0UL; k++) { |
| if (k->attribute != attr) |
| continue; |
| start = PAGE_ALIGN(k->start); |
| end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK; |
| if (start < end) |
| if ((*callback)(start + voff, end + voff, arg) < 0) |
| return; |
| } |
| } |
| |
| /* |
| * Walk the EFI memory map and call CALLBACK once for each EFI memory |
| * descriptor that has memory that is available for OS use. |
| */ |
| void |
| efi_memmap_walk (efi_freemem_callback_t callback, void *arg) |
| { |
| walk(callback, arg, EFI_MEMORY_WB); |
| } |
| |
| /* |
| * Walk the EFI memory map and call CALLBACK once for each EFI memory |
| * descriptor that has memory that is available for uncached allocator. |
| */ |
| void |
| efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg) |
| { |
| walk(callback, arg, EFI_MEMORY_UC); |
| } |
| |
| /* |
| * Look for the PAL_CODE region reported by EFI and map it using an |
| * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor |
| * Abstraction Layer chapter 11 in ADAG |
| */ |
| void * |
| efi_get_pal_addr (void) |
| { |
| void *efi_map_start, *efi_map_end, *p; |
| efi_memory_desc_t *md; |
| u64 efi_desc_size; |
| int pal_code_count = 0; |
| u64 vaddr, mask; |
| |
| efi_map_start = __va(ia64_boot_param->efi_memmap); |
| efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; |
| efi_desc_size = ia64_boot_param->efi_memdesc_size; |
| |
| for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { |
| md = p; |
| if (md->type != EFI_PAL_CODE) |
| continue; |
| |
| if (++pal_code_count > 1) { |
| printk(KERN_ERR "Too many EFI Pal Code memory ranges, " |
| "dropped @ %llx\n", md->phys_addr); |
| continue; |
| } |
| /* |
| * The only ITLB entry in region 7 that is used is the one |
| * installed by __start(). That entry covers a 64MB range. |
| */ |
| mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1); |
| vaddr = PAGE_OFFSET + md->phys_addr; |
| |
| /* |
| * We must check that the PAL mapping won't overlap with the |
| * kernel mapping. |
| * |
| * PAL code is guaranteed to be aligned on a power of 2 between |
| * 4k and 256KB and that only one ITR is needed to map it. This |
| * implies that the PAL code is always aligned on its size, |
| * i.e., the closest matching page size supported by the TLB. |
| * Therefore PAL code is guaranteed never to cross a 64MB unless |
| * it is bigger than 64MB (very unlikely!). So for now the |
| * following test is enough to determine whether or not we need |
| * a dedicated ITR for the PAL code. |
| */ |
| if ((vaddr & mask) == (KERNEL_START & mask)) { |
| printk(KERN_INFO "%s: no need to install ITR for PAL code\n", |
| __func__); |
| continue; |
| } |
| |
| if (efi_md_size(md) > IA64_GRANULE_SIZE) |
| panic("Whoa! PAL code size bigger than a granule!"); |
| |
| #if EFI_DEBUG |
| mask = ~((1 << IA64_GRANULE_SHIFT) - 1); |
| |
| printk(KERN_INFO "CPU %d: mapping PAL code " |
| "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n", |
| smp_processor_id(), md->phys_addr, |
| md->phys_addr + efi_md_size(md), |
| vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE); |
| #endif |
| return __va(md->phys_addr); |
| } |
| printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n", |
| __func__); |
| return NULL; |
| } |
| |
| |
| static u8 __init palo_checksum(u8 *buffer, u32 length) |
| { |
| u8 sum = 0; |
| u8 *end = buffer + length; |
| |
| while (buffer < end) |
| sum = (u8) (sum + *(buffer++)); |
| |
| return sum; |
| } |
| |
| /* |
| * Parse and handle PALO table which is published at: |
| * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf |
| */ |
| static void __init handle_palo(unsigned long phys_addr) |
| { |
| struct palo_table *palo = __va(phys_addr); |
| u8 checksum; |
| |
| if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) { |
| printk(KERN_INFO "PALO signature incorrect.\n"); |
| return; |
| } |
| |
| checksum = palo_checksum((u8 *)palo, palo->length); |
| if (checksum) { |
| printk(KERN_INFO "PALO checksum incorrect.\n"); |
| return; |
| } |
| |
| setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO); |
| } |
| |
| void |
| efi_map_pal_code (void) |
| { |
| void *pal_vaddr = efi_get_pal_addr (); |
| u64 psr; |
| |
| if (!pal_vaddr) |
| return; |
| |
| /* |
| * Cannot write to CRx with PSR.ic=1 |
| */ |
| psr = ia64_clear_ic(); |
| ia64_itr(0x1, IA64_TR_PALCODE, |
| GRANULEROUNDDOWN((unsigned long) pal_vaddr), |
| pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)), |
| IA64_GRANULE_SHIFT); |
| ia64_set_psr(psr); /* restore psr */ |
| } |
| |
| void __init |
| efi_init (void) |
| { |
| void *efi_map_start, *efi_map_end; |
| efi_char16_t *c16; |
| u64 efi_desc_size; |
| char *cp, vendor[100] = "unknown"; |
| int i; |
| |
| set_bit(EFI_BOOT, &efi.flags); |
| set_bit(EFI_64BIT, &efi.flags); |
| |
| /* |
| * It's too early to be able to use the standard kernel command line |
| * support... |
| */ |
| for (cp = boot_command_line; *cp; ) { |
| if (memcmp(cp, "mem=", 4) == 0) { |
| mem_limit = memparse(cp + 4, &cp); |
| } else if (memcmp(cp, "max_addr=", 9) == 0) { |
| max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp)); |
| } else if (memcmp(cp, "min_addr=", 9) == 0) { |
| min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp)); |
| } else { |
| while (*cp != ' ' && *cp) |
| ++cp; |
| while (*cp == ' ') |
| ++cp; |
| } |
| } |
| if (min_addr != 0UL) |
| printk(KERN_INFO "Ignoring memory below %lluMB\n", |
| min_addr >> 20); |
| if (max_addr != ~0UL) |
| printk(KERN_INFO "Ignoring memory above %lluMB\n", |
| max_addr >> 20); |
| |
| efi.systab = __va(ia64_boot_param->efi_systab); |
| |
| /* |
| * Verify the EFI Table |
| */ |
| if (efi.systab == NULL) |
| panic("Whoa! Can't find EFI system table.\n"); |
| if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) |
| panic("Whoa! EFI system table signature incorrect\n"); |
| if ((efi.systab->hdr.revision >> 16) == 0) |
| printk(KERN_WARNING "Warning: EFI system table version " |
| "%d.%02d, expected 1.00 or greater\n", |
| efi.systab->hdr.revision >> 16, |
| efi.systab->hdr.revision & 0xffff); |
| |
| /* Show what we know for posterity */ |
| c16 = __va(efi.systab->fw_vendor); |
| if (c16) { |
| for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i) |
| vendor[i] = *c16++; |
| vendor[i] = '\0'; |
| } |
| |
| printk(KERN_INFO "EFI v%u.%.02u by %s:", |
| efi.systab->hdr.revision >> 16, |
| efi.systab->hdr.revision & 0xffff, vendor); |
| |
| set_bit(EFI_SYSTEM_TABLES, &efi.flags); |
| |
| palo_phys = EFI_INVALID_TABLE_ADDR; |
| |
| if (efi_config_init(arch_tables) != 0) |
| return; |
| |
| if (palo_phys != EFI_INVALID_TABLE_ADDR) |
| handle_palo(palo_phys); |
| |
| runtime = __va(efi.systab->runtime); |
| efi.get_time = phys_get_time; |
| efi.set_time = phys_set_time; |
| efi.get_wakeup_time = phys_get_wakeup_time; |
| efi.set_wakeup_time = phys_set_wakeup_time; |
| efi.get_variable = phys_get_variable; |
| efi.get_next_variable = phys_get_next_variable; |
| efi.set_variable = phys_set_variable; |
| efi.get_next_high_mono_count = phys_get_next_high_mono_count; |
| efi.reset_system = phys_reset_system; |
