| /* |
| * Code for replacing ftrace calls with jumps. |
| * |
| * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com> |
| * |
| * Thanks goes to Ingo Molnar, for suggesting the idea. |
| * Mathieu Desnoyers, for suggesting postponing the modifications. |
| * Arjan van de Ven, for keeping me straight, and explaining to me |
| * the dangers of modifying code on the run. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/spinlock.h> |
| #include <linux/hardirq.h> |
| #include <linux/uaccess.h> |
| #include <linux/ftrace.h> |
| #include <linux/percpu.h> |
| #include <linux/sched.h> |
| #include <linux/init.h> |
| #include <linux/list.h> |
| #include <linux/module.h> |
| |
| #include <trace/syscall.h> |
| |
| #include <asm/cacheflush.h> |
| #include <asm/ftrace.h> |
| #include <asm/nops.h> |
| #include <asm/nmi.h> |
| |
| |
| #ifdef CONFIG_DYNAMIC_FTRACE |
| |
| /* |
| * modifying_code is set to notify NMIs that they need to use |
| * memory barriers when entering or exiting. But we don't want |
| * to burden NMIs with unnecessary memory barriers when code |
| * modification is not being done (which is most of the time). |
| * |
| * A mutex is already held when ftrace_arch_code_modify_prepare |
| * and post_process are called. No locks need to be taken here. |
| * |
| * Stop machine will make sure currently running NMIs are done |
| * and new NMIs will see the updated variable before we need |
| * to worry about NMIs doing memory barriers. |
| */ |
| static int modifying_code __read_mostly; |
| static DEFINE_PER_CPU(int, save_modifying_code); |
| |
| int ftrace_arch_code_modify_prepare(void) |
| { |
| set_kernel_text_rw(); |
| set_all_modules_text_rw(); |
| modifying_code = 1; |
| return 0; |
| } |
| |
| int ftrace_arch_code_modify_post_process(void) |
| { |
| modifying_code = 0; |
| set_all_modules_text_ro(); |
| set_kernel_text_ro(); |
| return 0; |
| } |
| |
| union ftrace_code_union { |
| char code[MCOUNT_INSN_SIZE]; |
| struct { |
| char e8; |
| int offset; |
| } __attribute__((packed)); |
| }; |
| |
| static int ftrace_calc_offset(long ip, long addr) |
| { |
| return (int)(addr - ip); |
| } |
| |
| static unsigned char *ftrace_call_replace(unsigned long ip, unsigned long addr) |
| { |
| static union ftrace_code_union calc; |
| |
| calc.e8 = 0xe8; |
| calc.offset = ftrace_calc_offset(ip + MCOUNT_INSN_SIZE, addr); |
| |
| /* |
| * No locking needed, this must be called via kstop_machine |
| * which in essence is like running on a uniprocessor machine. |
| */ |
| return calc.code; |
| } |
| |
| /* |
| * Modifying code must take extra care. On an SMP machine, if |
| * the code being modified is also being executed on another CPU |
| * that CPU will have undefined results and possibly take a GPF. |
| * We use kstop_machine to stop other CPUS from exectuing code. |
| * But this does not stop NMIs from happening. We still need |
| * to protect against that. We separate out the modification of |
| * the code to take care of this. |
| * |
| * Two buffers are added: An IP buffer and a "code" buffer. |
| * |
| * 1) Put the instruction pointer into the IP buffer |
| * and the new code into the "code" buffer. |
| * 2) Wait for any running NMIs to finish and set a flag that says |
| * we are modifying code, it is done in an atomic operation. |
| * 3) Write the code |
| * 4) clear the flag. |
| * 5) Wait for any running NMIs to finish. |
| * |
| * If an NMI is executed, the first thing it does is to call |
| * "ftrace_nmi_enter". This will check if the flag is set to write |
| * and if it is, it will write what is in the IP and "code" buffers. |
| * |
| * The trick is, it does not matter if everyone is writing the same |
| * content to the code location. Also, if a CPU is executing code |
| * it is OK to write to that code location if the contents being written |
| * are the same as what exists. |
| */ |
| |
| #define MOD_CODE_WRITE_FLAG (1 << 31) /* set when NMI should do the write */ |
| static atomic_t nmi_running = ATOMIC_INIT(0); |
| static int mod_code_status; /* holds return value of text write */ |
| static void *mod_code_ip; /* holds the IP to write to */ |
