| /****************************************************************************** |
| * |
| * Module Name: dsmethod - Parser/Interpreter interface - control method parsing |
| * |
| *****************************************************************************/ |
| |
| /* |
| * Copyright (C) 2000 - 2005, R. Byron Moore |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions, and the following disclaimer, |
| * without modification. |
| * 2. Redistributions in binary form must reproduce at minimum a disclaimer |
| * substantially similar to the "NO WARRANTY" disclaimer below |
| * ("Disclaimer") and any redistribution must be conditioned upon |
| * including a substantially similar Disclaimer requirement for further |
| * binary redistribution. |
| * 3. Neither the names of the above-listed copyright holders nor the names |
| * of any contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * Alternatively, this software may be distributed under the terms of the |
| * GNU General Public License ("GPL") version 2 as published by the Free |
| * Software Foundation. |
| * |
| * NO WARRANTY |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING |
| * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| * POSSIBILITY OF SUCH DAMAGES. |
| */ |
| |
| #include <acpi/acpi.h> |
| #include <acpi/acparser.h> |
| #include <acpi/amlcode.h> |
| #include <acpi/acdispat.h> |
| #include <acpi/acinterp.h> |
| #include <acpi/acnamesp.h> |
| |
| #define _COMPONENT ACPI_DISPATCHER |
| ACPI_MODULE_NAME("dsmethod") |
| |
| /******************************************************************************* |
| * |
| * FUNCTION: acpi_ds_parse_method |
| * |
| * PARAMETERS: Node - Method node |
| * |
| * RETURN: Status |
| * |
| * DESCRIPTION: Parse the AML that is associated with the method. |
| * |
| * MUTEX: Assumes parser is locked |
| * |
| ******************************************************************************/ |
| acpi_status acpi_ds_parse_method(struct acpi_namespace_node *node) |
| { |
| acpi_status status; |
| union acpi_operand_object *obj_desc; |
| union acpi_parse_object *op; |
| struct acpi_walk_state *walk_state; |
| |
| ACPI_FUNCTION_TRACE_PTR("ds_parse_method", node); |
| |
| /* Parameter Validation */ |
| |
| if (!node) { |
| return_ACPI_STATUS(AE_NULL_ENTRY); |
| } |
| |
| ACPI_DEBUG_PRINT((ACPI_DB_PARSE, |
| "**** Parsing [%4.4s] **** named_obj=%p\n", |
| acpi_ut_get_node_name(node), node)); |
| |
| /* Extract the method object from the method Node */ |
| |
| obj_desc = acpi_ns_get_attached_object(node); |
| if (!obj_desc) { |
| return_ACPI_STATUS(AE_NULL_OBJECT); |
| } |
| |
| /* Create a mutex for the method if there is a concurrency limit */ |
| |
| if ((obj_desc->method.concurrency != ACPI_INFINITE_CONCURRENCY) && |
| (!obj_desc->method.semaphore)) { |
| status = acpi_os_create_semaphore(obj_desc->method.concurrency, |
| obj_desc->method.concurrency, |
| &obj_desc->method.semaphore); |
| if (ACPI_FAILURE(status)) { |
| return_ACPI_STATUS(status); |
| } |
| } |
| |
| /* |
| * Allocate a new parser op to be the root of the parsed |
| * method tree |
| */ |
| op = acpi_ps_alloc_op(AML_METHOD_OP); |
| if (!op) { |
| return_ACPI_STATUS(AE_NO_MEMORY); |
| } |
| |
| /* Init new op with the method name and pointer back to the Node */ |
| |
| acpi_ps_set_name(op, node->name.integer); |
| op->common.node = node; |
| |
| /* |
| * Get a new owner_id for objects created by this method. Namespace |
| * objects (such as Operation Regions) can be created during the |
| * first pass parse. |
| */ |
| status = acpi_ut_allocate_owner_id(&obj_desc->method.owner_id); |