| |
| efi_map_start = __va(ia64_boot_param->efi_memmap); |
| efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; |
| efi_desc_size = ia64_boot_param->efi_memdesc_size; |
| |
| #if EFI_DEBUG |
| /* print EFI memory map: */ |
| { |
| efi_memory_desc_t *md; |
| void *p; |
| |
| for (i = 0, p = efi_map_start; p < efi_map_end; |
| ++i, p += efi_desc_size) |
| { |
| const char *unit; |
| unsigned long size; |
| char buf[64]; |
| |
| md = p; |
| size = md->num_pages << EFI_PAGE_SHIFT; |
| |
| if ((size >> 40) > 0) { |
| size >>= 40; |
| unit = "TB"; |
| } else if ((size >> 30) > 0) { |
| size >>= 30; |
| unit = "GB"; |
| } else if ((size >> 20) > 0) { |
| size >>= 20; |
| unit = "MB"; |
| } else { |
| size >>= 10; |
| unit = "KB"; |
| } |
| |
| printk("mem%02d: %s " |
| "range=[0x%016lx-0x%016lx) (%4lu%s)\n", |
| i, efi_md_typeattr_format(buf, sizeof(buf), md), |
| md->phys_addr, |
| md->phys_addr + efi_md_size(md), size, unit); |
| } |
| } |
| #endif |
| |
| efi_map_pal_code(); |
| efi_enter_virtual_mode(); |
| } |
| |
| void |
| efi_enter_virtual_mode (void) |
| { |
| void *efi_map_start, *efi_map_end, *p; |
| efi_memory_desc_t *md; |
| efi_status_t status; |
| u64 efi_desc_size; |
| |
| efi_map_start = __va(ia64_boot_param->efi_memmap); |
| efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; |
| efi_desc_size = ia64_boot_param->efi_memdesc_size; |
| |
| for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { |
| md = p; |
| if (md->attribute & EFI_MEMORY_RUNTIME) { |
| /* |
| * Some descriptors have multiple bits set, so the |
| * order of the tests is relevant. |
| */ |
| if (md->attribute & EFI_MEMORY_WB) { |
| md->virt_addr = (u64) __va(md->phys_addr); |
| } else if (md->attribute & EFI_MEMORY_UC) { |
| md->virt_addr = (u64) ioremap(md->phys_addr, 0); |
| } else if (md->attribute & EFI_MEMORY_WC) { |
| #if 0 |
| md->virt_addr = ia64_remap(md->phys_addr, |
| (_PAGE_A | |
| _PAGE_P | |
| _PAGE_D | |
| _PAGE_MA_WC | |
| _PAGE_PL_0 | |
| _PAGE_AR_RW)); |
| #else |
| printk(KERN_INFO "EFI_MEMORY_WC mapping\n"); |
| md->virt_addr = (u64) ioremap(md->phys_addr, 0); |
| #endif |
| } else if (md->attribute & EFI_MEMORY_WT) { |
| #if 0 |
| md->virt_addr = ia64_remap(md->phys_addr, |
| (_PAGE_A | |
| _PAGE_P | |
| _PAGE_D | |
| _PAGE_MA_WT | |
| _PAGE_PL_0 | |
| _PAGE_AR_RW)); |
| #else |
| printk(KERN_INFO "EFI_MEMORY_WT mapping\n"); |
| md->virt_addr = (u64) ioremap(md->phys_addr, 0); |
| #endif |
| } |
| } |
| } |
| |
| status = efi_call_phys(__va(runtime->set_virtual_address_map), |
| ia64_boot_param->efi_memmap_size, |
| efi_desc_size, |
| ia64_boot_param->efi_memdesc_version, |
| ia64_boot_param->efi_memmap); |
| if (status != EFI_SUCCESS) { |
| printk(KERN_WARNING "warning: unable to switch EFI into " |
| "virtual mode (status=%lu)\n", status); |
| return; |
| } |
| |
| set_bit(EFI_RUNTIME_SERVICES, &efi.flags); |
| |
| /* |
| * Now that EFI is in virtual mode, we call the EFI functions more |
| * efficiently: |
| */ |
| efi.get_time = virt_get_time; |
| efi.set_time = virt_set_time; |
| efi.get_wakeup_time = virt_get_wakeup_time; |
| efi.set_wakeup_time = virt_set_wakeup_time; |
| efi.get_variable = virt_get_variable; |
| efi.get_next_variable = virt_get_next_variable; |
| efi.set_variable = virt_set_variable; |
| efi.get_next_high_mono_count = virt_get_next_high_mono_count; |
| efi.reset_system = virt_reset_system; |
| } |
| |
| /* |
| * Walk the EFI memory map looking for the I/O port range. There can only be |
| * one entry of this type, other I/O port ranges should be described via ACPI. |
