blob: 54e618578e981d571febd75d0da617e78eafcb80 [file] [log] [blame]
/*
* Synopsys DesignWare Multimedia Card Interface driver
* (Based on NXP driver for lpc 31xx)
*
* Copyright (C) 2009 NXP Semiconductors
* Copyright (C) 2009, 2010 Imagination Technologies Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/blkdev.h>
#include <linux/clk.h>
#include <linux/debugfs.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/stat.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <linux/mmc/card.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sd.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/dw_mmc.h>
#include <linux/bitops.h>
#include <linux/regulator/consumer.h>
#include <linux/workqueue.h>
#include <linux/of.h>
#include <linux/of_gpio.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/smc.h>
#include <soc/samsung/exynos-pm.h>
#ifdef CONFIG_CPU_IDLE
#include <soc/samsung/exynos-powermode.h>
#endif
#include "dw_mmc.h"
#include "dw_mmc-exynos.h"
#include "cmdq_hci.h"
/* Common flag combinations */
#define DW_MCI_DATA_ERROR_FLAGS (SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
SDMMC_INT_HTO | SDMMC_INT_SBE | \
SDMMC_INT_EBE)
#define DW_MCI_CMD_ERROR_FLAGS (SDMMC_INT_RTO | SDMMC_INT_RCRC | \
SDMMC_INT_RESP_ERR)
#define DW_MCI_ERROR_FLAGS (DW_MCI_DATA_ERROR_FLAGS | \
DW_MCI_CMD_ERROR_FLAGS | SDMMC_INT_HLE)
#define DW_MCI_SEND_STATUS 1
#define DW_MCI_RECV_STATUS 2
#define DW_MCI_DMA_THRESHOLD 16
#define DW_MCI_FREQ_MAX 200000000 /* unit: HZ */
#define DW_MCI_FREQ_MIN 300000 /* unit: HZ */
#define DW_MCI_BUSY_WAIT_TIMEOUT 100
/* Each descriptor can transfer up to 4KB of data in chained mode */
#define DW_MCI_DESC_DATA_LENGTH 0x1000
static bool dw_mci_reset(struct dw_mci *host);
static int dw_mci_card_busy(struct mmc_host *mmc);
bool dw_mci_fifo_reset(struct device *dev, struct dw_mci *host);
void dw_mci_ciu_reset(struct device *dev, struct dw_mci *host);
static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset);
static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq);
static int dw_mci_pre_dma_transfer(struct dw_mci *host,
struct mmc_data *data,
bool next);
static struct workqueue_struct *pm_workqueue;
#if defined(CONFIG_MMC_DW_DEBUG)
static struct dw_mci_debug_data dw_mci_debug __cacheline_aligned;
/* Add sysfs for read cmd_logs */
static ssize_t dw_mci_debug_log_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
ssize_t total_len = 0;
int j = 0, k = 0;
struct dw_mci_cmd_log *cmd_log;
unsigned int offset;
struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
struct dw_mci *host = dw_mci_debug.host[mmc->index];
/*
* print cmd_log from prev. 14 to last
*/
if (host->debug_info->en_logging & DW_MCI_DEBUG_ON_CMD) {
offset = atomic_read(&host->debug_info->cmd_log_count) - 13;
offset &= DWMCI_LOG_MAX - 1;
total_len += snprintf(buf, PAGE_SIZE, "HOST%1d\n", mmc->index);
buf += (sizeof(char) * 6);
cmd_log = host->debug_info->cmd_log;
for (j = 0; j < 14; j++) {
total_len += snprintf(buf+(sizeof(char)*71*j)+
(sizeof(char)*(2*k+6*(k+1))), PAGE_SIZE,
"%04d:%2d,0x%08x,%04d,%016llu,%016llu,%02x,%04x,%03d.\n",
offset,
cmd_log[offset].cmd, cmd_log[offset].arg,
cmd_log[offset].data_size, cmd_log[offset].send_time,
cmd_log[offset].done_time, cmd_log[offset].seq_status,
cmd_log[offset].rint_sts, cmd_log[offset].status_count);
offset++;
}
total_len += snprintf(buf + (sizeof(char)*2), PAGE_SIZE, "\n\n");
k++;
}
return total_len;
}
static ssize_t dw_mci_debug_log_control(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len)
{
int enable = 0;
int ret = 0;
struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
struct dw_mci *host = dw_mci_debug.host[mmc->index];
ret = kstrtoint(buf, 0, &enable);
if (ret)
goto out;
host->debug_info->en_logging = enable;
printk("%s: en_logging is %d.\n",
mmc_hostname(host->cur_slot->mmc),
host->debug_info->en_logging);
out:
return len;
}
static DEVICE_ATTR(dwmci_debug, 0644, dw_mci_debug_log_show, dw_mci_debug_log_control);
/*
* new_cmd : has to be true Only send_command.(except CMD13)
* flags :
* 0x1 : send_cmd : start_command(all)
* 0x2 : resp(CD) : set done_time without data case
* 0x4 : data_done(DTO) : set done_time with data case
* 0x8 : error interrupt occurs : set rint_sts read from RINTSTS
*/
static void dw_mci_debug_cmd_log(struct mmc_command *cmd, struct dw_mci *host,
bool new_cmd, u8 flags, u32 rintsts)
{
int cpu = raw_smp_processor_id();
unsigned int count;
struct dw_mci_cmd_log *cmd_log;
if (!host->debug_info || !(host->debug_info->en_logging & DW_MCI_DEBUG_ON_CMD))
return;
cmd_log = host->debug_info->cmd_log;
if (!new_cmd) {
count = atomic_read(&host->debug_info->cmd_log_count) &
(DWMCI_LOG_MAX - 1);
if (flags & DW_MCI_FLAG_SEND_CMD) /* CMD13 */
cmd_log[count].status_count++;
if (flags & DW_MCI_FLAG_CD) {
cmd_log[count].seq_status |= DW_MCI_FLAG_CD;
cmd_log[count].done_time = cpu_clock(cpu);
}
if (flags & DW_MCI_FLAG_DTO) {
cmd_log[count].seq_status |= DW_MCI_FLAG_DTO;
cmd_log[count].done_time = cpu_clock(cpu);
}
if (flags & DW_MCI_FLAG_ERROR) {
cmd_log[count].seq_status |= DW_MCI_FLAG_ERROR;
cmd_log[count].rint_sts |= (rintsts & 0xFFFF);
}
} else {
count = atomic_inc_return(&host->debug_info->cmd_log_count) &
(DWMCI_LOG_MAX - 1);
cmd_log[count].cmd = cmd->opcode;
cmd_log[count].arg = cmd->arg;
if (cmd->data)
cmd_log[count].data_size = cmd->data->blocks;
else
cmd_log[count].data_size = 0;
cmd_log[count].send_time = cpu_clock(cpu);
cmd_log[count].done_time = 0x0;
cmd_log[count].seq_status = DW_MCI_FLAG_SEND_CMD;
if (!(flags & DW_MCI_FLAG_SEND_CMD))
cmd_log[count].seq_status |= DW_MCI_FLAG_NEW_CMD_ERR;
cmd_log[count].rint_sts = 0x0;
cmd_log[count].status_count = 0;
}
}
static void dw_mci_debug_req_log(struct dw_mci *host, struct mmc_request *mrq,
enum dw_mci_req_log_state log_state, enum dw_mci_state state)
{
int cpu = raw_smp_processor_id();
unsigned int count;
struct dw_mci_req_log *req_log;
if (!host->debug_info || !(host->debug_info->en_logging & DW_MCI_DEBUG_ON_REQ))
return;
req_log = host->debug_info->req_log;
count = atomic_inc_return(&host->debug_info->req_log_count)
& (DWMCI_REQ_LOG_MAX - 1);
if (log_state == STATE_REQ_START) {
req_log[count].info0 = mrq->cmd->opcode;
req_log[count].info1 = mrq->cmd->arg;
if (mrq->data) {
req_log[count].info2 = (u32)mrq->data->blksz;
req_log[count].info3 = (u32)mrq->data->blocks;
} else {
req_log[count].info2 = 0;
req_log[count].info3 = 0;
}
} else {
req_log[count].info0 = host->cmd_status;
req_log[count].info1 = host->data_status;
req_log[count].info2 = 0;
req_log[count].info3 = 0;
}
req_log[count].log_state = log_state;
req_log[count].pending_events = host->pending_events;
req_log[count].completed_events = host->completed_events;
req_log[count].timestamp = cpu_clock(cpu);
req_log[count].state = state;
}
static void dw_mci_debug_init(struct dw_mci *host)
{
unsigned int host_index;
unsigned int info_index;
host_index = dw_mci_debug.host_count++;
if (host_index < DWMCI_DBG_NUM_HOST) {
dw_mci_debug.host[host_index] = host;
if (DWMCI_DBG_MASK_INFO & DWMCI_DBG_BIT_HOST(host_index)) {
static atomic_t temp_cmd_log_count = ATOMIC_INIT(-1);
static atomic_t temp_req_log_count = ATOMIC_INIT(-1);
int sysfs_err = 0;
info_index = dw_mci_debug.info_count++;
dw_mci_debug.info_index[host_index] = info_index;
host->debug_info = &dw_mci_debug.debug_info[info_index];
host->debug_info->en_logging = DW_MCI_DEBUG_ON_CMD
| DW_MCI_DEBUG_ON_REQ;
host->debug_info->cmd_log_count = temp_cmd_log_count;
host->debug_info->req_log_count = temp_req_log_count;
sysfs_err = sysfs_create_file(&(host->slot[0]->mmc->class_dev.kobj),
&(dev_attr_dwmci_debug.attr));
pr_info("%s: create debug_log sysfs : %s.....\n", __func__,
sysfs_err ? "failed" : "successed");
dev_info(host->dev, "host %d debug On\n", host_index);
} else {
dw_mci_debug.info_index[host_index] = 0xFF;
}
}
}
#else
static inline int dw_mci_debug_cmd_log(struct mmc_command *cmd,
struct dw_mci *host, bool new_cmd, u8 flags, u32 rintsts)
{
return 0;
}
static inline int dw_mci_debug_req_log(struct dw_mci *host,
struct mmc_request *mrq, enum dw_mci_req_log_state log_state,
enum dw_mci_state state)
{
return 0;
}
static inline int dw_mci_debug_init(struct dw_mci *host)
{
return 0;
}
#endif /* defined (CONFIG_MMC_DW_DEBUG) */
static void dw_mci_qos_work(struct work_struct *work)
{
struct dw_mci *host = container_of(work, struct dw_mci, qos_work.work);
pm_qos_update_request(&host->pm_qos_lock, 0);
}
static void dw_mci_qos_get(struct dw_mci *host)
{
if (delayed_work_pending(&host->qos_work))
cancel_delayed_work_sync(&host->qos_work);
else
flush_delayed_work(&host->qos_work);
if (host->timing == MMC_TIMING_UHS_SDR50 ||
host->timing == MMC_TIMING_UHS_SDR104)
pm_qos_update_request(&host->pm_qos_lock, host->pdata->qos_sd3_dvfs_level);
else
pm_qos_update_request(&host->pm_qos_lock, host->pdata->qos_dvfs_level);
}
static void dw_mci_qos_put(struct dw_mci *host)
{
queue_delayed_work(pm_workqueue, &host->qos_work,
msecs_to_jiffies(5));
}
/* Add sysfs for argos */
static ssize_t dw_mci_transferred_cnt_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
return sprintf(buf, "%u\n" , host->transferred_cnt);
}
DEVICE_ATTR(trans_count, 0444, dw_mci_transferred_cnt_show, NULL);
static void dw_mci_transferred_cnt_init(struct dw_mci *host, struct mmc_host *mmc)
{
int sysfs_err = 0;
sysfs_err = sysfs_create_file(&(mmc->class_dev.kobj),
&(dev_attr_trans_count.attr));
pr_info("%s: trans_count: %s.....\n", __func__,
sysfs_err ? "failed" : "successed");
}
bool dw_mci_fifo_reset(struct device *dev, struct dw_mci *host);
void dw_mci_ciu_reset(struct device *dev, struct dw_mci *host);
static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset);
#if defined(CONFIG_DEBUG_FS)
static int dw_mci_req_show(struct seq_file *s, void *v)
{
struct dw_mci_slot *slot = s->private;
struct mmc_request *mrq;
struct mmc_command *cmd;
struct mmc_command *stop;
struct mmc_data *data;
/* Make sure we get a consistent snapshot */
spin_lock_bh(&slot->host->lock);
mrq = slot->mrq;
if (mrq) {
cmd = mrq->cmd;
data = mrq->data;
stop = mrq->stop;
if (cmd)
seq_printf(s,
"CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
cmd->opcode, cmd->arg, cmd->flags,
cmd->resp[0], cmd->resp[1], cmd->resp[2],
cmd->resp[2], cmd->error);
if (data)
seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
data->bytes_xfered, data->blocks,
data->blksz, data->flags, data->error);
if (stop)
seq_printf(s,
"CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
stop->opcode, stop->arg, stop->flags,
stop->resp[0], stop->resp[1], stop->resp[2],
stop->resp[2], stop->error);
}
spin_unlock_bh(&slot->host->lock);
return 0;
}
static int dw_mci_req_open(struct inode *inode, struct file *file)
{
return single_open(file, dw_mci_req_show, inode->i_private);
}
static const struct file_operations dw_mci_req_fops = {
.owner = THIS_MODULE,
.open = dw_mci_req_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int dw_mci_regs_show(struct seq_file *s, void *v)
{
seq_printf(s, "STATUS:\t0x%08x\n", SDMMC_STATUS);
seq_printf(s, "RINTSTS:\t0x%08x\n", SDMMC_RINTSTS);
seq_printf(s, "CMD:\t0x%08x\n", SDMMC_CMD);
seq_printf(s, "CTRL:\t0x%08x\n", SDMMC_CTRL);
seq_printf(s, "INTMASK:\t0x%08x\n", SDMMC_INTMASK);
seq_printf(s, "CLKENA:\t0x%08x\n", SDMMC_CLKENA);
return 0;
}
static int dw_mci_regs_open(struct inode *inode, struct file *file)
{
return single_open(file, dw_mci_regs_show, inode->i_private);
}
static const struct file_operations dw_mci_regs_fops = {
.owner = THIS_MODULE,
.open = dw_mci_regs_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
{
struct mmc_host *mmc = slot->mmc;
struct dw_mci *host = slot->host;
struct dentry *root;
struct dentry *node;
root = mmc->debugfs_root;
if (!root)
return;
node = debugfs_create_file("regs", S_IRUSR, root, host,
&dw_mci_regs_fops);
if (!node)
goto err;
node = debugfs_create_file("req", S_IRUSR, root, slot,
&dw_mci_req_fops);
if (!node)
goto err;
node = debugfs_create_u32("state", S_IRUSR, root, (u32 *)&host->state);
if (!node)
goto err;
node = debugfs_create_x32("pending_events", S_IRUSR, root,
(u32 *)&host->pending_events);
if (!node)
goto err;
node = debugfs_create_x32("completed_events", S_IRUSR, root,
(u32 *)&host->completed_events);
if (!node)
goto err;
return;
err:
dev_err(&mmc->class_dev, "failed to initialize debugfs for slot\n");
}
#endif /* defined(CONFIG_DEBUG_FS) */
static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg);
u32 dw_mci_disable_interrupt(struct dw_mci *host, unsigned int *int_mask)
{
u32 ctrl;
ctrl = mci_readl(host, CTRL);
ctrl &= ~(SDMMC_CTRL_INT_ENABLE);
mci_writel(host, CTRL, ctrl);
*int_mask = mci_readl(host, INTMASK);
mci_writel(host, INTMASK, 0);
return ctrl;
}
void dw_mci_enable_interrupt(struct dw_mci *host, unsigned int int_mask)
{
unsigned int ctrl;
mci_writel(host, INTMASK, int_mask);
ctrl = mci_readl(host, CTRL);
mci_writel(host, CTRL, ctrl | SDMMC_CTRL_INT_ENABLE);
}
static void dw_mci_update_clock(struct dw_mci_slot *slot)
{
struct dw_mci *host = slot->host;
unsigned long timeout;
int retry = 10;
u32 cmd_status = 0;
do {
wmb();
mci_writel(host, CMD, SDMMC_CMD_START | SDMMC_CMD_UPD_CLK);
timeout = jiffies + msecs_to_jiffies(1);
while (time_before(jiffies, timeout)) {
cmd_status = mci_readl(host, CMD) & SDMMC_CMD_START;
if (!cmd_status)
return;
if (mci_readl(host, RINTSTS) & SDMMC_INT_HLE) {
mci_writel(host, RINTSTS, SDMMC_INT_HLE);
break;
/* reset controller because a command is stuecked */
}
}
dw_mci_ctrl_reset(host, SDMMC_CTRL_RESET);
} while (--retry);
dev_err(&slot->mmc->class_dev,
"Timeout updating command (status %#x)\n", cmd_status);
}
static inline bool dw_mci_stop_abort_cmd(struct mmc_command *cmd)
{
u32 op = cmd->opcode;
if ((op == MMC_STOP_TRANSMISSION) ||
(op == MMC_GO_IDLE_STATE) ||
(op == MMC_GO_INACTIVE_STATE) ||
((op == SD_IO_RW_DIRECT) && (cmd->arg & 0x80000000) &&
((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
return true;
return false;
}
static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
{
struct mmc_data *data;
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
u32 cmdr;
cmd->error = -EINPROGRESS;
cmdr = cmd->opcode;
if (cmd->opcode == MMC_STOP_TRANSMISSION ||
cmd->opcode == MMC_GO_IDLE_STATE ||
cmd->opcode == MMC_GO_INACTIVE_STATE ||
(cmd->opcode == SD_IO_RW_DIRECT &&
((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
cmdr |= SDMMC_CMD_STOP;
else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
if (cmd->opcode == SD_SWITCH_VOLTAGE) {
u32 clk_en_a;
/* Change state to continue to handle CMD11 weirdness */
WARN_ON(slot->host->state != STATE_SENDING_CMD);
slot->host->state = STATE_SENDING_CMD11;
/*
* We need to disable low power mode (automatic clock stop)
* while doing voltage switch so we don't confuse the card,
* since stopping the clock is a specific part of the UHS
* voltage change dance.
*
* Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
* unconditionally turned back on in dw_mci_setup_bus() if it's
* ever called with a non-zero clock. That shouldn't happen
* until the voltage change is all done.