| if (ACPI_FAILURE(status)) { |
| goto cleanup; |
| } |
| |
| /* Create and initialize a new walk state */ |
| |
| walk_state = |
| acpi_ds_create_walk_state(obj_desc->method.owner_id, NULL, NULL, |
| NULL); |
| if (!walk_state) { |
| status = AE_NO_MEMORY; |
| goto cleanup2; |
| } |
| |
| status = acpi_ds_init_aml_walk(walk_state, op, node, |
| obj_desc->method.aml_start, |
| obj_desc->method.aml_length, NULL, 1); |
| if (ACPI_FAILURE(status)) { |
| acpi_ds_delete_walk_state(walk_state); |
| goto cleanup2; |
| } |
| |
| /* |
| * Parse the method, first pass |
| * |
| * The first pass load is where newly declared named objects are added into |
| * the namespace. Actual evaluation of the named objects (what would be |
| * called a "second pass") happens during the actual execution of the |
| * method so that operands to the named objects can take on dynamic |
| * run-time values. |
| */ |
| status = acpi_ps_parse_aml(walk_state); |
| if (ACPI_FAILURE(status)) { |
| goto cleanup2; |
| } |
| |
| ACPI_DEBUG_PRINT((ACPI_DB_PARSE, |
| "**** [%4.4s] Parsed **** named_obj=%p Op=%p\n", |
| acpi_ut_get_node_name(node), node, op)); |
| |
| /* |
| * Delete the parse tree. We simply re-parse the method for every |
| * execution since there isn't much overhead (compared to keeping lots |
| * of parse trees around) |
| */ |
| acpi_ns_delete_namespace_subtree(node); |
| acpi_ns_delete_namespace_by_owner(obj_desc->method.owner_id); |
| |
| cleanup2: |
| acpi_ut_release_owner_id(&obj_desc->method.owner_id); |
| |
| cleanup: |
| acpi_ps_delete_parse_tree(op); |
| return_ACPI_STATUS(status); |
| } |
| |
| /******************************************************************************* |
| * |
| * FUNCTION: acpi_ds_begin_method_execution |
| * |
| * PARAMETERS: method_node - Node of the method |
| * obj_desc - The method object |
| * calling_method_node - Caller of this method (if non-null) |
| * |
| * RETURN: Status |
| * |
| * DESCRIPTION: Prepare a method for execution. Parses the method if necessary, |
| * increments the thread count, and waits at the method semaphore |
| * for clearance to execute. |
| * |
| ******************************************************************************/ |
| |
| acpi_status |
| acpi_ds_begin_method_execution(struct acpi_namespace_node *method_node, |
| union acpi_operand_object *obj_desc, |
| struct acpi_namespace_node *calling_method_node) |
| { |
| acpi_status status = AE_OK; |
| |
| ACPI_FUNCTION_TRACE_PTR("ds_begin_method_execution", method_node); |
| |
| if (!method_node) { |
| return_ACPI_STATUS(AE_NULL_ENTRY); |
| } |
| |
| /* |
| * If there is a concurrency limit on this method, we need to |
| * obtain a unit from the method semaphore. |
| */ |
| if (obj_desc->method.semaphore) { |
| /* |
| * Allow recursive method calls, up to the reentrancy/concurrency |
| * limit imposed by the SERIALIZED rule and the sync_level method |
| * parameter. |
| * |
| * The point of this code is to avoid permanently blocking a |
| * thread that is making recursive method calls. |
| */ |
| if (method_node == calling_method_node) { |
| if (obj_desc->method.thread_count >= |
| obj_desc->method.concurrency) { |
| return_ACPI_STATUS(AE_AML_METHOD_LIMIT); |
| } |
| } |
| |
| /* |
| * Get a unit from the method semaphore. This releases the |
| * interpreter if we block |
| */ |
| status = |
| acpi_ex_system_wait_semaphore(obj_desc->method.semaphore, |
| ACPI_WAIT_FOREVER); |
| } |
| |
| /* |
| * Increment the method parse tree thread count since it has been |
| * reentered one more time (even if it is the same thread) |
| */ |
| obj_desc->method.thread_count++; |