| */ |
| u64 |
| efi_get_iobase (void) |
| { |
| void *efi_map_start, *efi_map_end, *p; |
| efi_memory_desc_t *md; |
| u64 efi_desc_size; |
| |
| efi_map_start = __va(ia64_boot_param->efi_memmap); |
| efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; |
| efi_desc_size = ia64_boot_param->efi_memdesc_size; |
| |
| for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { |
| md = p; |
| if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) { |
| if (md->attribute & EFI_MEMORY_UC) |
| return md->phys_addr; |
| } |
| } |
| return 0; |
| } |
| |
| static struct kern_memdesc * |
| kern_memory_descriptor (unsigned long phys_addr) |
| { |
| struct kern_memdesc *md; |
| |
| for (md = kern_memmap; md->start != ~0UL; md++) { |
| if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT)) |
| return md; |
| } |
| return NULL; |
| } |
| |
| static efi_memory_desc_t * |
| efi_memory_descriptor (unsigned long phys_addr) |
| { |
| void *efi_map_start, *efi_map_end, *p; |
| efi_memory_desc_t *md; |
| u64 efi_desc_size; |
| |
| efi_map_start = __va(ia64_boot_param->efi_memmap); |
| efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; |
| efi_desc_size = ia64_boot_param->efi_memdesc_size; |
| |
| for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { |
| md = p; |
| |
| if (phys_addr - md->phys_addr < efi_md_size(md)) |
| return md; |
| } |
| return NULL; |
| } |
| |
| static int |
| efi_memmap_intersects (unsigned long phys_addr, unsigned long size) |
| { |
| void *efi_map_start, *efi_map_end, *p; |
| efi_memory_desc_t *md; |
| u64 efi_desc_size; |
| unsigned long end; |
| |
| efi_map_start = __va(ia64_boot_param->efi_memmap); |
| efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; |
| efi_desc_size = ia64_boot_param->efi_memdesc_size; |
| |
| end = phys_addr + size; |
| |
| for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { |
| md = p; |
| if (md->phys_addr < end && efi_md_end(md) > phys_addr) |
| return 1; |
| } |
| return 0; |
| } |
| |
| u32 |
| efi_mem_type (unsigned long phys_addr) |
| { |
| efi_memory_desc_t *md = efi_memory_descriptor(phys_addr); |
| |
| if (md) |
| return md->type; |
| return 0; |
| } |
| |
| u64 |
| efi_mem_attributes (unsigned long phys_addr) |
| { |
| efi_memory_desc_t *md = efi_memory_descriptor(phys_addr); |
| |
| if (md) |
| return md->attribute; |
| return 0; |
| } |
| EXPORT_SYMBOL(efi_mem_attributes); |
| |
| u64 |
| efi_mem_attribute (unsigned long phys_addr, unsigned long size) |
| { |
| unsigned long end = phys_addr + size; |
| efi_memory_desc_t *md = efi_memory_descriptor(phys_addr); |
| u64 attr; |
| |
| if (!md) |
| return 0; |
| |
| /* |
| * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells |
| * the kernel that firmware needs this region mapped. |
| */ |
| attr = md->attribute & ~EFI_MEMORY_RUNTIME; |
| do { |
| unsigned long md_end = efi_md_end(md); |
| |
| if (end <= md_end) |
| return attr; |
| |
| md = efi_memory_descriptor(md_end); |
| if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr) |
| return 0; |
| } while (md); |
| return 0; /* never reached */ |
| } |
| |
| u64 |
| kern_mem_attribute (unsigned long phys_addr, unsigned long size) |
| { |
| unsigned long end = phys_addr + size; |
| struct kern_memdesc *md; |
| u64 attr; |
| |
| /* |
| * This is a hack for ioremap calls before we set up kern_memmap. |
| * Maybe we should do efi_memmap_init() earlier instead. |
| */ |
| if (!kern_memmap) { |
| attr = efi_mem_attribute(phys_addr, size); |
| if (attr & EFI_MEMORY_WB) |