| static void *mod_code_newcode; /* holds the text to write to the IP */ |
| |
| static unsigned nmi_wait_count; |
| static atomic_t nmi_update_count = ATOMIC_INIT(0); |
| |
| int ftrace_arch_read_dyn_info(char *buf, int size) |
| { |
| int r; |
| |
| r = snprintf(buf, size, "%u %u", |
| nmi_wait_count, |
| atomic_read(&nmi_update_count)); |
| return r; |
| } |
| |
| static void clear_mod_flag(void) |
| { |
| int old = atomic_read(&nmi_running); |
| |
| for (;;) { |
| int new = old & ~MOD_CODE_WRITE_FLAG; |
| |
| if (old == new) |
| break; |
| |
| old = atomic_cmpxchg(&nmi_running, old, new); |
| } |
| } |
| |
| static void ftrace_mod_code(void) |
| { |
| /* |
| * Yes, more than one CPU process can be writing to mod_code_status. |
| * (and the code itself) |
| * But if one were to fail, then they all should, and if one were |
| * to succeed, then they all should. |
| */ |
| mod_code_status = probe_kernel_write(mod_code_ip, mod_code_newcode, |
| MCOUNT_INSN_SIZE); |
| |
| /* if we fail, then kill any new writers */ |
| if (mod_code_status) |
| clear_mod_flag(); |
| } |
| |
| void ftrace_nmi_enter(void) |
| { |
| __get_cpu_var(save_modifying_code) = modifying_code; |
| |
| if (!__get_cpu_var(save_modifying_code)) |
| return; |
| |
| if (atomic_inc_return(&nmi_running) & MOD_CODE_WRITE_FLAG) { |
| smp_rmb(); |
| ftrace_mod_code(); |
| atomic_inc(&nmi_update_count); |
| } |
| /* Must have previous changes seen before executions */ |
| smp_mb(); |
| } |
| |
| void ftrace_nmi_exit(void) |
| { |
| if (!__get_cpu_var(save_modifying_code)) |
| return; |
| |
| /* Finish all executions before clearing nmi_running */ |
| smp_mb(); |
| atomic_dec(&nmi_running); |
| } |
| |
| static void wait_for_nmi_and_set_mod_flag(void) |
| { |
| if (!atomic_cmpxchg(&nmi_running, 0, MOD_CODE_WRITE_FLAG)) |
| return; |
| |
| do { |
| cpu_relax(); |
| } while (atomic_cmpxchg(&nmi_running, 0, MOD_CODE_WRITE_FLAG)); |
| |
| nmi_wait_count++; |
| } |
| |
| static void wait_for_nmi(void) |
| { |
| if (!atomic_read(&nmi_running)) |
| return; |
| |
| do { |
| cpu_relax(); |
| } while (atomic_read(&nmi_running)); |
| |
| nmi_wait_count++; |
| } |
| |
| static inline int |
| within(unsigned long addr, unsigned long start, unsigned long end) |
| { |
| return addr >= start && addr < end; |
| } |
| |
| static int |
| do_ftrace_mod_code(unsigned long ip, void *new_code) |
| { |
| /* |
| * On x86_64, kernel text mappings are mapped read-only with |
| * CONFIG_DEBUG_RODATA. So we use the kernel identity mapping instead |
| * of the kernel text mapping to modify the kernel text. |
| * |
| * For 32bit kernels, these mappings are same and we can use |
| * kernel identity mapping to modify code. |
| */ |
| if (within(ip, (unsigned long)_text, (unsigned long)_etext)) |
| ip = (unsigned long)__va(__pa(ip)); |
| |
| mod_code_ip = (void *)ip; |
| mod_code_newcode = new_code; |
| |
| /* The buffers need to be visible before we let NMIs write them */ |
| smp_mb(); |
| |
| wait_for_nmi_and_set_mod_flag(); |
| |
| /* Make sure all running NMIs have finished before we write the code */ |
| smp_mb(); |
| |
| ftrace_mod_code(); |
| |
| /* Make sure the write happens before clearing the bit */ |
| smp_mb(); |
| |
| clear_mod_flag(); |
| wait_for_nmi(); |
| |
| return mod_code_status; |
| } |
| |
| static unsigned char *ftrace_nop_replace(void) |
| { |
| return ideal_nop5; |
| } |
| |
| static int |
| ftrace_modify_code(unsigned long ip, unsigned char *old_code, |
| unsigned char *new_code) |
| { |
| unsigned char replaced[MCOUNT_INSN_SIZE]; |
| |
| /* |
| * Note: Due to modules and __init, code can |
| * disappear and change, we need to protect against faulting |
| * as well as code changing. We do this by using the |
| * probe_kernel_* functions. |
| * |
| * No real locking needed, this code is run through |
| * kstop_machine, or before SMP starts. |
| */ |
| |
| /* read the text we want to modify */ |
| if (probe_kernel_read(replaced, (void *)ip, MCOUNT_INSN_SIZE)) |
| return -EFAULT; |
| |
| /* Make sure it is what we expect it to be */ |
| if (memcmp(replaced, old_code, MCOUNT_INSN_SIZE) != 0) |
| return -EINVAL; |
| |