| return_ACPI_STATUS(status); |
| } |
| |
| /******************************************************************************* |
| * |
| * FUNCTION: acpi_ds_call_control_method |
| * |
| * PARAMETERS: Thread - Info for this thread |
| * this_walk_state - Current walk state |
| * Op - Current Op to be walked |
| * |
| * RETURN: Status |
| * |
| * DESCRIPTION: Transfer execution to a called control method |
| * |
| ******************************************************************************/ |
| |
| acpi_status |
| acpi_ds_call_control_method(struct acpi_thread_state *thread, |
| struct acpi_walk_state *this_walk_state, |
| union acpi_parse_object *op) |
| { |
| acpi_status status; |
| struct acpi_namespace_node *method_node; |
| struct acpi_walk_state *next_walk_state = NULL; |
| union acpi_operand_object *obj_desc; |
| struct acpi_parameter_info info; |
| u32 i; |
| |
| ACPI_FUNCTION_TRACE_PTR("ds_call_control_method", this_walk_state); |
| |
| ACPI_DEBUG_PRINT((ACPI_DB_DISPATCH, |
| "Execute method %p, currentstate=%p\n", |
| this_walk_state->prev_op, this_walk_state)); |
| |
| /* |
| * Get the namespace entry for the control method we are about to call |
| */ |
| method_node = this_walk_state->method_call_node; |
| if (!method_node) { |
| return_ACPI_STATUS(AE_NULL_ENTRY); |
| } |
| |
| obj_desc = acpi_ns_get_attached_object(method_node); |
| if (!obj_desc) { |
| return_ACPI_STATUS(AE_NULL_OBJECT); |
| } |
| |
| status = acpi_ut_allocate_owner_id(&obj_desc->method.owner_id); |
| if (ACPI_FAILURE(status)) { |
| return_ACPI_STATUS(status); |
| } |
| |
| /* Init for new method, wait on concurrency semaphore */ |
| |
| status = acpi_ds_begin_method_execution(method_node, obj_desc, |
| this_walk_state->method_node); |
| if (ACPI_FAILURE(status)) { |
| goto cleanup; |
| } |
| |
| if (!(obj_desc->method.method_flags & AML_METHOD_INTERNAL_ONLY)) { |
| /* 1) Parse: Create a new walk state for the preempting walk */ |
| |
| next_walk_state = |
| acpi_ds_create_walk_state(obj_desc->method.owner_id, op, |
| obj_desc, NULL); |
| if (!next_walk_state) { |
| return_ACPI_STATUS(AE_NO_MEMORY); |
| } |
| |
| /* Create and init a Root Node */ |
| |
| op = acpi_ps_create_scope_op(); |
| if (!op) { |
| status = AE_NO_MEMORY; |
| goto cleanup; |
| } |
| |
| status = acpi_ds_init_aml_walk(next_walk_state, op, method_node, |
| obj_desc->method.aml_start, |
| obj_desc->method.aml_length, |
| NULL, 1); |
| if (ACPI_FAILURE(status)) { |
| acpi_ds_delete_walk_state(next_walk_state); |
| goto cleanup; |
| } |
| |
| /* Begin AML parse */ |
| |
| status = acpi_ps_parse_aml(next_walk_state); |
| acpi_ps_delete_parse_tree(op); |
| } |
| |
| /* 2) Execute: Create a new state for the preempting walk */ |
| |
| next_walk_state = acpi_ds_create_walk_state(obj_desc->method.owner_id, |
| NULL, obj_desc, thread); |
| if (!next_walk_state) { |
| status = AE_NO_MEMORY; |
| goto cleanup; |
| } |
| /* |
| * The resolved arguments were put on the previous walk state's operand |
| * stack. Operands on the previous walk state stack always |
| * start at index 0. |
| * Null terminate the list of arguments |
| */ |
| this_walk_state->operands[this_walk_state->num_operands] = NULL; |
| |
| info.parameters = &this_walk_state->operands[0]; |
| info.parameter_type = ACPI_PARAM_ARGS; |
| |
| status = acpi_ds_init_aml_walk(next_walk_state, NULL, method_node, |
| obj_desc->method.aml_start, |
| obj_desc->method.aml_length, &info, 3); |
| if (ACPI_FAILURE(status)) { |
| goto cleanup; |
| } |
| |
| /* |
| * Delete the operands on the previous walkstate operand stack |
| * (they were copied to new objects) |
| */ |
| for (i = 0; i < obj_desc->method.param_count; i++) { |
| acpi_ut_remove_reference(this_walk_state->operands[i]); |
| this_walk_state->operands[i] = NULL; |
| } |
| |
| /* Clear the operand stack */ |
| |
| this_walk_state->num_operands = 0; |
| |
| ACPI_DEBUG_PRINT((ACPI_DB_DISPATCH, |
| "Starting nested execution, newstate=%p\n", |
| next_walk_state)); |
| |
| if (obj_desc->method.method_flags & AML_METHOD_INTERNAL_ONLY) { |
| status = obj_desc->method.implementation(next_walk_state); |
| return_ACPI_STATUS(status); |
| } |
| |
| return_ACPI_STATUS(AE_OK); |
| |
| /* On error, we must delete the new walk state */ |
| |
| cleanup: |
| acpi_ut_release_owner_id(&obj_desc->method.owner_id); |
| if (next_walk_state && (next_walk_state->method_desc)) { |
| /* Decrement the thread count on the method parse tree */ |
| |
| next_walk_state->method_desc->method.thread_count--; |
| } |
| (void)acpi_ds_terminate_control_method(next_walk_state); |
| acpi_ds_delete_walk_state(next_walk_state); |
| return_ACPI_STATUS(status); |
| } |
| |
| /******************************************************************************* |
| * |
| * FUNCTION: acpi_ds_restart_control_method |
| * |
| * PARAMETERS: walk_state - State for preempted method (caller) |
| * return_desc - Return value from the called method |
| * |
| * RETURN: Status |
| * |
| * DESCRIPTION: Restart a method that was preempted by another (nested) method |
| * invocation. Handle the return value (if any) from the callee. |
| * |
| ******************************************************************************/ |
| |
| acpi_status |
| acpi_ds_restart_control_method(struct acpi_walk_state *walk_state, |
| union acpi_operand_object *return_desc) |
| { |
| acpi_status status; |
| |
| ACPI_FUNCTION_TRACE_PTR("ds_restart_control_method", walk_state); |
| |
| ACPI_DEBUG_PRINT((ACPI_DB_DISPATCH, |
| "****Restart [%4.4s] Op %p return_value_from_callee %p\n", |
| (char *)&walk_state->method_node->name, |
| walk_state->method_call_op, return_desc)); |
| |
| ACPI_DEBUG_PRINT((ACPI_DB_DISPATCH, |
| " return_from_this_method_used?=%X res_stack %p Walk %p\n", |
| walk_state->return_used, |
| walk_state->results, walk_state)); |
| |
| /* Did the called method return a value? */ |
| |
| if (return_desc) { |
| /* Are we actually going to use the return value? */ |
| |
| if (walk_state->return_used) { |
| /* Save the return value from the previous method */ |
| |
| status = acpi_ds_result_push(return_desc, walk_state); |
| if (ACPI_FAILURE(status)) { |
| acpi_ut_remove_reference(return_desc); |
| return_ACPI_STATUS(status); |
| } |
| |
| /* |
| * Save as THIS method's return value in case it is returned |
| * immediately to yet another method |
| */ |
| walk_state->return_desc = return_desc; |
| } |
| |
| /* |
| * The following code is the |
| * optional support for a so-called "implicit return". Some AML code |
| * assumes that the last value of the method is "implicitly" returned |
| * to the caller. Just save the last result as the return value. |
| * NOTE: this is optional because the ASL language does not actually |
| * support this behavior. |
| */ |
| else if (!acpi_ds_do_implicit_return |
| (return_desc, walk_state, FALSE)) { |
| /* |
| * Delete the return value if it will not be used by the |
| * calling method |
| */ |
| acpi_ut_remove_reference(return_desc); |
| } |
| } |
| |
| return_ACPI_STATUS(AE_OK); |
| } |
| |
| /******************************************************************************* |
| * |
| * FUNCTION: acpi_ds_terminate_control_method |
| * |
| * PARAMETERS: walk_state - State of the method |
| * |