| return EFI_MEMORY_WB; |
| return 0; |
| } |
| |
| md = kern_memory_descriptor(phys_addr); |
| if (!md) |
| return 0; |
| |
| attr = md->attribute; |
| do { |
| unsigned long md_end = kmd_end(md); |
| |
| if (end <= md_end) |
| return attr; |
| |
| md = kern_memory_descriptor(md_end); |
| if (!md || md->attribute != attr) |
| return 0; |
| } while (md); |
| return 0; /* never reached */ |
| } |
| EXPORT_SYMBOL(kern_mem_attribute); |
| |
| int |
| valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size) |
| { |
| u64 attr; |
| |
| /* |
| * /dev/mem reads and writes use copy_to_user(), which implicitly |
| * uses a granule-sized kernel identity mapping. It's really |
| * only safe to do this for regions in kern_memmap. For more |
| * details, see Documentation/ia64/aliasing.txt. |
| */ |
| attr = kern_mem_attribute(phys_addr, size); |
| if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC) |
| return 1; |
| return 0; |
| } |
| |
| int |
| valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size) |
| { |
| unsigned long phys_addr = pfn << PAGE_SHIFT; |
| u64 attr; |
| |
| attr = efi_mem_attribute(phys_addr, size); |
| |
| /* |
| * /dev/mem mmap uses normal user pages, so we don't need the entire |
| * granule, but the entire region we're mapping must support the same |
| * attribute. |
| */ |
| if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC) |
| return 1; |
| |
| /* |
| * Intel firmware doesn't tell us about all the MMIO regions, so |
| * in general we have to allow mmap requests. But if EFI *does* |
| * tell us about anything inside this region, we should deny it. |
| * The user can always map a smaller region to avoid the overlap. |
| */ |
| if (efi_memmap_intersects(phys_addr, size)) |
| return 0; |
| |
| return 1; |
| } |
| |
| pgprot_t |
| phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size, |
| pgprot_t vma_prot) |
| { |
| unsigned long phys_addr = pfn << PAGE_SHIFT; |
| u64 attr; |
| |
| /* |
| * For /dev/mem mmap, we use user mappings, but if the region is |
| * in kern_memmap (and hence may be covered by a kernel mapping), |
| * we must use the same attribute as the kernel mapping. |
| */ |
| attr = kern_mem_attribute(phys_addr, size); |
| if (attr & EFI_MEMORY_WB) |
| return pgprot_cacheable(vma_prot); |
| else if (attr & EFI_MEMORY_UC) |
| return pgprot_noncached(vma_prot); |
| |
| /* |
| * Some chipsets don't support UC access to memory. If |
| * WB is supported, we prefer that. |
| */ |
| if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB) |
| return pgprot_cacheable(vma_prot); |
| |
| return pgprot_noncached(vma_prot); |
| } |
| |
| int __init |
| efi_uart_console_only(void) |
| { |
| efi_status_t status; |
| char *s, name[] = "ConOut"; |
| efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID; |
| efi_char16_t *utf16, name_utf16[32]; |
| unsigned char data[1024]; |
| unsigned long size = sizeof(data); |
| struct efi_generic_dev_path *hdr, *end_addr; |
| int uart = 0; |
| |
| /* Convert to UTF-16 */ |
| utf16 = name_utf16; |
| s = name; |
| while (*s) |
| *utf16++ = *s++ & 0x7f; |
| *utf16 = 0; |
| |
| status = efi.get_variable(name_utf16, &guid, NULL, &size, data); |
| if (status != EFI_SUCCESS) { |
| printk(KERN_ERR "No EFI %s variable?\n", name); |
| return 0; |
| } |
| |
| hdr = (struct efi_generic_dev_path *) data; |
| end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size); |
| while (hdr < end_addr) { |
| if (hdr->type == EFI_DEV_MSG && |
| hdr->sub_type == EFI_DEV_MSG_UART) |
| uart = 1; |
| else if (hdr->type == EFI_DEV_END_PATH || |
| hdr->type == EFI_DEV_END_PATH2) { |
| if (!uart) |
| return 0; |
| if (hdr->sub_type == EFI_DEV_END_ENTIRE) |
| return 1; |
| uart = 0; |
| } |
| hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length); |
| } |
| printk(KERN_ERR "Malformed %s value\n", name); |
| return 0; |
| } |
| |
| /* |
| * Look for the first granule aligned memory descriptor memory |
| * that is big enough to hold EFI memory map. Make sure this |
| * descriptor is atleast granule sized so it does not get trimmed |
| */ |
| struct kern_memdesc * |
| find_memmap_space (void) |
| { |
| u64 contig_low=0, contig_high=0; |
| u64 as = 0, ae; |
| void *efi_map_start, *efi_map_end, *p, *q; |
| efi_memory_desc_t *md, *pmd = NULL, *check_md; |
| u64 space_needed, efi_desc_size; |
| unsigned long total_mem = 0; |
| |
| efi_map_start = __va(ia64_boot_param->efi_memmap); |
| efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; |
| efi_desc_size = ia64_boot_param->efi_memdesc_size; |
| |
| /* |
| * Worst case: we need 3 kernel descriptors for each efi descriptor |
| * (if every entry has a WB part in the middle, and UC head and tail), |
| * plus one for the end marker. |
| */ |
| space_needed = sizeof(kern_memdesc_t) * |
| (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1); |
| |
| for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) { |
| md = p; |
| if (!efi_wb(md)) { |
| continue; |
| } |
| if (pmd == NULL || !efi_wb(pmd) || |
| efi_md_end(pmd) != md->phys_addr) { |
| contig_low = GRANULEROUNDUP(md->phys_addr); |
| contig_high = efi_md_end(md); |
| for (q = p + efi_desc_size; q < efi_map_end; |
| q += efi_desc_size) { |
| check_md = q; |
| if (!efi_wb(check_md)) |
| break; |
| if (contig_high != check_md->phys_addr) |
| break; |
| contig_high = efi_md_end(check_md); |
| } |
| contig_high = GRANULEROUNDDOWN(contig_high); |
| } |
| if (!is_memory_available(md) || md->type == EFI_LOADER_DATA) |
| continue; |
| |
| /* Round ends inward to granule boundaries */ |
| as = max(contig_low, md->phys_addr); |
| ae = min(contig_high, efi_md_end(md)); |
| |
| /* keep within max_addr= and min_addr= command line arg */ |
| as = max(as, min_addr); |
| ae = min(ae, max_addr); |
| if (ae <= as) |
| continue; |
| |
| /* avoid going over mem= command line arg */ |
| if (total_mem + (ae - as) > mem_limit) |
| ae -= total_mem + (ae - as) - mem_limit; |
| |
| if (ae <= as) |
| continue; |
| |
| if (ae - as > space_needed) |
| break; |
| } |
| if (p >= efi_map_end) |
| panic("Can't allocate space for kernel memory descriptors"); |
| |
| return __va(as); |
| } |
| |
| /* |
| * Walk the EFI memory map and gather all memory available for kernel |
| * to use. We can allocate partial granules only if the unavailable |
| * parts exist, and are WB. |
| */ |
| unsigned long |
| efi_memmap_init(u64 *s, u64 *e) |
| { |
| struct kern_memdesc *k, *prev = NULL; |
| u64 contig_low=0, contig_high=0; |
| u64 as, ae, lim; |
| void *efi_map_start, *efi_map_end, *p, *q; |
| efi_memory_desc_t *md, *pmd = NULL, *check_md; |
| u64 efi_desc_size; |
| unsigned long total_mem = 0; |
| |
| k = kern_memmap = find_memmap_space(); |
| |
| efi_map_start = __va(ia64_boot_param->efi_memmap); |
| efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; |
| efi_desc_size = ia64_boot_param->efi_memdesc_size; |
| |
| for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) { |
| md = p; |
| if (!efi_wb(md)) { |
| if (efi_uc(md) && |
| (md->type == EFI_CONVENTIONAL_MEMORY || |
| md->type == EFI_BOOT_SERVICES_DATA)) { |
| k->attribute = EFI_MEMORY_UC; |
| k->start = md->phys_addr; |
| k->num_pages = md->num_pages; |
| k++; |
| } |
| continue; |
| } |
| if (pmd == NULL || !efi_wb(pmd) || |
| efi_md_end(pmd) != md->phys_addr) { |
| contig_low = GRANULEROUNDUP(md->phys_addr); |
| contig_high = efi_md_end(md); |
| for (q = p + efi_desc_size; q < efi_map_end; |
| q += efi_desc_size) { |
| check_md = q; |
| if (!efi_wb(check_md)) |
| break; |
| if (contig_high != check_md->phys_addr) |
| break; |
| contig_high = efi_md_end(check_md); |
| } |
| contig_high = GRANULEROUNDDOWN(contig_high); |
| } |
| if (!is_memory_available(md)) |
| continue; |
| |
| /* |
| * Round ends inward to granule boundaries |
| * Give trimmings to uncached allocator |
| */ |
| if (md->phys_addr < contig_low) { |
| lim = min(efi_md_end(md), contig_low); |
| if (efi_uc(md)) { |
| if (k > kern_memmap && |
| (k-1)->attribute == EFI_MEMORY_UC && |
| kmd_end(k-1) == md->phys_addr) { |
| (k-1)->num_pages += |
| (lim - md->phys_addr) |
| >> EFI_PAGE_SHIFT; |
| } else { |
| k->attribute = EFI_MEMORY_UC; |
| k->start = md->phys_addr; |
| k->num_pages = (lim - md->phys_addr) |
| >> EFI_PAGE_SHIFT; |
| k++; |
| } |
| } |
| as = contig_low; |
| } else |
| as = md->phys_addr; |
| |
| if (efi_md_end(md) > contig_high) { |
| lim = max(md->phys_addr, contig_high); |
| if (efi_uc(md)) { |
| if (lim == md->phys_addr && k > kern_memmap && |
| (k-1)->attribute == EFI_MEMORY_UC && |
| kmd_end(k-1) == md->phys_addr) { |
| (k-1)->num_pages += md->num_pages; |
| } else { |
| k->attribute = EFI_MEMORY_UC; |
| k->start = lim; |
| k->num_pages = (efi_md_end(md) - lim) |
| >> EFI_PAGE_SHIFT; |
| k++; |
| } |
| } |
| ae = contig_high; |
| } else |
| ae = efi_md_end(md); |
| |
| /* keep within max_addr= and min_addr= command line arg */ |
| as = max(as, min_addr); |
| ae = min(ae, max_addr); |
| if (ae <= as) |
| continue; |
| |
| /* avoid going over mem= command line arg */ |
| if (total_mem + (ae - as) > mem_limit) |
| ae -= total_mem + (ae - as) - mem_limit; |
| |
| if (ae <= as) |
| continue; |
| if (prev && kmd_end(prev) == md->phys_addr) { |
| prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT; |
| total_mem += ae - as; |
| continue; |
| } |
| k->attribute = EFI_MEMORY_WB; |
| k->start = as; |
| k->num_pages = (ae - as) >> EFI_PAGE_SHIFT; |
| total_mem += ae - as; |
| prev = k++; |
| } |
| k->start = ~0L; /* end-marker */ |
| |
| /* reserve the memory we are using for kern_memmap */ |
| *s = (u64)kern_memmap; |
| *e = (u64)++k; |
| |
| return total_mem; |
| } |
| |
| void |
| efi_initialize_iomem_resources(struct resource *code_resource, |
| struct resource *data_resource, |
| struct resource *bss_resource) |
| { |
| struct resource *res; |
| void *efi_map_start, *efi_map_end, *p; |
| efi_memory_desc_t *md; |
| u64 efi_desc_size; |
| char *name; |
| unsigned long flags; |
| |
| efi_map_start = __va(ia64_boot_param->efi_memmap); |
| efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; |
| efi_desc_size = ia64_boot_param->efi_memdesc_size; |
| |
| res = NULL; |
| |
| for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { |
| md = p; |
| |
| if (md->num_pages == 0) /* should not happen */ |
| continue; |
| |
| flags = IORESOURCE_MEM | IORESOURCE_BUSY; |
| switch (md->type) { |
| |
| case EFI_MEMORY_MAPPED_IO: |
| case EFI_MEMORY_MAPPED_IO_PORT_SPACE: |
| continue; |
| |
| case EFI_LOADER_CODE: |
| case EFI_LOADER_DATA: |
| case EFI_BOOT_SERVICES_DATA: |
| case EFI_BOOT_SERVICES_CODE: |
| case EFI_CONVENTIONAL_MEMORY: |
| if (md->attribute & EFI_MEMORY_WP) { |
| name = "System ROM"; |
| flags |= IORESOURCE_READONLY; |
| } else if (md->attribute == EFI_MEMORY_UC) |
| name = "Uncached RAM"; |
| else |
| name = "System RAM"; |
| break; |
| |
| case EFI_ACPI_MEMORY_NVS: |
| name = "ACPI Non-volatile Storage"; |
| break; |
| |
| case EFI_UNUSABLE_MEMORY: |
| name = "reserved"; |
| flags |= IORESOURCE_DISABLED; |
| break; |
| |
| case EFI_PERSISTENT_MEMORY: |
| name = "Persistent Memory"; |
| break; |
| |
| case EFI_RESERVED_TYPE: |
| case EFI_RUNTIME_SERVICES_CODE: |
| case EFI_RUNTIME_SERVICES_DATA: |
| case EFI_ACPI_RECLAIM_MEMORY: |
| default: |
| name = "reserved"; |
| break; |
| } |
| |
| if ((res = kzalloc(sizeof(struct resource), |
| GFP_KERNEL)) == NULL) { |
| printk(KERN_ERR |
| "failed to allocate resource for iomem\n"); |
| return; |
| } |
| |
| res->name = name; |
| res->start = md->phys_addr; |
| res->end = md->phys_addr + efi_md_size(md) - 1; |
| res->flags = flags; |
| |
| if (insert_resource(&iomem_resource, res) < 0) |
| kfree(res); |
| else { |
| /* |
| * We don't know which region contains |
| * kernel data so we try it repeatedly and |
| * let the resource manager test it. |
| */ |
| insert_resource(res, code_resource); |
| insert_resource(res, data_resource); |
| insert_resource(res, bss_resource); |
| #ifdef CONFIG_KEXEC |
| insert_resource(res, &efi_memmap_res); |
| insert_resource(res, &boot_param_res); |
| if (crashk_res.end > crashk_res.start) |
| insert_resource(res, &crashk_res); |
| #endif |
| } |
| } |
| } |
| |
| #ifdef CONFIG_KEXEC |
| /* find a block of memory aligned to 64M exclude reserved regions |
| rsvd_regions are sorted |
| */ |
| unsigned long __init |
| kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n) |
| { |
| int i; |
| u64 start, end; |
| u64 alignment = 1UL << _PAGE_SIZE_64M; |
| void *efi_map_start, *efi_map_end, *p; |
| efi_memory_desc_t *md; |
| u64 efi_desc_size; |
| |
| efi_map_start = __va(ia64_boot_param->efi_memmap); |
| efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; |
| efi_desc_size = ia64_boot_param->efi_memdesc_size; |
| |
| for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { |
| md = p; |
| if (!efi_wb(md)) |
| continue; |
| start = ALIGN(md->phys_addr, alignment); |
| end = efi_md_end(md); |
| for (i = 0; i < n; i++) { |
| if (__pa(r[i].start) >= start && __pa(r[i].end) < end) { |
| if (__pa(r[i].start) > start + size) |
| return start; |
| start = ALIGN(__pa(r[i].end), alignment); |
| if (i < n-1 && |
| __pa(r[i+1].start) < start + size) |
| continue; |
| else |
| break; |
| } |
| } |
| if (end > start + size) |
| return start; |
| } |
| |
| printk(KERN_WARNING |
| "Cannot reserve 0x%lx byte of memory for crashdump\n", size); |
| return ~0UL; |
| } |
| #endif |
| |
| #ifdef CONFIG_CRASH_DUMP |
| /* locate the size find a the descriptor at a certain address */ |
| unsigned long __init |
| vmcore_find_descriptor_size (unsigned long address) |
| { |
| void *efi_map_start, *efi_map_end, *p; |
| efi_memory_desc_t *md; |
| u64 efi_desc_size; |
| unsigned long ret = 0; |
| |
| efi_map_start = __va(ia64_boot_param->efi_memmap); |
| efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; |
| efi_desc_size = ia64_boot_param->efi_memdesc_size; |
| |
| for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { |
| md = p; |
| if (efi_wb(md) && md->type == EFI_LOADER_DATA |
| && md->phys_addr == address) { |
| ret = efi_md_size(md); |
| break; |
| } |
| } |
| |
| if (ret == 0) |
| printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n"); |
| |
| return ret; |
| } |
| #endif |