| /* replace the text with the new text */ |
| if (do_ftrace_mod_code(ip, new_code)) |
| return -EPERM; |
| |
| sync_core(); |
| |
| return 0; |
| } |
| |
| int ftrace_make_nop(struct module *mod, |
| struct dyn_ftrace *rec, unsigned long addr) |
| { |
| unsigned char *new, *old; |
| unsigned long ip = rec->ip; |
| |
| old = ftrace_call_replace(ip, addr); |
| new = ftrace_nop_replace(); |
| |
| return ftrace_modify_code(rec->ip, old, new); |
| } |
| |
| int ftrace_make_call(struct dyn_ftrace *rec, unsigned long addr) |
| { |
| unsigned char *new, *old; |
| unsigned long ip = rec->ip; |
| |
| old = ftrace_nop_replace(); |
| new = ftrace_call_replace(ip, addr); |
| |
| return ftrace_modify_code(rec->ip, old, new); |
| } |
| |
| int ftrace_update_ftrace_func(ftrace_func_t func) |
| { |
| unsigned long ip = (unsigned long)(&ftrace_call); |
| unsigned char old[MCOUNT_INSN_SIZE], *new; |
| int ret; |
| |
| memcpy(old, &ftrace_call, MCOUNT_INSN_SIZE); |
| new = ftrace_call_replace(ip, (unsigned long)func); |
| ret = ftrace_modify_code(ip, old, new); |
| |
| return ret; |
| } |
| |
| int __init ftrace_dyn_arch_init(void *data) |
| { |
| /* The return code is retured via data */ |
| *(unsigned long *)data = 0; |
| |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_FUNCTION_GRAPH_TRACER |
| |
| #ifdef CONFIG_DYNAMIC_FTRACE |
| extern void ftrace_graph_call(void); |
| |
| static int ftrace_mod_jmp(unsigned long ip, |
| int old_offset, int new_offset) |
| { |
| unsigned char code[MCOUNT_INSN_SIZE]; |
| |
| if (probe_kernel_read(code, (void *)ip, MCOUNT_INSN_SIZE)) |
| return -EFAULT; |
| |
| if (code[0] != 0xe9 || old_offset != *(int *)(&code[1])) |
| return -EINVAL; |
| |
| *(int *)(&code[1]) = new_offset; |
| |
| if (do_ftrace_mod_code(ip, &code)) |
| return -EPERM; |
| |
| return 0; |
| } |
| |
| int ftrace_enable_ftrace_graph_caller(void) |
| { |
| unsigned long ip = (unsigned long)(&ftrace_graph_call); |
| int old_offset, new_offset; |
| |
| old_offset = (unsigned long)(&ftrace_stub) - (ip + MCOUNT_INSN_SIZE); |
| new_offset = (unsigned long)(&ftrace_graph_caller) - (ip + MCOUNT_INSN_SIZE); |
| |
| return ftrace_mod_jmp(ip, old_offset, new_offset); |
| } |
| |
| int ftrace_disable_ftrace_graph_caller(void) |
| { |
| unsigned long ip = (unsigned long)(&ftrace_graph_call); |
| int old_offset, new_offset; |
| |
| old_offset = (unsigned long)(&ftrace_graph_caller) - (ip + MCOUNT_INSN_SIZE); |
| new_offset = (unsigned long)(&ftrace_stub) - (ip + MCOUNT_INSN_SIZE); |
| |
| return ftrace_mod_jmp(ip, old_offset, new_offset); |
| } |
| |
| #endif /* !CONFIG_DYNAMIC_FTRACE */ |
| |
| /* |
| * Hook the return address and push it in the stack of return addrs |
| * in current thread info. |
| */ |
| void prepare_ftrace_return(unsigned long *parent, unsigned long self_addr, |
| unsigned long frame_pointer) |
| { |
| unsigned long old; |
| int faulted; |
| struct ftrace_graph_ent trace; |
| unsigned long return_hooker = (unsigned long) |
| &return_to_handler; |
| |
| if (unlikely(atomic_read(¤t->tracing_graph_pause))) |
| return; |
| |
| /* |
| * Protect against fault, even if it shouldn't |
| * happen. This tool is too much intrusive to |
| * ignore such a protection. |
| */ |
| asm volatile( |
| "1: " _ASM_MOV " (%[parent]), %[old]\n" |
| "2: " _ASM_MOV " %[return_hooker], (%[parent])\n" |
| " movl $0, %[faulted]\n" |
| "3:\n" |
| |
| ".section .fixup, \"ax\"\n" |
| "4: movl $1, %[faulted]\n" |
| " jmp 3b\n" |
| ".previous\n" |
| |
| _ASM_EXTABLE(1b, 4b) |
| _ASM_EXTABLE(2b, 4b) |
| |
| : [old] "=&r" (old), [faulted] "=r" (faulted) |
| : [parent] "r" (parent), [return_hooker] "r" (return_hooker) |
| : "memory" |
| ); |
| |
| if (unlikely(faulted)) { |
| ftrace_graph_stop(); |
| WARN_ON(1); |
| return; |
| } |
| |
| if (ftrace_push_return_trace(old, self_addr, &trace.depth, |
| frame_pointer) == -EBUSY) { |
| *parent = old; |
| return; |
| } |
| |
| trace.func = self_addr; |
| |
| /* Only trace if the calling function expects to */ |
| if (!ftrace_graph_entry(&trace)) { |
| current->curr_ret_stack--; |
| *parent = old; |
| } |
| } |
| #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ |