| /* |
| * TLB Management (flush/create/diagnostics) for ARC700 |
| * |
| * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * vineetg: Aug 2011 |
| * -Reintroduce duplicate PD fixup - some customer chips still have the issue |
| * |
| * vineetg: May 2011 |
| * -No need to flush_cache_page( ) for each call to update_mmu_cache() |
| * some of the LMBench tests improved amazingly |
| * = page-fault thrice as fast (75 usec to 28 usec) |
| * = mmap twice as fast (9.6 msec to 4.6 msec), |
| * = fork (5.3 msec to 3.7 msec) |
| * |
| * vineetg: April 2011 : |
| * -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore, |
| * helps avoid a shift when preparing PD0 from PTE |
| * |
| * vineetg: April 2011 : Preparing for MMU V3 |
| * -MMU v2/v3 BCRs decoded differently |
| * -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512 |
| * -tlb_entry_erase( ) can be void |
| * -local_flush_tlb_range( ): |
| * = need not "ceil" @end |
| * = walks MMU only if range spans < 32 entries, as opposed to 256 |
| * |
| * Vineetg: Sept 10th 2008 |
| * -Changes related to MMU v2 (Rel 4.8) |
| * |
| * Vineetg: Aug 29th 2008 |
| * -In TLB Flush operations (Metal Fix MMU) there is a explict command to |
| * flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd, |
| * it fails. Thus need to load it with ANY valid value before invoking |
| * TLBIVUTLB cmd |
| * |
| * Vineetg: Aug 21th 2008: |
| * -Reduced the duration of IRQ lockouts in TLB Flush routines |
| * -Multiple copies of TLB erase code seperated into a "single" function |
| * -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID |
| * in interrupt-safe region. |
| * |
| * Vineetg: April 23rd Bug #93131 |
| * Problem: tlb_flush_kernel_range() doesnt do anything if the range to |
| * flush is more than the size of TLB itself. |
| * |
| * Rahul Trivedi : Codito Technologies 2004 |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/bug.h> |
| #include <asm/arcregs.h> |
| #include <asm/setup.h> |
| #include <asm/mmu_context.h> |
| #include <asm/mmu.h> |
| |
| /* Need for ARC MMU v2 |
| * |
| * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc. |
| * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages |
| * map into same set, there would be contention for the 2 ways causing severe |
| * Thrashing. |
| * |
| * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has |
| * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways. |
| * Given this, the thrasing problem should never happen because once the 3 |
| * J-TLB entries are created (even though 3rd will knock out one of the prev |
| * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy |
| * |
| * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs. |
| * This is a simple design for keeping them in sync. So what do we do? |
| * The solution which James came up was pretty neat. It utilised the assoc |
| * of uTLBs by not invalidating always but only when absolutely necessary. |
| * |
| * - Existing TLB commands work as before |
| * - New command (TLBWriteNI) for TLB write without clearing uTLBs |
| * - New command (TLBIVUTLB) to invalidate uTLBs. |
| * |
| * The uTLBs need only be invalidated when pages are being removed from the |
| * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB |
| * as a result of a miss, the removed entry is still allowed to exist in the |
| * uTLBs as it is still valid and present in the OS page table. This allows the |
| * full associativity of the uTLBs to hide the limited associativity of the main |
| * TLB. |
| * |
| * During a miss handler, the new "TLBWriteNI" command is used to load |
| * entries without clearing the uTLBs. |
| * |
| * When the OS page table is updated, TLB entries that may be associated with a |
| * removed page are removed (flushed) from the TLB using TLBWrite. In this |
| * circumstance, the uTLBs must also be cleared. This is done by using the |
| * existing TLBWrite command. An explicit IVUTLB is also required for those |
| * corner cases when TLBWrite was not executed at all because the corresp |
| * J-TLB entry got evicted/replaced. |
| */ |
| |
| |
| /* A copy of the ASID from the PID reg is kept in asid_cache */ |
| int asid_cache = FIRST_ASID; |
| |
| /* ASID to mm struct mapping. We have one extra entry corresponding to |
| * NO_ASID to save us a compare when clearing the mm entry for old asid |
| * see get_new_mmu_context (asm-arc/mmu_context.h) |
| */ |
| struct mm_struct *asid_mm_map[NUM_ASID + 1]; |
| |
| /* |
| * Utility Routine to erase a J-TLB entry |
| * Caller needs to setup Index Reg (manually or via getIndex) |
| */ |
| static inline void __tlb_entry_erase(void) |
| { |
| write_aux_reg(ARC_REG_TLBPD1, 0); |
| write_aux_reg(ARC_REG_TLBPD0, 0); |
| write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); |
| } |
| |
| static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid) |
| { |
| unsigned int idx; |
| |
| write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid); |
| |
| write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe); |
| idx = read_aux_reg(ARC_REG_TLBINDEX); |
| |
| return idx; |
| } |
| |
| static void tlb_entry_erase(unsigned int vaddr_n_asid) |
| { |
| unsigned int idx; |
| |
| /* Locate the TLB entry for this vaddr + ASID */ |
| idx = tlb_entry_lkup(vaddr_n_asid); |
| |
| /* No error means entry found, zero it out */ |
| if (likely(!(idx & TLB_LKUP_ERR))) { |
| __tlb_entry_erase(); |
| } else { |
| /* Duplicate entry error */ |
| WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n", |
| vaddr_n_asid); |
| } |
| } |
| |
| /**************************************************************************** |
| * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs) |
| * |
| * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB |
| * |
| * utlb_invalidate ( ) |
| * -For v2 MMU calls Flush uTLB Cmd |
| * -For v1 MMU does nothing (except for Metal Fix v1 MMU) |
| * This is because in v1 TLBWrite itself invalidate uTLBs |
| ***************************************************************************/ |
| |
| static void utlb_invalidate(void) |
| { |
| #if (CONFIG_ARC_MMU_VER >= 2) |
| |
| #if (CONFIG_ARC_MMU_VER == 2) |
| /* MMU v2 introduced the uTLB Flush command. |
| * There was however an obscure hardware bug, where uTLB flush would |
| * fail when a prior probe for J-TLB (both totally unrelated) would |
| * return lkup err - because the entry didnt exist in MMU. |
| * The Workround was to set Index reg with some valid value, prior to |
| * flush. This was fixed in MMU v3 hence not needed any more |
| */ |
| unsigned int idx; |
| |
| /* make sure INDEX Reg is valid */ |
| idx = read_aux_reg(ARC_REG_TLBINDEX); |
| |
| /* If not write some dummy val */ |
| if (unlikely(idx & TLB_LKUP_ERR)) |
| write_aux_reg(ARC_REG_TLBINDEX, 0xa); |
| #endif |
| |
| write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB); |
| #endif |
| |
| } |
| |
| static void tlb_entry_insert(unsigned int pd0, unsigned int pd1) |
| { |
| unsigned int idx; |
| |
| /* |
| * First verify if entry for this vaddr+ASID already exists |
| * This also sets up PD0 (vaddr, ASID..) for final commit |
| */ |
| idx = tlb_entry_lkup(pd0); |
| |
| /* |
| * If Not already present get a free slot from MMU. |
| * Otherwise, Probe would have located the entry and set INDEX Reg |
| * with existing location. This will cause Write CMD to over-write |
| * existing entry with new PD0 and PD1 |
| */ |
| if (likely(idx & TLB_LKUP_ERR)) |
| write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex); |
| |
| /* setup the other half of TLB entry (pfn, rwx..) */ |
| write_aux_reg(ARC_REG_TLBPD1, pd1); |
| |
| /* |
| * Commit the Entry to MMU |
| * It doesnt sound safe to use the TLBWriteNI cmd here |
| * which doesn't flush uTLBs. I'd rather be safe than sorry. |
| */ |
| write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); |
| } |
| |
| /* |
| * Un-conditionally (without lookup) erase the entire MMU contents |
| */ |
| |
| noinline void local_flush_tlb_all(void) |
| { |
| unsigned long flags; |
| unsigned int entry; |
| struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; |
| |
| local_irq_save(flags); |
| |
| /* Load PD0 and PD1 with template for a Blank Entry */ |
| write_aux_reg(ARC_REG_TLBPD1, 0); |
| write_aux_reg(ARC_REG_TLBPD0, 0); |
| |
| for (entry = 0; entry < mmu->num_tlb; entry++) { |
| /* write this entry to the TLB */ |
| write_aux_reg(ARC_REG_TLBINDEX, entry); |
| write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); |
| } |
| |
| utlb_invalidate(); |
| |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * Flush the entrie MM for userland. The fastest way is to move to Next ASID |
| */ |
| noinline void local_flush_tlb_mm(struct mm_struct *mm) |
| { |
| /* |
| * Small optimisation courtesy IA64 |
| * flush_mm called during fork,exit,munmap etc, multiple times as well. |
| * Only for fork( ) do we need to move parent to a new MMU ctxt, |
| * all other cases are NOPs, hence this check. |
| */ |
| if (atomic_read(&mm->mm_users) == 0) |
| return; |
| |
| /* |
| * - Move to a new ASID, but only if the mm is still wired in |
| * (Android Binder ended up calling this for vma->mm != tsk->mm, |
| * causing h/w - s/w ASID to get out of sync) |
| * - Also get_new_mmu_context() new implementation allocates a new |
| * ASID only if it is not allocated already - so unallocate first |
| */ |
| destroy_context(mm); |
| if (current->mm == mm) |
| get_new_mmu_context(mm); |
| } |
| |
| /* |
| * Flush a Range of TLB entries for userland. |
| * @start is inclusive, while @end is exclusive |
| * Difference between this and Kernel Range Flush is |
| * -Here the fastest way (if range is too large) is to move to next ASID |
| * without doing any explicit Shootdown |
| * -In case of kernel Flush, entry has to be shot down explictly |
| */ |
| void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, |
| unsigned long end) |
| { |
| unsigned long flags; |
| unsigned int asid; |
| |
| /* If range @start to @end is more than 32 TLB entries deep, |
| * its better to move to a new ASID rather than searching for |
| * individual entries and then shooting them down |
| * |
| * The calc above is rough, doesn't account for unaligned parts, |
| * since this is heuristics based anyways |
| */ |
| if (unlikely((end - start) >= PAGE_SIZE * 32)) { |
| local_flush_tlb_mm(vma->vm_mm); |
| return; |
| } |
| |
| /* |
| * @start moved to page start: this alone suffices for checking |
| * loop end condition below, w/o need for aligning @end to end |
| * e.g. 2000 to 4001 will anyhow loop twice |
| */ |
| start &= PAGE_MASK; |
| |
| local_irq_save(flags); |
| asid = vma->vm_mm->context.asid; |
| |
| if (asid != NO_ASID) { |
| while (start < end) { |
| tlb_entry_erase(start | (asid & 0xff)); |
| start += PAGE_SIZE; |
| } |
| } |
| |
| utlb_invalidate(); |
| |
| local_irq_restore(flags); |
| } |
| |
| /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective) |
| * @start, @end interpreted as kvaddr |
| * Interestingly, shared TLB entries can also be flushed using just |
| * @start,@end alone (interpreted as user vaddr), although technically SASID |
| * is also needed. However our smart TLbProbe lookup takes care of that. |
| */ |
| void local_flush_tlb_kernel_range(unsigned long start, unsigned long end) |
| { |
| unsigned long flags; |
| |
| /* exactly same as above, except for TLB entry not taking ASID */ |
| |
| if (unlikely((end - start) >= PAGE_SIZE * 32)) { |
| local_flush_tlb_all(); |
| return; |
| } |
| |
| start &= PAGE_MASK; |
| |
| local_irq_save(flags); |
| while (start < end) { |
| tlb_entry_erase(start); |
| start += PAGE_SIZE; |
| } |
| |
| utlb_invalidate(); |
| |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * Delete TLB entry in MMU for a given page (??? address) |
| * NOTE One TLB entry contains translation for single PAGE |
| */ |
| |
| void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) |
| { |
| unsigned long flags; |
| |
| /* Note that it is critical that interrupts are DISABLED between |
| * checking the ASID and using it flush the TLB entry |
| */ |
| local_irq_save(flags); |
| |
| if (vma->vm_mm->context.asid != NO_ASID) { |
| tlb_entry_erase((page & PAGE_MASK) | |
| (vma->vm_mm->context.asid & 0xff)); |
| utlb_invalidate(); |
| } |
| |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * Routine to create a TLB entry |
| */ |
| void create_tlb(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) |
| { |
| unsigned long flags; |
| unsigned int asid_or_sasid, rwx; |
| unsigned long pd0, pd1; |
| |
| /* |
| * create_tlb() assumes that current->mm == vma->mm, since |
| * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr) |
| * -completes the lazy write to SASID reg (again valid for curr tsk) |
| * |
| * Removing the assumption involves |
| * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg. |
| * -Fix the TLB paranoid debug code to not trigger false negatives. |
| * -More importantly it makes this handler inconsistent with fast-path |
| * TLB Refill handler which always deals with "current" |
| * |
| * Lets see the use cases when current->mm != vma->mm and we land here |
| * 1. execve->copy_strings()->__get_user_pages->handle_mm_fault |
| * Here VM wants to pre-install a TLB entry for user stack while |
| * current->mm still points to pre-execve mm (hence the condition). |
| * However the stack vaddr is soon relocated (randomization) and |
| * move_page_tables() tries to undo that TLB entry. |
| * Thus not creating TLB entry is not any worse. |
| * |
| * 2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a |
| * breakpoint in debugged task. Not creating a TLB now is not |
| * performance critical. |
| * |
| * Both the cases above are not good enough for code churn. |
| */ |
| if (current->active_mm != vma->vm_mm) |
| return; |
| |
| local_irq_save(flags); |
| |
| tlb_paranoid_check(vma->vm_mm->context.asid, address); |
| |
| address &= PAGE_MASK; |
| |
| /* update this PTE credentials */ |
| pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED); |
| |
| /* Create HW TLB(PD0,PD1) from PTE */ |
| |
| /* ASID for this task */ |
| asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff; |
| |
| pd0 = address | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0); |
| |
| /* |
| * ARC MMU provides fully orthogonal access bits for K/U mode, |
| * however Linux only saves 1 set to save PTE real-estate |
| * Here we convert 3 PTE bits into 6 MMU bits: |
| * -Kernel only entries have Kr Kw Kx 0 0 0 |
| * -User entries have mirrored K and U bits |
| */ |
| rwx = pte_val(*ptep) & PTE_BITS_RWX; |
| |
| if (pte_val(*ptep) & _PAGE_GLOBAL) |
| rwx <<= 3; /* r w x => Kr Kw Kx 0 0 0 */ |
| else |
| rwx |= (rwx << 3); /* r w x => Kr Kw Kx Ur Uw Ux */ |
| |
| pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1); |
| |
| tlb_entry_insert(pd0, pd1); |
| |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * Called at the end of pagefault, for a userspace mapped page |
| * -pre-install the corresponding TLB entry into MMU |
| * -Finalize the delayed D-cache flush of kernel mapping of page due to |
| * flush_dcache_page(), copy_user_page() |
| * |
| * Note that flush (when done) involves both WBACK - so physical page is |
| * in sync as well as INV - so any non-congruent aliases don't remain |
| */ |
| void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned, |
| pte_t *ptep) |
| { |
| unsigned long vaddr = vaddr_unaligned & PAGE_MASK; |
| unsigned long paddr = pte_val(*ptep) & PAGE_MASK; |
| struct page *page = pfn_to_page(pte_pfn(*ptep)); |
| |
| create_tlb(vma, vaddr, ptep); |
| |
| if (page == ZERO_PAGE(0)) { |
| return; |
| } |
| |
| /* |
| * Exec page : Independent of aliasing/page-color considerations, |
| * since icache doesn't snoop dcache on ARC, any dirty |
| * K-mapping of a code page needs to be wback+inv so that |
| * icache fetch by userspace sees code correctly. |
| * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it |
| * so userspace sees the right data. |
| * (Avoids the flush for Non-exec + congruent mapping case) |
| */ |
| if ((vma->vm_flags & VM_EXEC) || |
| addr_not_cache_congruent(paddr, vaddr)) { |
| |
| int dirty = !test_and_set_bit(PG_dc_clean, &page->flags); |
| if (dirty) { |
| /* wback + inv dcache lines */ |
| __flush_dcache_page(paddr, paddr); |
| |
| /* invalidate any existing icache lines */ |
| if (vma->vm_flags & VM_EXEC) |
| __inv_icache_page(paddr, vaddr); |
| } |
| } |
| } |
| |
| /* Read the Cache Build Confuration Registers, Decode them and save into |
| * the cpuinfo structure for later use. |
| * No Validation is done here, simply read/convert the BCRs |
| */ |
| void read_decode_mmu_bcr(void) |
| { |
| struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; |
| unsigned int tmp; |
| struct bcr_mmu_1_2 { |
| #ifdef CONFIG_CPU_BIG_ENDIAN |
| unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8; |
| #else |
| unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8; |
| #endif |
| } *mmu2; |
| |
| struct bcr_mmu_3 { |
| #ifdef CONFIG_CPU_BIG_ENDIAN |
| unsigned int ver:8, ways:4, sets:4, osm:1, reserv:3, pg_sz:4, |
| u_itlb:4, u_dtlb:4; |
| #else |
| unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, reserv:3, osm:1, sets:4, |
| ways:4, ver:8; |
| #endif |
| } *mmu3; |
| |
| tmp = read_aux_reg(ARC_REG_MMU_BCR); |
| mmu->ver = (tmp >> 24); |
| |
| if (mmu->ver <= 2) { |
| mmu2 = (struct bcr_mmu_1_2 *)&tmp; |
| mmu->pg_sz = PAGE_SIZE; |
| mmu->sets = 1 << mmu2->sets; |
| mmu->ways = 1 << mmu2->ways; |
| mmu->u_dtlb = mmu2->u_dtlb; |
| mmu->u_itlb = mmu2->u_itlb; |
| } else { |
| mmu3 = (struct bcr_mmu_3 *)&tmp; |
| mmu->pg_sz = 512 << mmu3->pg_sz; |
| mmu->sets = 1 << mmu3->sets; |
| mmu->ways = 1 << mmu3->ways; |
| mmu->u_dtlb = mmu3->u_dtlb; |
| mmu->u_itlb = mmu3->u_itlb; |
| } |
| |
| mmu->num_tlb = mmu->sets * mmu->ways; |
| } |
| |
| char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len) |
| { |
| int n = 0; |
| struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu; |
| |
| n += scnprintf(buf + n, len - n, "ARC700 MMU [v%x]\t: %dk PAGE, ", |
| p_mmu->ver, TO_KB(p_mmu->pg_sz)); |
| |
| n += scnprintf(buf + n, len - n, |
| "J-TLB %d (%dx%d), uDTLB %d, uITLB %d, %s\n", |
| p_mmu->num_tlb, p_mmu->sets, p_mmu->ways, |
| p_mmu->u_dtlb, p_mmu->u_itlb, |
| IS_ENABLED(CONFIG_ARC_MMU_SASID) ? "SASID" : ""); |
| |
| return buf; |
| } |
| |
| void arc_mmu_init(void) |
| { |
| char str[256]; |
| struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; |
| |
| printk(arc_mmu_mumbojumbo(0, str, sizeof(str))); |
| |
| /* For efficiency sake, kernel is compile time built for a MMU ver |
| * This must match the hardware it is running on. |
| * Linux built for MMU V2, if run on MMU V1 will break down because V1 |
| * hardware doesn't understand cmds such as WriteNI, or IVUTLB |
| * On the other hand, Linux built for V1 if run on MMU V2 will do |
| * un-needed workarounds to prevent memcpy thrashing. |
| * Similarly MMU V3 has new features which won't work on older MMU |
| */ |
| if (mmu->ver != CONFIG_ARC_MMU_VER) { |
| panic("MMU ver %d doesn't match kernel built for %d...\n", |
| mmu->ver, CONFIG_ARC_MMU_VER); |
| } |
| |
| if (mmu->pg_sz != PAGE_SIZE) |
| panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE)); |
| |
| /* Enable the MMU */ |
| write_aux_reg(ARC_REG_PID, MMU_ENABLE); |
| |
| /* In smp we use this reg for interrupt 1 scratch */ |
| #ifndef CONFIG_SMP |
| /* swapper_pg_dir is the pgd for the kernel, used by vmalloc */ |
| write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir); |
| #endif |
| } |
| |
| /* |
| * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4} |
| * The mapping is Column-first. |
| * --------------------- ----------- |
| * |way0|way1|way2|way3| |way0|way1| |
| * --------------------- ----------- |
| * [set0] | 0 | 1 | 2 | 3 | | 0 | 1 | |
| * [set1] | 4 | 5 | 6 | 7 | | 2 | 3 | |
| * ~ ~ ~ ~ |
| * [set127] | 508| 509| 510| 511| | 254| 255| |
| * --------------------- ----------- |
| * For normal operations we don't(must not) care how above works since |
| * MMU cmd getIndex(vaddr) abstracts that out. |
| * However for walking WAYS of a SET, we need to know this |
| */ |
| #define SET_WAY_TO_IDX(mmu, set, way) ((set) * mmu->ways + (way)) |
| |
| /* Handling of Duplicate PD (TLB entry) in MMU. |
| * -Could be due to buggy customer tapeouts or obscure kernel bugs |
| * -MMU complaints not at the time of duplicate PD installation, but at the |
| * time of lookup matching multiple ways. |
| * -Ideally these should never happen - but if they do - workaround by deleting |
| * the duplicate one. |
| * -Knob to be verbose abt it.(TODO: hook them up to debugfs) |
| */ |
| volatile int dup_pd_verbose = 1;/* Be slient abt it or complain (default) */ |
| |
| void do_tlb_overlap_fault(unsigned long cause, unsigned long address, |
| struct pt_regs *regs) |
| { |
| int set, way, n; |
| unsigned int pd0[4], pd1[4]; /* assume max 4 ways */ |
| unsigned long flags, is_valid; |
| struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; |
| |
| local_irq_save(flags); |
| |
| /* re-enable the MMU */ |
| write_aux_reg(ARC_REG_PID, MMU_ENABLE | read_aux_reg(ARC_REG_PID)); |
| |
| /* loop thru all sets of TLB */ |
| for (set = 0; set < mmu->sets; set++) { |
| |
| /* read out all the ways of current set */ |
| for (way = 0, is_valid = 0; way < mmu->ways; way++) { |
| write_aux_reg(ARC_REG_TLBINDEX, |
| SET_WAY_TO_IDX(mmu, set, way)); |
| write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead); |
| pd0[way] = read_aux_reg(ARC_REG_TLBPD0); |
| pd1[way] = read_aux_reg(ARC_REG_TLBPD1); |
| is_valid |= pd0[way] & _PAGE_PRESENT; |
| } |
| |
| /* If all the WAYS in SET are empty, skip to next SET */ |
| if (!is_valid) |
| continue; |
| |
| /* Scan the set for duplicate ways: needs a nested loop */ |
| for (way = 0; way < mmu->ways; way++) { |
| if (!pd0[way]) |
| continue; |
| |
| for (n = way + 1; n < mmu->ways; n++) { |
| if ((pd0[way] & PAGE_MASK) == |
| (pd0[n] & PAGE_MASK)) { |
| |
| if (dup_pd_verbose) { |
| pr_info("Duplicate PD's @" |
| "[%d:%d]/[%d:%d]\n", |
| set, way, set, n); |
| pr_info("TLBPD0[%u]: %08x\n", |
| way, pd0[way]); |
| } |
| |
| /* |
| * clear entry @way and not @n. This is |
| * critical to our optimised loop |
| */ |
| pd0[way] = pd1[way] = 0; |
| write_aux_reg(ARC_REG_TLBINDEX, |
| SET_WAY_TO_IDX(mmu, set, way)); |
| __tlb_entry_erase(); |
| } |
| } |
| } |
| } |
| |
| local_irq_restore(flags); |
| } |
| |
| /*********************************************************************** |
| * Diagnostic Routines |
| * -Called from Low Level TLB Hanlders if things don;t look good |
| **********************************************************************/ |
| |
| #ifdef CONFIG_ARC_DBG_TLB_PARANOIA |
| |
| /* |
| * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS |
| * don't match |
| */ |
| void print_asid_mismatch(int mm_asid, int mmu_asid, int is_fast_path) |
| { |
| pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n", |
| is_fast_path ? "Fast" : "Slow", mm_asid, mmu_asid); |
| |
| __asm__ __volatile__("flag 1"); |
| } |
| |
| void tlb_paranoid_check(unsigned int mm_asid, unsigned long addr) |
| { |
| unsigned int mmu_asid; |
| |
| mmu_asid = read_aux_reg(ARC_REG_PID) & 0xff; |
| |
| /* |
| * At the time of a TLB miss/installation |
| * - HW version needs to match SW version |
| * - SW needs to have a valid ASID |
| */ |
| if (addr < 0x70000000 && |
| ((mmu_asid != mm_asid) || (mm_asid == NO_ASID))) |
| print_asid_mismatch(mm_asid, mmu_asid, 0); |
| } |
| #endif |