| * RETURN: Status |
| * |
| * DESCRIPTION: Terminate a control method. Delete everything that the method |
| * created, delete all locals and arguments, and delete the parse |
| * tree if requested. |
| * |
| ******************************************************************************/ |
| |
| acpi_status acpi_ds_terminate_control_method(struct acpi_walk_state *walk_state) |
| { |
| union acpi_operand_object *obj_desc; |
| struct acpi_namespace_node *method_node; |
| acpi_status status; |
| |
| ACPI_FUNCTION_TRACE_PTR("ds_terminate_control_method", walk_state); |
| |
| if (!walk_state) { |
| return (AE_BAD_PARAMETER); |
| } |
| |
| /* The current method object was saved in the walk state */ |
| |
| obj_desc = walk_state->method_desc; |
| if (!obj_desc) { |
| return_ACPI_STATUS(AE_OK); |
| } |
| |
| /* Delete all arguments and locals */ |
| |
| acpi_ds_method_data_delete_all(walk_state); |
| |
| /* |
| * Lock the parser while we terminate this method. |
| * If this is the last thread executing the method, |
| * we have additional cleanup to perform |
| */ |
| status = acpi_ut_acquire_mutex(ACPI_MTX_PARSER); |
| if (ACPI_FAILURE(status)) { |
| return_ACPI_STATUS(status); |
| } |
| |
| /* Signal completion of the execution of this method if necessary */ |
| |
| if (walk_state->method_desc->method.semaphore) { |
| status = |
| acpi_os_signal_semaphore(walk_state->method_desc->method. |
| semaphore, 1); |
| if (ACPI_FAILURE(status)) { |
| ACPI_REPORT_ERROR(("Could not signal method semaphore\n")); |
| status = AE_OK; |
| |
| /* Ignore error and continue cleanup */ |
| } |
| } |
| |
| if (walk_state->method_desc->method.thread_count) { |
| ACPI_DEBUG_PRINT((ACPI_DB_DISPATCH, |
| "*** Not deleting method namespace, there are still %d threads\n", |
| walk_state->method_desc->method. |
| thread_count)); |
| } |
| |
| if (!walk_state->method_desc->method.thread_count) { |
| /* |
| * Support to dynamically change a method from not_serialized to |
| * Serialized if it appears that the method is written foolishly and |
| * does not support multiple thread execution. The best example of this |
| * is if such a method creates namespace objects and blocks. A second |
| * thread will fail with an AE_ALREADY_EXISTS exception |
| * |
| * This code is here because we must wait until the last thread exits |
| * before creating the synchronization semaphore. |
| */ |
| if ((walk_state->method_desc->method.concurrency == 1) && |
| (!walk_state->method_desc->method.semaphore)) { |
| status = acpi_os_create_semaphore(1, 1, |
| &walk_state-> |
| method_desc->method. |
| semaphore); |
| } |
| |
| /* |
| * There are no more threads executing this method. Perform |
| * additional cleanup. |
| * |
| * The method Node is stored in the walk state |
| */ |
| method_node = walk_state->method_node; |
| |
| /* |
| * Delete any namespace entries created immediately underneath |
| * the method |
| */ |
| status = acpi_ut_acquire_mutex(ACPI_MTX_NAMESPACE); |
| if (ACPI_FAILURE(status)) { |
| return_ACPI_STATUS(status); |
| } |
| |
| if (method_node->child) { |
| acpi_ns_delete_namespace_subtree(method_node); |
| } |
| |
| /* |
| * Delete any namespace entries created anywhere else within |
| * the namespace |
| */ |
| acpi_ns_delete_namespace_by_owner(walk_state->method_desc-> |
| method.owner_id); |
| status = acpi_ut_release_mutex(ACPI_MTX_NAMESPACE); |
| acpi_ut_release_owner_id(&walk_state->method_desc->method. |
| owner_id); |
| |
| if (ACPI_FAILURE(status)) { |
| return_ACPI_STATUS(status); |
| } |
| } |
| |
| status = acpi_ut_release_mutex(ACPI_MTX_PARSER); |
| return_ACPI_STATUS(status); |
| } |