*/
clk_en_a = mci_readl(host, CLKENA);
clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
mci_writel(host, CLKENA, clk_en_a);
dw_mci_update_clock(slot);
}
if (cmd->flags & MMC_RSP_PRESENT) {
/* We expect a response, so set this bit */
cmdr |= SDMMC_CMD_RESP_EXP;
if (cmd->flags & MMC_RSP_136)
cmdr |= SDMMC_CMD_RESP_LONG;
}
if (cmd->flags & MMC_RSP_CRC)
cmdr |= SDMMC_CMD_RESP_CRC;
data = cmd->data;
if (data) {
cmdr |= SDMMC_CMD_DAT_EXP;
if (data->flags & MMC_DATA_STREAM)
cmdr |= SDMMC_CMD_STRM_MODE;
if (data->flags & MMC_DATA_WRITE)
cmdr |= SDMMC_CMD_DAT_WR;
}
if (drv_data && drv_data->prepare_command)
drv_data->prepare_command(slot->host, &cmdr);
return cmdr;
}
static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
{
struct mmc_command *stop;
u32 cmdr;
if (!cmd->data)
return 0;
stop = &host->stop_abort;
cmdr = cmd->opcode;
memset(stop, 0, sizeof(struct mmc_command));
if (cmdr == MMC_READ_SINGLE_BLOCK ||
cmdr == MMC_READ_MULTIPLE_BLOCK ||
cmdr == MMC_WRITE_BLOCK ||
cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
cmdr == MMC_SEND_TUNING_BLOCK ||
cmdr == MMC_SEND_TUNING_BLOCK_HS200) {
stop->opcode = MMC_STOP_TRANSMISSION;
stop->arg = 0;
stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
} else if (cmdr == SD_IO_RW_EXTENDED) {
stop->opcode = SD_IO_RW_DIRECT;
stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
((cmd->arg >> 28) & 0x7);
stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
} else {
return 0;
}
cmdr = stop->opcode | SDMMC_CMD_STOP |
SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
return cmdr;
}
static void dw_mci_start_command(struct dw_mci *host,
struct mmc_command *cmd, u32 cmd_flags)
{
const struct dw_mci_drv_data *drv_data = host->drv_data;
if (host->quirks & DW_MCI_QUIRK_HWACG_CTRL) {
if (drv_data && drv_data->hwacg_control)
drv_data->hwacg_control(host, HWACG_Q_ACTIVE_DIS, LEGACY_MODE);
}
host->cmd = cmd;
dev_vdbg(host->dev,
"start command: ARGR=0x%08x CMDR=0x%08x\n",
cmd->arg, cmd_flags);
/* needed to
* add get node parse_dt for check to enable logging
* if defined(CMD_LOGGING)
* set en_logging to true
* init cmd_log_count
*/
if (cmd->opcode == MMC_SEND_STATUS)
dw_mci_debug_cmd_log(cmd, host, false, DW_MCI_FLAG_SEND_CMD, 0);
else
dw_mci_debug_cmd_log(cmd, host, true, DW_MCI_FLAG_SEND_CMD, 0);
mci_writel(host, CMDARG, cmd->arg);
wmb(); /* drain writebuffer */
mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
}
static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
{
struct mmc_command *stop = data->stop ? data->stop : &host->stop_abort;
dw_mci_start_command(host, stop, host->stop_cmdr);
}
/* DMA interface functions */
static void dw_mci_stop_dma(struct dw_mci *host)
{
if (host->using_dma) {
host->dma_ops->stop(host);
host->dma_ops->cleanup(host);
host->dma_ops->reset(host);
}
/* Data transfer was stopped by the interrupt handler */
set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
}
static int dw_mci_get_dma_dir(struct mmc_data *data)
{
if (data->flags & MMC_DATA_WRITE)
return DMA_TO_DEVICE;
else
return DMA_FROM_DEVICE;
}
static void dw_mci_dma_cleanup(struct dw_mci *host)
{
struct mmc_data *data = host->data;
if (data)
if (!data->host_cookie)
dma_unmap_sg(host->dev,
data->sg,
data->sg_len,
dw_mci_get_dma_dir(data));
}
static void dw_mci_idmac_reset(struct dw_mci *host)
{
u32 bmod = mci_readl(host, BMOD);
/* Software reset of DMA */
bmod |= SDMMC_IDMAC_SWRESET;
mci_writel(host, BMOD, bmod);
}
static void dw_mci_idmac_stop_dma(struct dw_mci *host)
{
u32 temp;
/* Disable and reset the IDMAC interface */
temp = mci_readl(host, CTRL);
temp &= ~SDMMC_CTRL_USE_IDMAC;
mci_writel(host, CTRL, temp);
/* reset the IDMAC interface */
dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
/* Stop the IDMAC running */
temp = mci_readl(host, BMOD);
temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
temp |= SDMMC_IDMAC_SWRESET;
mci_writel(host, BMOD, temp);
}
static void dw_mci_idma_reset_dma(struct dw_mci *host)
{
u32 temp;
temp = mci_readl(host, BMOD);
/* Software reset of DMA */
temp |= SDMMC_IDMAC_SWRESET;
mci_writel(host, BMOD, temp);
}
static void dw_mci_dmac_complete_dma(void *arg)
{
int ret;
struct dw_mci *host = arg;
struct mmc_data *data = host->data;
const struct dw_mci_drv_data *drv_data = host->drv_data;
struct idmac_desc_64addr *desc = host->sg_cpu;
dev_vdbg(host->dev, "DMA complete\n");
if ((host->use_dma == TRANS_MODE_EDMAC) &&
data && (data->flags & MMC_DATA_READ))
/* Invalidate cache after read */
dma_sync_sg_for_cpu(mmc_dev(host->cur_slot->mmc),
data->sg,
data->sg_len,
DMA_FROM_DEVICE);
if (drv_data->crypto_engine_clear) {
ret = drv_data->crypto_engine_clear(host, desc, false);
if (ret) {
dev_err(host->dev,
"%s: failed to clear crypto engine(%d)\n",
__func__, ret);
}
}
host->dma_ops->cleanup(host);
/*
* If the card was removed, data will be NULL. No point in trying to
* send the stop command or waiting for NBUSY in this case.
*/
if (data) {
set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
tasklet_schedule(&host->tasklet);
}
}
static void dw_mci_translate_sglist(struct dw_mci *host, struct mmc_data *data,
unsigned int sg_len)
{
unsigned int desc_len;
int i, ret;
const struct dw_mci_drv_data *drv_data = host->drv_data;
if (host->dma_64bit_address == 1) {
struct idmac_desc_64addr *desc_first, *desc_last, *desc;
int sector_offset = 0;
desc_first = desc_last = desc = host->sg_cpu;
for (i = 0; i < sg_len; i++) {
unsigned int length = sg_dma_len(&data->sg[i]);
u64 mem_addr = sg_dma_address(&data->sg[i]);
for ( ; length ; desc++) {
desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
length : DW_MCI_DESC_DATA_LENGTH;
length -= desc_len;
/*
* Set the OWN bit and disable interrupts
* for this descriptor
*/
desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
IDMAC_DES0_CH;
/* Buffer length */
IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
/* Physical address to DMA to/from */
desc->des4 = mem_addr & 0xffffffff;
desc->des5 = mem_addr >> 32;
if ((host->cmd != NULL) &&
((host->cmd->opcode == MMC_READ_SINGLE_BLOCK) ||
(host->cmd->opcode == MMC_READ_MULTIPLE_BLOCK) ||
(host->cmd->opcode == MMC_WRITE_BLOCK) ||
(host->cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK))) {
if (drv_data->crypto_engine_cfg) {
ret = drv_data->crypto_engine_cfg(host, desc, data,
sg_page(&data->sg[i]), sector_offset, false);
if (ret) {
dev_err(host->dev,
"%s: failed to configure crypto engine (%d)\n",
__func__, ret);
return;
}
sector_offset += desc_len / DW_MMC_SECTOR_SIZE;
}
}
/* Update physical address for the next desc */
mem_addr += desc_len;
/* Save pointer to the last descriptor */
desc_last = desc;
}
}
/* Set first descriptor */
desc_first->des0 |= IDMAC_DES0_FD;
/* Set last descriptor */
desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
desc_last->des0 |= IDMAC_DES0_LD;
} else {
struct idmac_desc *desc_first, *desc_last, *desc;
desc_first = desc_last = desc = host->sg_cpu;
for (i = 0; i < sg_len; i++) {
unsigned int length = sg_dma_len(&data->sg[i]);
u32 mem_addr = sg_dma_address(&data->sg[i]);
for ( ; length ; desc++) {
desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
length : DW_MCI_DESC_DATA_LENGTH;
length -= desc_len;
/*
* Set the OWN bit and disable interrupts
* for this descriptor
*/
desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
IDMAC_DES0_DIC |
IDMAC_DES0_CH);
/* Buffer length */
IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
/* Physical address to DMA to/from */
desc->des2 = cpu_to_le32(mem_addr);
/* Update physical address for the next desc */
mem_addr += desc_len;
/* Save pointer to the last descriptor */
desc_last = desc;
}
}
/* Set first descriptor */
desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
/* Set last descriptor */
desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
IDMAC_DES0_DIC));
desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
}
wmb(); /* drain writebuffer */
}
static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
{
u32 temp;
dw_mci_translate_sglist(host, host->data, sg_len);
/* Select IDMAC interface */
temp = mci_readl(host, CTRL);
temp |= SDMMC_CTRL_USE_IDMAC;
mci_writel(host, CTRL, temp);
/* drain writebuffer */
wmb();
/* Enable the IDMAC */
temp = mci_readl(host, BMOD);
temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
mci_writel(host, BMOD, temp);
/* Start it running */
mci_writel(host, PLDMND, 1);
return 0;
}
static int dw_mci_idmac_init(struct dw_mci *host)
{
int i;
if (host->dma_64bit_address == 1) {
struct idmac_desc_64addr *p;
/* Number of descriptors in the ring buffer */
host->ring_size = host->desc_sz * PAGE_SIZE / sizeof(struct idmac_desc_64addr);
/* Forward link the descriptor list */
for (i = 0, p = host->sg_cpu; i < host->ring_size * MMC_DW_IDMAC_MULTIPLIER - 1;
i++, p++) {
p->des6 = (host->sg_dma +
(sizeof(struct idmac_desc_64addr) *
(i + 1))) & 0xffffffff;
p->des7 = (u64)(host->sg_dma +
(sizeof(struct idmac_desc_64addr) *
(i + 1))) >> 32;
/* Initialize reserved and buffer size fields to "0" */
p->des0 = 0;
p->des1 = 0;
p->des2 = 0;
p->des3 = 0;
}
/* Set the last descriptor as the end-of-ring descriptor */
p->des6 = host->sg_dma & 0xffffffff;
p->des7 = (u64)host->sg_dma >> 32;
p->des0 = IDMAC_DES0_ER;
} else {
struct idmac_desc *p;
/* Number of descriptors in the ring buffer */
host->ring_size = host->desc_sz * PAGE_SIZE / sizeof(struct idmac_desc);
/* Forward link the descriptor list */
for (i = 0, p = host->sg_cpu;
i < host->ring_size - 1;
i++, p++) {
p->des3 = cpu_to_le32(host->sg_dma +
(sizeof(struct idmac_desc) * (i + 1)));
p->des0 = 0;
p->des1 = 0;
}
/* Set the last descriptor as the end-of-ring descriptor */
p->des3 = cpu_to_le32(host->sg_dma);
p->des0 = cpu_to_le32(IDMAC_DES0_ER);
}
dw_mci_idmac_reset(host);
if (host->dma_64bit_address == 1) {
/* Mask out interrupts - get Tx & Rx complete only */
mci_writel(host, IDSTS64, IDMAC_INT_CLR);
mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
/* Set the descriptor base address */
mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
} else {
/* Mask out interrupts - get Tx & Rx complete only */
mci_writel(host, IDSTS, IDMAC_INT_CLR);
mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
/* Set the descriptor base address */
mci_writel(host, DBADDR, host->sg_dma);
}
return 0;
}
static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
.init = dw_mci_idmac_init,
.start = dw_mci_idmac_start_dma,
.stop = dw_mci_idmac_stop_dma,
.reset = dw_mci_idma_reset_dma,
.complete = dw_mci_dmac_complete_dma,
.cleanup = dw_mci_dma_cleanup,
};
static void dw_mci_edmac_stop_dma(struct dw_mci *host)
{
dmaengine_terminate_all(host->dms->ch);
}
static int dw_mci_edmac_start_dma(struct dw_mci *host,
unsigned int sg_len)
{
struct dma_slave_config cfg;
struct dma_async_tx_descriptor *desc = NULL;
struct scatterlist *sgl = host->data->sg;
const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
u32 sg_elems = host->data->sg_len;
u32 fifoth_val;
u32 fifo_offset = host->fifo_reg - host->regs;
int ret = 0;
/* Set external dma config: burst size, burst width */
cfg.dst_addr = host->phy_regs + fifo_offset;
cfg.src_addr = cfg.dst_addr;
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
/* Match burst msize with external dma config */
fifoth_val = mci_readl(host, FIFOTH);
cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
cfg.src_maxburst = cfg.dst_maxburst;
if (host->data->flags & MMC_DATA_WRITE)
cfg.direction = DMA_MEM_TO_DEV;
else
cfg.direction = DMA_DEV_TO_MEM;
ret = dmaengine_slave_config(host->dms->ch, &cfg);
if (ret) {
dev_err(host->dev, "Failed to config edmac.\n");
return -EBUSY;
}
desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
sg_len, cfg.direction,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc) {
dev_err(host->dev, "Can't prepare slave sg.\n");
return -EBUSY;
}
/* Set dw_mci_dmac_complete_dma as callback */
desc->callback = dw_mci_dmac_complete_dma;
desc->callback_param = (void *)host;
dmaengine_submit(desc);
/* Flush cache before write */
if (host->data->flags & MMC_DATA_WRITE)
dma_sync_sg_for_device(mmc_dev(host->cur_slot->mmc), sgl,
sg_elems, DMA_TO_DEVICE);
dma_async_issue_pending(host->dms->ch);
return 0;
}
static int dw_mci_edmac_init(struct dw_mci *host)
{
/* Request external dma channel */
host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
if (!host->dms)
return -ENOMEM;
host->dms->ch = dma_request_slave_channel(host->dev, "rx-tx");
if (!host->dms->ch) {
dev_err(host->dev, "Failed to get external DMA channel.\n");
kfree(host->dms);
host->dms = NULL;
return -ENXIO;
}
return 0;
}
static void dw_mci_edmac_exit(struct dw_mci *host)
{
if (host->dms) {
if (host->dms->ch) {
dma_release_channel(host->dms->ch);
host->dms->ch = NULL;
}
kfree(host->dms);
host->dms = NULL;
}
}
static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
.init = dw_mci_edmac_init,
.exit = dw_mci_edmac_exit,
.start = dw_mci_edmac_start_dma,
.stop = dw_mci_edmac_stop_dma,
.complete = dw_mci_dmac_complete_dma,
.cleanup = dw_mci_dma_cleanup,
};
static int dw_mci_pre_dma_transfer(struct dw_mci *host,
struct mmc_data *data,
bool next)
{
struct scatterlist *sg;
struct dw_mci_slot *slot = host->cur_slot;
struct mmc_card *card = slot->mmc->card;
unsigned int i, sg_len;
unsigned int align_mask = ((host->data_shift == 3) ? 8 : 4) - 1;
if (!next && data->host_cookie)
return data->host_cookie;
/*
* We don't do DMA on "complex" transfers, i.e. with
* non-word-aligned buffers or lengths. Also, we don't bother
* with all the DMA setup overhead for short transfers.
*/
if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
return -EINVAL;
if (data->blksz & align_mask)
return -EINVAL;
for_each_sg(data->sg, sg, data->sg_len, i) {
if (sg->offset & align_mask || sg->length & align_mask)
return -EINVAL;
}
if (card && mmc_card_sdio(card)) {
unsigned int rxwmark_val = 0, txwmark_val = 0, msize_val = 0;
if (data->blksz >= (4 * (1 << host->data_shift))) {
msize_val = 1;
rxwmark_val = 3;
txwmark_val = 4;
} else {
msize_val = 0;
rxwmark_val = 1;
txwmark_val = host->fifo_depth / 2;
}
host->fifoth_val = ((msize_val << 28) | (rxwmark_val << 16) |
(txwmark_val << 0));
dev_dbg(host->dev,
"data->blksz: %d data->blocks %d Transfer Size %d "
"msize_val : %d, rxwmark_val : %d host->fifoth_val: 0x%08x\n",
data->blksz, data->blocks, (data->blksz * data->blocks),
msize_val, rxwmark_val, host->fifoth_val);
mci_writel(host, FIFOTH, host->fifoth_val);
if (mmc_card_uhs(card)
&& card->host->caps & MMC_CAP_UHS_SDR104
&& data->flags & MMC_DATA_READ)
mci_writel(host, CDTHRCTL, data->blksz << 16 | 1);
}
sg_len = dma_map_sg(host->dev,
data->sg,
data->sg_len,
dw_mci_get_dma_dir(data));
if (sg_len == 0)
return -EINVAL;
if (next)
data->host_cookie = sg_len;
return sg_len;
}
static void dw_mci_pre_req(struct mmc_host *mmc,
struct mmc_request *mrq,
bool is_first_req)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct mmc_data *data = mrq->data;
if (!slot->host->use_dma || !data)
return;
if (data->host_cookie) {
data->host_cookie = 0;
return;
}
if (dw_mci_pre_dma_transfer(slot->host, mrq->data, 1) < 0)
data->host_cookie = 0;
}
static void dw_mci_post_req(struct mmc_host *mmc,
struct mmc_request *mrq,
int err)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct mmc_data *data = mrq->data;
if (!slot->host->use_dma || !data)
return;
if (data->host_cookie)
dma_unmap_sg(slot->host->dev,
data->sg,
data->sg_len,
dw_mci_get_dma_dir(data));
data->host_cookie = 0;
}
static void dw_mci_ctrl_rd_thld(struct dw_mci *host, struct mmc_data *data)
{
unsigned int blksz = data->blksz;
u32 blksz_depth, fifo_depth;
u16 thld_size;
WARN_ON(!(data->flags & MMC_DATA_READ));
/*
* CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
* in the FIFO region, so we really shouldn't access it).
*/
if (host->verid < DW_MMC_240A)
return;
if (host->timing != MMC_TIMING_MMC_HS200 &&
host->timing != MMC_TIMING_MMC_HS400 &&
host->timing != MMC_TIMING_UHS_SDR104)
goto disable;
blksz_depth = blksz / (1 << host->data_shift);
fifo_depth = host->fifo_depth;
if (blksz_depth > fifo_depth)
goto disable;
/*
* If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
* If (blksz_depth) < (fifo_depth >> 1), should be thld_size = blksz
* Currently just choose blksz.
*/
thld_size = blksz;
mci_writel(host, CDTHRCTL, SDMMC_SET_RD_THLD(thld_size, 1));
return;
disable:
mci_writel(host, CDTHRCTL, SDMMC_SET_RD_THLD(0, 0));
}
inline u32 dw_mci_calc_hto_timeout(struct dw_mci *host)
{
struct dw_mci_slot *slot = host->cur_slot;
u32 target_timeout, count;
u32 max_time, max_ext_time;
u32 host_clock = host->cclk_in;
u32 tmout_value;
int ext_cnt = 0;
if (!host->pdata->hto_timeout)
return 0xFFFFFFFF; /* timeout maximum */
target_timeout = host->pdata->data_timeout;
if (host->timing == MMC_TIMING_MMC_HS400 ||
host->timing == MMC_TIMING_MMC_HS400_ES) {
if (host->pdata->quirks & DW_MCI_QUIRK_ENABLE_ULP)
host_clock *= 2;
}
max_time = SDMMC_DATA_TMOUT_MAX_CNT * SDMMC_DATA_TMOUT_CRT / (host_clock / 1000);
if (target_timeout < max_time) {
tmout_value = mci_readl(host, TMOUT);
goto pass;
} else {
max_ext_time = SDMMC_DATA_TMOUT_MAX_EXT_CNT / (host_clock / 1000);
ext_cnt = target_timeout / max_ext_time;
}
target_timeout = host->pdata->hto_timeout;
/* use clkout for sysnopsys divider */
if (host->timing == MMC_TIMING_MMC_HS400 ||
host->timing == MMC_TIMING_MMC_HS400_ES ||
(host->timing == MMC_TIMING_MMC_DDR52 &&
slot->ctype == SDMMC_CTYPE_8BIT))
host_clock /= 2;
/* Calculating Timeout value */
count = target_timeout * (host_clock / 1000);
if (count > 0xFFFFFF)
count = 0xFFFFFF;
tmout_value = (count << SDMMC_HTO_TMOUT_SHIFT) | SDMMC_RESP_TMOUT;
tmout_value &= ~(0x7 << SDMMC_DATA_TMOUT_EXT_SHIFT);
tmout_value |= ((ext_cnt + 1) << SDMMC_DATA_TMOUT_EXT_SHIFT);
pass:
/* Set return value */
return tmout_value;
}
static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
{
unsigned long irqflags;
int sg_len;
u32 temp;
host->using_dma = 0;
/* If we don't have a channel, we can't do DMA */
if (!host->use_dma)
return -ENODEV;
if (host->use_dma && host->dma_ops->init && host->dma_ops->reset) {
host->dma_ops->init(host);
host->dma_ops->reset(host);
}
sg_len = dw_mci_pre_dma_transfer(host, data, 0);
if (sg_len < 0) {
host->dma_ops->stop(host);
dw_mci_set_timeout(host, dw_mci_calc_hto_timeout(host));
return sg_len;
}
host->using_dma = 1;
if (host->use_dma == TRANS_MODE_IDMAC)
dev_vdbg(host->dev,
"sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
(unsigned long)host->sg_cpu,
(unsigned long)host->sg_dma,
sg_len);
/* Enable the DMA interface */
temp = mci_readl(host, CTRL);
temp |= SDMMC_CTRL_DMA_ENABLE;
mci_writel(host, CTRL, temp);
/* Disable RX/TX IRQs, let DMA handle it */
spin_lock_irqsave(&host->irq_lock, irqflags);
mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
temp = mci_readl(host, INTMASK);
temp &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
mci_writel(host, INTMASK, temp);
spin_unlock_irqrestore(&host->irq_lock, irqflags);
if (host->dma_ops->start(host, sg_len)) {
/* We can't do DMA */
dev_err(host->dev, "%s: failed to start DMA.\n", __func__);
return -ENODEV;
}
return 0;
}
static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
{
unsigned long irqflags;
int flags = SG_MITER_ATOMIC;
u32 temp;
data->error = -EINPROGRESS;
WARN_ON(host->data);
host->sg = NULL;
host->data = data;
if (data->flags & MMC_DATA_READ) {
host->dir_status = DW_MCI_RECV_STATUS;
dw_mci_ctrl_rd_thld(host, data);
} else {
host->dir_status = DW_MCI_SEND_STATUS;
}
if (dw_mci_submit_data_dma(host, data)) {
if (SDMMC_GET_FCNT(mci_readl(host, STATUS)))
dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET);
if (host->data->flags & MMC_DATA_READ)
flags |= SG_MITER_TO_SG;
else
flags |= SG_MITER_FROM_SG;
sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
host->sg = data->sg;
host->part_buf_start = 0;
host->part_buf_count = 0;
mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
spin_lock_irqsave(&host->irq_lock, irqflags);
temp = mci_readl(host, INTMASK);
temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
mci_writel(host, INTMASK, temp);
spin_unlock_irqrestore(&host->irq_lock, irqflags);
temp = mci_readl(host, CTRL);
temp &= ~SDMMC_CTRL_DMA_ENABLE;
mci_writel(host, CTRL, temp);
/*
* Use the initial fifoth_val for PIO mode.
* If next issued data may be transfered by DMA mode,
* prev_blksz should be invalidated.
*/
mci_writel(host, FIFOTH, host->fifoth_val);
host->prev_blksz = 0;
} else {
/*
* Keep the current block size.
* It will be used to decide whether to update
* fifoth register next time.
*/
host->prev_blksz = data->blksz;
}
}
static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
{
struct dw_mci *host = slot->host;
unsigned long timeout = jiffies + msecs_to_jiffies(10);
unsigned int cmd_status = 0;
int try = 50;
mci_writel(host, CMDARG, arg);
wmb(); /* drain writebuffer */
mci_writel(host, CMD, SDMMC_CMD_START | cmd);
do {
while (time_before(jiffies, timeout)) {
cmd_status = mci_readl(host, CMD);
if (!(cmd_status & SDMMC_CMD_START))
return;
}
dw_mci_ctrl_reset(host, SDMMC_CTRL_RESET);
mci_writel(host, CMD, SDMMC_CMD_START | cmd);
timeout = jiffies + msecs_to_jiffies(10);
} while (--try);
dev_err(&slot->mmc->class_dev,
"Timeout sending command (cmd %#x arg %#x status %#x)\n",
cmd, arg, cmd_status);
}
static bool dw_mci_wait_data_busy(struct dw_mci *host, struct mmc_request *mrq)
{
u32 status;
unsigned long timeout = jiffies + msecs_to_jiffies(DW_MCI_BUSY_WAIT_TIMEOUT);
struct dw_mci_slot *slot = host->cur_slot;
int try = 2;
u32 clkena;
bool ret = false;
do {
do {
status = mci_readl(host, STATUS);
if (!(status & SDMMC_STATUS_BUSY)) {
ret = true;
goto out;
}
usleep_range(10, 20);
} while (time_before(jiffies, timeout));
if (!(slot->mmc->card && mmc_card_cmdq(slot->mmc->card) &&
!mmc_host_halt(slot->mmc))) {
/* card is checked every 1s by CMD13 at least */
if (mrq->cmd->opcode == MMC_SEND_STATUS)
return true;
dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET);
dw_mci_ctrl_reset(host, SDMMC_CTRL_RESET);
/* After CTRL Reset, Should be needed clk val to CIU */
/* Disable low power mode */
clkena = mci_readl(host, CLKENA);
clkena &= ~((SDMMC_CLKEN_LOW_PWR) << slot->id);
mci_writel(host, CLKENA, clkena);
mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
SDMMC_CMD_PRV_DAT_WAIT, 0);
}
timeout = jiffies + msecs_to_jiffies(DW_MCI_BUSY_WAIT_TIMEOUT);
} while (--try);
out:
if (slot) {
if (ret == false)
dev_err(host->dev, "Data[0]: data is busy\n");
if (!(slot->mmc->card && mmc_card_cmdq(slot->mmc->card) &&
!mmc_host_halt(slot->mmc))) {
/* enable clock */
mci_writel(host, CLKENA, ((SDMMC_CLKEN_ENABLE |
SDMMC_CLKEN_LOW_PWR) << slot->id));
/* inform CIU */
mci_send_cmd(slot,
SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT, 0);
}
}
return ret;
}
static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
{
struct dw_mci *host = slot->host;
u32 clock = slot->clock;
u32 div;
u32 clk_en_a;
u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
if (!clock) {
mci_writel(host, CLKENA, 0);
mci_send_cmd(slot, sdmmc_cmd_bits, 0);
} else if (clock != host->current_speed || force_clkinit) {
div = host->bus_hz / clock;
if (host->bus_hz % clock && host->bus_hz > clock)
/*
* move the + 1 after the divide to prevent
* over-clocking the card.
*/
div += 1;
div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
if (clock != slot->__clk_old || force_clkinit)
dev_info(&slot->mmc->class_dev,
"Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
slot->id, host->bus_hz, clock,
div ? ((host->bus_hz / div) >> 1) :
host->bus_hz, div);
/* disable clock */
mci_writel(host, CLKENA, 0);
mci_writel(host, CLKSRC, 0);
/* inform CIU */
dw_mci_update_clock(slot);
/* set clock to desired speed */
mci_writel(host, CLKDIV, div);
/* inform CIU */
dw_mci_update_clock(slot);
/* enable clock; only low power if no SDIO */
clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
if (host->current_speed <= 400 * 1000)
clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
mci_writel(host, CLKENA, clk_en_a);
/* inform CIU */
dw_mci_update_clock(slot);
/* keep the last clock value that was requested from core */
slot->__clk_old = clock;
}
host->current_speed = clock;
/* Set the current slot bus width */
mci_writel(host, CTYPE, (slot->ctype << slot->id));
}
inline u32 dw_mci_calc_timeout(struct dw_mci *host)
{
u32 target_timeout;
u32 count;
u32 max_time;
u32 max_ext_time;
int ext_cnt = 0;
u32 host_clock = host->cclk_in;
if (!host->pdata->data_timeout)
return 0xFFFFFFFF; /* timeout maximum */
target_timeout = host->pdata->data_timeout;
if (host->timing == MMC_TIMING_MMC_HS400 ||
host->timing == MMC_TIMING_MMC_HS400_ES) {
if (host->pdata->quirks & DW_MCI_QUIRK_ENABLE_ULP)
host_clock *= 2;
}
max_time = SDMMC_DATA_TMOUT_MAX_CNT * SDMMC_DATA_TMOUT_CRT / (host_clock / 1000);
if (target_timeout > max_time) {
max_ext_time = SDMMC_DATA_TMOUT_MAX_EXT_CNT / (host_clock / 1000);
ext_cnt = target_timeout / max_ext_time;
target_timeout -= (max_ext_time * ext_cnt);
}
count = (target_timeout * (host_clock / 1000)) / SDMMC_DATA_TMOUT_CRT;
/* Set return value */
return ((count << SDMMC_DATA_TMOUT_SHIFT)
| ((ext_cnt + SDMMC_DATA_TMOUT_EXT) << SDMMC_DATA_TMOUT_EXT_SHIFT)
| SDMMC_RESP_TMOUT);
}
static void __dw_mci_start_request(struct dw_mci *host,
struct dw_mci_slot *slot,
struct mmc_command *cmd)
{
struct mmc_request *mrq;
struct mmc_data *data;
u32 cmdflags;
mrq = slot->mrq;
if (mrq->cmd->opcode == MMC_SEND_TUNING_BLOCK ||
mrq->cmd->opcode == MMC_SEND_TUNING_BLOCK_HS200 ||
mrq->cmd->opcode == SD_APP_SEND_SCR)
mod_timer(&host->timer, jiffies + msecs_to_jiffies(500));
else if (host->pdata->sw_timeout)
mod_timer(&host->timer,
jiffies + msecs_to_jiffies(host->pdata->sw_timeout));
else
mod_timer(&host->timer, jiffies + msecs_to_jiffies(10000));
host->cur_slot = slot;
host->mrq = mrq;
host->pending_events = 0;
host->completed_events = 0;
host->cmd_status = 0;
host->data_status = 0;
host->dir_status = 0;
data = cmd->data;
if (data) {
dw_mci_set_timeout(host, dw_mci_calc_timeout(host));
mci_writel(host, BYTCNT, data->blksz*data->blocks);
mci_writel(host, BLKSIZ, data->blksz);
host->transferred_cnt += data->blksz * data->blocks;
}
cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
/* this is the first command, send the initialization clock */
if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
cmdflags |= SDMMC_CMD_INIT;
if (data) {
dw_mci_submit_data(host, data);
wmb(); /* drain writebuffer */
}
dw_mci_debug_req_log(host, mrq, STATE_REQ_START, 0);
dw_mci_start_command(host, cmd, cmdflags);
if (cmd->opcode == SD_SWITCH_VOLTAGE) {
unsigned long irqflags;
/*
* Databook says to fail after 2ms w/ no response, but evidence
* shows that sometimes the cmd11 interrupt takes over 130ms.
* We'll set to 500ms, plus an extra jiffy just in case jiffies
* is just about to roll over.
*
* We do this whole thing under spinlock and only if the
* command hasn't already completed (indicating the the irq
* already ran so we don't want the timeout).
*/
spin_lock_irqsave(&host->irq_lock, irqflags);
if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
mod_timer(&host->cmd11_timer,
jiffies + msecs_to_jiffies(500) + 1);
spin_unlock_irqrestore(&host->irq_lock, irqflags);
}
if (mrq->stop)
host->stop_cmdr = dw_mci_prepare_command(slot->mmc, mrq->stop);
else
host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
}
static void dw_mci_start_request(struct dw_mci *host,
struct dw_mci_slot *slot)
{
struct mmc_request *mrq = slot->mrq;
struct mmc_command *cmd;
host->req_state = DW_MMC_REQ_BUSY;
cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
__dw_mci_start_request(host, slot, cmd);
}
/* must be called with host->lock held */
static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
struct mmc_request *mrq)
{
dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
host->state);
slot->mrq = mrq;
if (host->state == STATE_WAITING_CMD11_DONE) {
dev_warn(&slot->mmc->class_dev,
"Voltage change didn't complete\n");
/*
* this case isn't expected to happen, so we can
* either crash here or just try to continue on
* in the closest possible state
*/
host->state = STATE_IDLE;
}
if (host->state == STATE_IDLE) {
host->state = STATE_SENDING_CMD;
dw_mci_start_request(host, slot);
} else {
list_add_tail(&slot->queue_node, &host->queue);
}
}
static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
WARN_ON(slot->mrq);
/*
* The check for card presence and queueing of the request must be
* atomic, otherwise the card could be removed in between and the
* request wouldn't fail until another card was inserted.
*/
if (!dw_mci_stop_abort_cmd(mrq->cmd)) {
if (!dw_mci_wait_data_busy(host, mrq)) {
mrq->cmd->error = -ENOTRECOVERABLE;
mmc_request_done(mmc, mrq);
return;
}
}
if (host->qos_cntrl == true)
dw_mci_qos_get(host);
spin_lock_bh(&host->lock);
if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
spin_unlock_bh(&host->lock);
mrq->cmd->error = -ENOMEDIUM;
if (host->qos_cntrl == true)
dw_mci_qos_put(host);
mmc_request_done(mmc, mrq);
return;
}
/* IDLE IP for SICD */
#ifdef CONFIG_CPU_IDLE
exynos_update_ip_idle_status(slot->host->idle_ip_index, 0);
#endif
dw_mci_queue_request(host, slot, mrq);
spin_unlock_bh(&host->lock);
}
static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
struct dw_mci *host = slot->host;
u32 regs;
int ret;
switch (ios->bus_width) {
case MMC_BUS_WIDTH_4:
slot->ctype = SDMMC_CTYPE_4BIT;
break;
case MMC_BUS_WIDTH_8:
slot->ctype = SDMMC_CTYPE_8BIT;
break;
default:
/* set default 1 bit mode */
slot->ctype = SDMMC_CTYPE_1BIT;
}
regs = mci_readl(slot->host, UHS_REG);
/* DDR mode set */
if (ios->timing == MMC_TIMING_MMC_DDR52 ||
ios->timing == MMC_TIMING_UHS_DDR50 ||
ios->timing == MMC_TIMING_MMC_HS400 ||
ios->timing == MMC_TIMING_MMC_HS400_ES)
regs |= ((0x1 << slot->id) << 16);
else
regs &= ~((0x1 << slot->id) << 16);
if (slot->host->pdata->caps &
(MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 |
MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR104 |
MMC_CAP_UHS_DDR50))
regs |= (0x1 << slot->id);
mci_writel(slot->host, UHS_REG, regs);
slot->host->timing = ios->timing;
/*
* Use mirror of ios->clock to prevent race with mmc
* core ios update when finding the minimum.
*/
slot->clock = ios->clock;
if (drv_data && drv_data->set_ios)
drv_data->set_ios(slot->host, ios);
switch (ios->power_mode) {
case MMC_POWER_UP:
if (!(slot->host->quirks & DW_MMC_QUIRK_FIXED_VOLTAGE)) {
if (!IS_ERR(mmc->supply.vmmc)) {
ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
ios->vdd);
if (ret) {
dev_err(slot->host->dev,
"failed to enable vmmc regulator\n");
/*return, if failed turn on vmmc*/
return;
}
}
}
set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
regs = mci_readl(slot->host, PWREN);
regs |= (1 << slot->id);
mci_writel(slot->host, PWREN, regs);
break;
case MMC_POWER_ON:
if (!(slot->host->quirks & DW_MMC_QUIRK_FIXED_VOLTAGE)) {
if (!slot->host->vqmmc_enabled) {
if (!IS_ERR(mmc->supply.vqmmc)) {
ret = regulator_enable(mmc->supply.vqmmc);
if (ret < 0)
dev_err(slot->host->dev,
"failed to enable vqmmc\n");
else
slot->host->vqmmc_enabled = true;
} else {
/* Keep track so we don't reset again */
slot->host->vqmmc_enabled = true;
}
/* Reset our state machine after powering on */
dw_mci_ctrl_reset(slot->host,
SDMMC_CTRL_ALL_RESET_FLAGS);
}
}
/* Adjust clock / bus width after power is up */
dw_mci_setup_bus(slot, false);
break;
case MMC_POWER_OFF:
if (!(slot->host->quirks & DW_MMC_QUIRK_FIXED_VOLTAGE)) {
/* Turn clock off before power goes down */
dw_mci_setup_bus(slot, false);
if (!IS_ERR(mmc->supply.vmmc))
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
regulator_disable(mmc->supply.vqmmc);
slot->host->vqmmc_enabled = false;
regs = mci_readl(slot->host, PWREN);
regs &= ~(1 << slot->id);
mci_writel(slot->host, PWREN, regs);
if (host->quirks & DW_MCI_QUIRK_HWACG_CTRL) {
if (drv_data && drv_data->hwacg_control)
drv_data->hwacg_control(host, HWACG_Q_ACTIVE_EN, LEGACY_MODE);
}
}
break;
default:
break;
}
if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
slot->host->state = STATE_IDLE;
}
static int dw_mci_card_busy(struct mmc_host *mmc)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
u32 status;
/*
* Check the busy bit which is low when DAT[3:0]
* (the data lines) are 0000
*/
status = mci_readl(slot->host, STATUS);
return !!(status & SDMMC_STATUS_BUSY);
}
static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
unsigned long timeout = jiffies + msecs_to_jiffies(10);
const struct dw_mci_drv_data *drv_data = host->drv_data;
u32 uhs;
u32 v18 = SDMMC_UHS_18V << slot->id;
int min_uv, max_uv;
int ret = 0, retry = 10;
u32 status;
if (drv_data && drv_data->switch_voltage)
return drv_data->switch_voltage(mmc, ios);
/*
* Program the voltage. Note that some instances of dw_mmc may use
* the UHS_REG for this. For other instances (like exynos) the UHS_REG
* does no harm but you need to set the regulator directly. Try both.
*/
uhs = mci_readl(host, UHS_REG);
if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
min_uv = 2800000;
max_uv = 2800000;
uhs &= ~v18;
} else {
min_uv = 1800000;
max_uv = 1800000;
uhs |= v18;
}
if (!(host->quirks & DW_MMC_QUIRK_FIXED_VOLTAGE)) {
if (!IS_ERR(mmc->supply.vqmmc)) {
if (ios->signal_voltage != MMC_SIGNAL_VOLTAGE_330) {
dw_mci_ctrl_reset(host, SDMMC_CTRL_RESET);
/* Check For DATA busy */
do {
while (time_before(jiffies, timeout)) {
status = mci_readl(host, STATUS);
if (!(status & SDMMC_STATUS_BUSY))
goto out;
}
dw_mci_ctrl_reset(host, SDMMC_CTRL_RESET);
timeout = jiffies + msecs_to_jiffies(10);
} while (--retry);
}
out:
/* waiting for stable */
msleep(10);
ret = mmc_regulator_set_vqmmc(mmc, ios);
if (ret) {
dev_err(&mmc->class_dev,
"Regulator set error %d - %s V\n",
ret, uhs & v18 ? "1.8" : "3.3");
return ret;
}
}
}
mci_writel(host, UHS_REG, uhs);
del_timer(&host->cmd11_timer);
return 0;
}
static int dw_mci_get_ro(struct mmc_host *mmc)
{
int read_only;
struct dw_mci_slot *slot = mmc_priv(mmc);
int gpio_ro = mmc_gpio_get_ro(mmc);
/* Use platform get_ro function, else try on board write protect */
if ((slot->mmc->caps2 & MMC_CAP2_NO_WRITE_PROTECT) ||
(slot->host->quirks & DW_MCI_QUIRK_NO_WRITE_PROTECT))
read_only = 0;
else if (!IS_ERR_VALUE(gpio_ro))
read_only = gpio_ro;
else
read_only =
mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
dev_dbg(&mmc->class_dev, "card is %s\n",
read_only ? "read-only" : "read-write");
return read_only;
}
static int dw_mci_get_cd(struct mmc_host *mmc)
{
int present;
int temp;
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci_board *brd = slot->host->pdata;
struct dw_mci *host = slot->host;
int gpio_cd = mmc_gpio_get_cd(mmc);
const struct dw_mci_drv_data *drv_data = host->drv_data;
/* Use platform get_cd function, else try onboard card detect */
if ((brd->quirks & DW_MCI_QUIRK_BROKEN_CARD_DETECTION) ||
(mmc->caps & MMC_CAP_NONREMOVABLE))
present = 1;
else if (!IS_ERR_VALUE(gpio_cd))
present = gpio_cd;
else
present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
== 0 ? 1 : 0;
if (drv_data && drv_data->misc_control) {
temp = drv_data->misc_control(host,
CTRL_CHECK_CD, NULL);
if (temp != -1)
present = temp;
}
spin_lock_bh(&host->lock);
if (present) {
set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
dev_dbg(&mmc->class_dev, "card is present\n");
} else {
clear_bit(DW_MMC_CARD_PRESENT, &slot->flags);
dev_dbg(&mmc->class_dev, "card is not present\n");
}
spin_unlock_bh(&host->lock);
return present;
}
#if 0
/*
* Disable lower power mode.
*
* Low power mode will stop the card clock when idle. According to the
* description of the CLKENA register we should disable low power mode
* for SDIO cards if we need SDIO interrupts to work.
*
* This function is fast if low power mode is already disabled.
*/
static void dw_mci_disable_low_power(struct dw_mci_slot *slot)
{
struct dw_mci *host = slot->host;
u32 clk_en_a;
const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
clk_en_a = mci_readl(host, CLKENA);
if (clk_en_a & clken_low_pwr) {
mci_writel(host, CLKENA, clk_en_a & ~clken_low_pwr);
dw_mci_update_clock(slot);
}
}
#endif
static void dw_mci_init_card(struct mmc_host *mmc, struct mmc_card *card)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
/*
* Low power mode will stop the card clock when idle. According to the
* description of the CLKENA register we should disable low power mode
* for SDIO cards if we need SDIO interrupts to work.
*/
if (mmc->caps & MMC_CAP_SDIO_IRQ) {
const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
u32 clk_en_a_old;
u32 clk_en_a;
clk_en_a_old = mci_readl(host, CLKENA);
if (card->type == MMC_TYPE_SDIO ||
card->type == MMC_TYPE_SD_COMBO) {
set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
clk_en_a = clk_en_a_old & ~clken_low_pwr;
} else {
clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
clk_en_a = clk_en_a_old | clken_low_pwr;
}
if (clk_en_a != clk_en_a_old) {
mci_writel(host, CLKENA, clk_en_a);
mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
SDMMC_CMD_PRV_DAT_WAIT, 0);
}
}
}
static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
unsigned long irqflags;
u32 int_mask;
spin_lock_irqsave(&host->irq_lock, irqflags);
/* Enable/disable Slot Specific SDIO interrupt */
int_mask = mci_readl(host, INTMASK);
if (enb)
int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
else
int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
mci_writel(host, INTMASK, int_mask);
spin_unlock_irqrestore(&host->irq_lock, irqflags);
}
static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
const struct dw_mci_drv_data *drv_data = host->drv_data;
struct dw_mci_tuning_data tuning_data;
int err = -ENOSYS;
if (opcode == MMC_SEND_TUNING_BLOCK_HS200) {
if (mmc->ios.bus_width == MMC_BUS_WIDTH_8) {
tuning_data.blk_pattern = tuning_blk_pattern_8bit;
tuning_data.blksz = sizeof(tuning_blk_pattern_8bit);
} else if (mmc->ios.bus_width == MMC_BUS_WIDTH_4) {
tuning_data.blk_pattern = tuning_blk_pattern_4bit;
tuning_data.blksz = sizeof(tuning_blk_pattern_4bit);
} else {
return -EINVAL;
}
} else if (opcode == MMC_SEND_TUNING_BLOCK) {
tuning_data.blk_pattern = tuning_blk_pattern_4bit;
tuning_data.blksz = sizeof(tuning_blk_pattern_4bit);
} else {
dev_err(host->dev,
"Undefined command(%d) for tuning\n", opcode);
return -EINVAL;
}
if (drv_data && drv_data->execute_tuning)
err = drv_data->execute_tuning(slot, opcode, &tuning_data);
return err;
}
static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
struct mmc_ios *ios)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
const struct dw_mci_drv_data *drv_data = host->drv_data;
if (drv_data && drv_data->prepare_hs400_tuning)
return drv_data->prepare_hs400_tuning(host, ios);
return 0;
}
static const struct mmc_host_ops dw_mci_ops = {
.request = dw_mci_request,
.pre_req = dw_mci_pre_req,
.post_req = dw_mci_post_req,
.set_ios = dw_mci_set_ios,
.get_ro = dw_mci_get_ro,
.get_cd = dw_mci_get_cd,
.enable_sdio_irq = dw_mci_enable_sdio_irq,
.execute_tuning = dw_mci_execute_tuning,
.card_busy = dw_mci_card_busy,
.start_signal_voltage_switch = dw_mci_switch_voltage,
.init_card = dw_mci_init_card,
.prepare_hs400_tuning = dw_mci_prepare_hs400_tuning,
};
static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
__releases(&host->lock)
__acquires(&host->lock)
{
struct dw_mci_slot *slot;
struct mmc_host *prev_mmc = host->cur_slot->mmc;
WARN_ON(host->cmd || host->data);
del_timer(&host->timer);
host->req_state = DW_MMC_REQ_IDLE;
dw_mci_debug_req_log(host, mrq, STATE_REQ_END, 0);
host->cur_slot->mrq = NULL;
host->mrq = NULL;
if (!list_empty(&host->queue)) {
slot = list_entry(host->queue.next,
struct dw_mci_slot, queue_node);
list_del(&slot->queue_node);
dev_vdbg(host->dev, "list not empty: %s is next\n",
mmc_hostname(slot->mmc));
host->state = STATE_SENDING_CMD;
dw_mci_start_request(host, slot);
} else {
dev_vdbg(host->dev, "list empty\n");
if (host->state == STATE_SENDING_CMD11)
host->state = STATE_WAITING_CMD11_DONE;
else
host->state = STATE_IDLE;
}
spin_unlock(&host->lock);
if (host->qos_cntrl == true)
dw_mci_qos_put(host);
mmc_request_done(prev_mmc, mrq);
spin_lock(&host->lock);
#ifdef CONFIG_CPU_IDLE
exynos_update_ip_idle_status(host->idle_ip_index, 1);
#endif
}
static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
{
u32 status = host->cmd_status;
host->cmd_status = 0;
/* Read the response from the card (up to 16 bytes) */
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136) {
cmd->resp[3] = mci_readl(host, RESP0);
cmd->resp[2] = mci_readl(host, RESP1);
cmd->resp[1] = mci_readl(host, RESP2);
cmd->resp[0] = mci_readl(host, RESP3);
} else {
cmd->resp[0] = mci_readl(host, RESP0);
cmd->resp[1] = 0;
cmd->resp[2] = 0;
cmd->resp[3] = 0;
}
}
if (status & (SDMMC_INT_RTO | SDMMC_INT_RESP_ERR)) {
cmd->resp[0] = 0;
cmd->resp[1] = 0;
cmd->resp[2] = 0;
cmd->resp[3] = 0;
if (status & SDMMC_INT_RTO)
cmd->error = -ETIMEDOUT;
else if (status & SDMMC_INT_RESP_ERR)
cmd->error = -EIO;
} else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
cmd->error = -EILSEQ;
else
cmd->error = 0;
if (cmd->error) {
/* newer ip versions need a delay between retries */
if (host->quirks & DW_MCI_QUIRK_RETRY_DELAY)
mdelay(20);
}
return cmd->error;
}
static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
{
u32 status = host->data_status;
if (status & DW_MCI_DATA_ERROR_FLAGS) {
if (status & SDMMC_INT_DRTO) {
data->error = -ETIMEDOUT;
} else if (status & SDMMC_INT_DCRC) {
data->error = -EILSEQ;
} else if (status & SDMMC_INT_EBE) {
if (host->dir_status ==
DW_MCI_SEND_STATUS) {
/*
* No data CRC status was returned.
* The number of bytes transferred
* will be exaggerated in PIO mode.
*/
data->bytes_xfered = 0;
data->error = -ETIMEDOUT;
dev_err(host->dev, ": write no crc error, data busy : %d\n",
((mci_readl(host, STATUS) >> 9) & 0x1));
} else if (host->dir_status ==
DW_MCI_RECV_STATUS) {
data->error = -EIO;
}
} else {
/* SDMMC_INT_SBE is included */
data->error = -EIO;
}
dev_err(host->dev, "data error, status 0x%08x %d\n", status,
host->dir_status);
/*
* After an error, there may be data lingering
* in the FIFO
*/
sg_miter_stop(&host->sg_miter);
host->sg = NULL;
dw_mci_fifo_reset(host->dev, host);
dw_mci_ciu_reset(host->dev, host);
} else {
data->bytes_xfered = data->blocks * data->blksz;
data->error = 0;
}
return data->error;
}
static void dw_mci_set_drto(struct dw_mci *host)
{
unsigned int drto_clks;
unsigned int drto_ms;
drto_clks = mci_readl(host, TMOUT) >> 8;
drto_ms = DIV_ROUND_UP(drto_clks, host->bus_hz / 1000);
/* add a bit spare time */
drto_ms += 10;
mod_timer(&host->dto_timer, jiffies + msecs_to_jiffies(drto_ms));
}
static void dw_mci_tasklet_func(unsigned long priv)
{
struct dw_mci *host = (struct dw_mci *)priv;
struct mmc_data *data;
struct mmc_command *cmd;
struct mmc_request *mrq;
enum dw_mci_state state;
enum dw_mci_state prev_state;
unsigned int err;
spin_lock(&host->lock);
if (host->sw_timeout_chk == true)
goto unlock;
state = host->state;
data = host->data;
mrq = host->mrq;
do {
prev_state = state;
switch (state) {
case STATE_IDLE:
case STATE_WAITING_CMD11_DONE:
break;
case STATE_SENDING_CMD11:
case STATE_SENDING_CMD:
if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
&host->pending_events))
break;
cmd = host->cmd;
host->cmd = NULL;
set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
err = dw_mci_command_complete(host, cmd);
if (cmd == mrq->sbc && !err) {
prev_state = state = STATE_SENDING_CMD;
__dw_mci_start_request(host, host->cur_slot,
mrq->cmd);
goto unlock;
}
if (cmd->data && err) {
dw_mci_fifo_reset(host->dev, host);
dw_mci_stop_dma(host);
send_stop_abort(host, data);
state = STATE_SENDING_STOP;
dw_mci_debug_req_log(host,
host->mrq,
STATE_REQ_CMD_PROCESS, state);
break;
}
if (!cmd->data || err) {
if (host->sw_timeout_chk != true)
dw_mci_request_end(host, mrq);
goto unlock;
}
prev_state = state = STATE_SENDING_DATA;
dw_mci_debug_req_log(host, host->mrq,
STATE_REQ_CMD_PROCESS, state);
/* fall through */
case STATE_SENDING_DATA:
/*
* We could get a data error and never a transfer
* complete so we'd better check for it here.
*
* Note that we don't really care if we also got a
* transfer complete; stopping the DMA and sending an
* abort won't hurt.
*/
if (test_and_clear_bit(EVENT_DATA_ERROR,
&host->pending_events)) {
dw_mci_fifo_reset(host->dev, host);
dw_mci_stop_dma(host);
send_stop_abort(host, data);
state = STATE_DATA_ERROR;
dw_mci_debug_req_log(host,
host->mrq,
STATE_REQ_DATA_PROCESS, state);
break;
}
if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
&host->pending_events)) {
/*
* If all data-related interrupts don't come
* within the given time in reading data state.
*/
if ((host->quirks & DW_MCI_QUIRK_BROKEN_DTO) &&
(host->dir_status == DW_MCI_RECV_STATUS))
dw_mci_set_drto(host);
break;
}
set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
/*
* Handle an EVENT_DATA_ERROR that might have shown up
* before the transfer completed. This might not have
* been caught by the check above because the interrupt
* could have gone off between the previous check and
* the check for transfer complete.
*
* Technically this ought not be needed assuming we
* get a DATA_COMPLETE eventually (we'll notice the
* error and end the request), but it shouldn't hurt.
*
* This has the advantage of sending the stop command.
*/
if (test_and_clear_bit(EVENT_DATA_ERROR,
&host->pending_events)) {
dw_mci_fifo_reset(host->dev, host);
dw_mci_stop_dma(host);
send_stop_abort(host, data);
state = STATE_DATA_ERROR;
dw_mci_debug_req_log(host, host->mrq,
STATE_REQ_DATA_PROCESS, state);
break;
}
prev_state = state = STATE_DATA_BUSY;
dw_mci_debug_req_log(host, host->mrq,
STATE_REQ_DATA_PROCESS, state);
/* fall through */
case STATE_DATA_BUSY:
if (!test_and_clear_bit(EVENT_DATA_COMPLETE,
&host->pending_events)) {
/*
* If data error interrupt comes but data over
* interrupt doesn't come within the given time.
* in reading data state.
*/
if ((host->quirks & DW_MCI_QUIRK_BROKEN_DTO) &&
(host->dir_status == DW_MCI_RECV_STATUS))
dw_mci_set_drto(host);
break;
}
set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
err = dw_mci_data_complete(host, data);
host->data = NULL;
if (!err) {
if (!data->stop || mrq->sbc) {
if (mrq->sbc && data->stop)
data->stop->error = 0;
if (host->sw_timeout_chk != true)
dw_mci_request_end(host, mrq);
goto unlock;
}
/* stop command for open-ended transfer*/
if (data->stop)
send_stop_abort(host, data);
} else {
/*
* If we don't have a command complete now we'll
* never get one since we just reset everything;
* better end the request.
*
* If we do have a command complete we'll fall
* through to the SENDING_STOP command and
* everything will be peachy keen.
*/
if (!test_bit(EVENT_CMD_COMPLETE,
&host->pending_events)) {
host->cmd = NULL;
if (host->sw_timeout_chk != true)
dw_mci_request_end(host, mrq);
goto unlock;
}
}
/*
* If err has non-zero,
* stop-abort command has been already issued.
*/
prev_state = state = STATE_SENDING_STOP;
dw_mci_debug_req_log(host, host->mrq,
STATE_REQ_DATA_PROCESS, state);
/* fall through */
case STATE_SENDING_STOP:
if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
&host->pending_events))
break;
/* CMD error in data command */
if (mrq->cmd->error && mrq->data) {
dw_mci_stop_dma(host);
sg_miter_stop(&host->sg_miter);
host->sg = NULL;
dw_mci_fifo_reset(host->dev, host);
}
host->cmd = NULL;
host->data = NULL;
if (mrq->stop)
dw_mci_command_complete(host, mrq->stop);
else
host->cmd_status = 0;
if (host->sw_timeout_chk != true)
dw_mci_request_end(host, mrq);
goto unlock;
case STATE_DATA_ERROR:
if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
&host->pending_events))
break;
set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
state = STATE_DATA_BUSY;
dw_mci_debug_req_log(host, host->mrq,
STATE_REQ_DATA_PROCESS, state);
break;
}
} while (state != prev_state);
host->state = state;
unlock:
spin_unlock(&host->lock);
}
/* push final bytes to part_buf, only use during push */
static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
{
memcpy((void *)&host->part_buf, buf, cnt);
host->part_buf_count = cnt;
}
/* append bytes to part_buf, only use during push */
static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
{
cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
host->part_buf_count += cnt;
return cnt;
}
/* pull first bytes from part_buf, only use during pull */
static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
{
cnt = min_t(int, cnt, host->part_buf_count);
if (cnt) {
memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
cnt);
host->part_buf_count -= cnt;
host->part_buf_start += cnt;
}
return cnt;
}
/* pull final bytes from the part_buf, assuming it's just been filled */
static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
{
memcpy(buf, &host->part_buf, cnt);
host->part_buf_start = cnt;
host->part_buf_count = (1 << host->data_shift) - cnt;
}
static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
{
struct mmc_data *data = host->data;
int init_cnt = cnt;
/* try and push anything in the part_buf */
if (unlikely(host->part_buf_count)) {
int len = dw_mci_push_part_bytes(host, buf, cnt);
buf += len;
cnt -= len;
if (host->part_buf_count == 2) {
mci_fifo_writew(host->fifo_reg, host->part_buf16);
host->part_buf_count = 0;
}
}
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
if (unlikely((unsigned long)buf & 0x1)) {
while (cnt >= 2) {
u16 aligned_buf[64];
int len = min(cnt & -2, (int)sizeof(aligned_buf));
int items = len >> 1;
int i;
/* memcpy from input buffer into aligned buffer */
memcpy(aligned_buf, buf, len);
buf += len;
cnt -= len;
/* push data from aligned buffer into fifo */
for (i = 0; i < items; ++i)
mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
}
} else
#endif
{
u16 *pdata = buf;
for (; cnt >= 2; cnt -= 2)
mci_fifo_writew(host->fifo_reg, *pdata++);
buf = pdata;
}
/* put anything remaining in the part_buf */
if (cnt) {
dw_mci_set_part_bytes(host, buf, cnt);
/* Push data if we have reached the expected data length */
if ((data->bytes_xfered + init_cnt) ==
(data->blksz * data->blocks))
mci_fifo_writew(host->fifo_reg, host->part_buf16);
}
}
static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
{
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
if (unlikely((unsigned long)buf & 0x1)) {
while (cnt >= 2) {
/* pull data from fifo into aligned buffer */
u16 aligned_buf[64];
int len = min(cnt & -2, (int)sizeof(aligned_buf));
int items = len >> 1;
int i;
for (i = 0; i < items; ++i)
aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
/* memcpy from aligned buffer into output buffer */
memcpy(buf, aligned_buf, len);
buf += len;
cnt -= len;
}
} else
#endif
{
u16 *pdata = buf;
for (; cnt >= 2; cnt -= 2)
*pdata++ = mci_fifo_readw(host->fifo_reg);
buf = pdata;
}
if (cnt) {
host->part_buf16 = mci_fifo_readw(host->fifo_reg);
dw_mci_pull_final_bytes(host, buf, cnt);
}
}
static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
{
struct mmc_data *data = host->data;
int init_cnt = cnt;
/* try and push anything in the part_buf */
if (unlikely(host->part_buf_count)) {
int len = dw_mci_push_part_bytes(host, buf, cnt);
buf += len;
cnt -= len;
if (host->part_buf_count == 4) {
mci_fifo_writel(host->fifo_reg, host->part_buf32);
host->part_buf_count = 0;
}
}
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
if (unlikely((unsigned long)buf & 0x3)) {
while (cnt >= 4) {
u32 aligned_buf[32];
int len = min(cnt & -4, (int)sizeof(aligned_buf));
int items = len >> 2;
int i;
/* memcpy from input buffer into aligned buffer */
memcpy(aligned_buf, buf, len);
buf += len;
cnt -= len;
/* push data from aligned buffer into fifo */
for (i = 0; i < items; ++i)
mci_fifo_writel(host->fifo_reg, aligned_buf[i]);
}
} else
#endif
{
u32 *pdata = buf;
for (; cnt >= 4; cnt -= 4)
mci_fifo_writel(host->fifo_reg, *pdata++);
buf = pdata;
}
/* put anything remaining in the part_buf */
if (cnt) {
dw_mci_set_part_bytes(host, buf, cnt);
/* Push data if we have reached the expected data length */
if ((data->bytes_xfered + init_cnt) ==
(data->blksz * data->blocks))
mci_fifo_writel(host->fifo_reg, host->part_buf32);
}
}
static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
{
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
if (unlikely((unsigned long)buf & 0x3)) {
while (cnt >= 4) {
/* pull data from fifo into aligned buffer */
u32 aligned_buf[32];
int len = min(cnt & -4, (int)sizeof(aligned_buf));
int items = len >> 2;
int i;
for (i = 0; i < items; ++i)
aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
/* memcpy from aligned buffer into output buffer */
memcpy(buf, aligned_buf, len);
buf += len;
cnt -= len;
}
} else
#endif
{
u32 *pdata = buf;
for (; cnt >= 4; cnt -= 4)
*pdata++ = mci_fifo_readl(host->fifo_reg);
buf = pdata;
}
if (cnt) {
host->part_buf32 = mci_fifo_readl(host->fifo_reg);
dw_mci_pull_final_bytes(host, buf, cnt);
}
}
static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
{
struct mmc_data *data = host->data;
int init_cnt = cnt;
/* try and push anything in the part_buf */
if (unlikely(host->part_buf_count)) {
int len = dw_mci_push_part_bytes(host, buf, cnt);
buf += len;
cnt -= len;
if (host->part_buf_count == 8) {
mci_fifo_writeq(host->fifo_reg, host->part_buf);
host->part_buf_count = 0;
}
}
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
if (unlikely((unsigned long)buf & 0x7)) {
while (cnt >= 8) {
u64 aligned_buf[16];
int len = min(cnt & -8, (int)sizeof(aligned_buf));
int items = len >> 3;
int i;
/* memcpy from input buffer into aligned buffer */
memcpy(aligned_buf, buf, len);
buf += len;
cnt -= len;
/* push data from aligned buffer into fifo */
for (i = 0; i < items; ++i)
mci_fifo_writeq(host->fifo_reg, aligned_buf[i]);
}
} else
#endif
{
u64 *pdata = buf;
for (; cnt >= 8; cnt -= 8)
mci_fifo_writeq(host->fifo_reg, *pdata++);
buf = pdata;
}
/* put anything remaining in the part_buf */
if (cnt) {
dw_mci_set_part_bytes(host, buf, cnt);
/* Push data if we have reached the expected data length */
if ((data->bytes_xfered + init_cnt) ==
(data->blksz * data->blocks))
mci_fifo_writeq(host->fifo_reg, host->part_buf);
}
}
static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
{
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
if (unlikely((unsigned long)buf & 0x7)) {
while (cnt >= 8) {
/* pull data from fifo into aligned buffer */
u64 aligned_buf[16];
int len = min(cnt & -8, (int)sizeof(aligned_buf));
int items = len >> 3;
int i;
for (i = 0; i < items; ++i)
aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
/* memcpy from aligned buffer into output buffer */
memcpy(buf, aligned_buf, len);
buf += len;
cnt -= len;
}
} else
#endif
{
u64 *pdata = buf;
for (; cnt >= 8; cnt -= 8)
*pdata++ = mci_fifo_readq(host->fifo_reg);
buf = pdata;
}
if (cnt) {
host->part_buf = mci_fifo_readq(host->fifo_reg);
dw_mci_pull_final_bytes(host, buf, cnt);
}
}
static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
{
int len;
/* get remaining partial bytes */
len = dw_mci_pull_part_bytes(host, buf, cnt);
if (unlikely(len == cnt))
return;
buf += len;
cnt -= len;
/* get the rest of the data */
host->pull_data(host, buf, cnt);
}
static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
{
struct sg_mapping_iter *sg_miter = &host->sg_miter;
void *buf;
unsigned int offset;
struct mmc_data *data = host->data;
int shift = host->data_shift;
u32 status;
unsigned int len;
unsigned int remain, fcnt;
do {
if (!sg_miter_next(sg_miter))
goto done;
host->sg = sg_miter->piter.sg;
buf = sg_miter->addr;
remain = sg_miter->length;
offset = 0;
do {
fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
<< shift) + host->part_buf_count;
len = min(remain, fcnt);
if (!len)
break;
dw_mci_pull_data(host, (void *)(buf + offset), len);
data->bytes_xfered += len;
offset += len;
remain -= len;
} while (remain);
sg_miter->consumed = offset;
status = mci_readl(host, MINTSTS);
mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
/* if the RXDR is ready read again */
} while ((status & SDMMC_INT_RXDR) ||
(dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
if (!remain) {
if (!sg_miter_next(sg_miter))
goto done;
sg_miter->consumed = 0;
}
sg_miter_stop(sg_miter);
return;
done:
sg_miter_stop(sg_miter);
host->sg = NULL;
smp_wmb(); /* drain writebuffer */
set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
}
static void dw_mci_write_data_pio(struct dw_mci *host)
{
struct sg_mapping_iter *sg_miter = &host->sg_miter;
void *buf;
unsigned int offset;
struct mmc_data *data = host->data;
int shift = host->data_shift;
u32 status;
unsigned int len;
unsigned int fifo_depth = host->fifo_depth;
unsigned int remain, fcnt;
do {
if (!sg_miter_next(sg_miter))
goto done;
host->sg = sg_miter->piter.sg;
buf = sg_miter->addr;
remain = sg_miter->length;
offset = 0;
do {
fcnt = ((fifo_depth -
SDMMC_GET_FCNT(mci_readl(host, STATUS)))
<< shift) - host->part_buf_count;
len = min(remain, fcnt);
if (!len)
break;
host->push_data(host, (void *)(buf + offset), len);
data->bytes_xfered += len;
offset += len;
remain -= len;
} while (remain);
sg_miter->consumed = offset;
status = mci_readl(host, MINTSTS);
mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
} while (status & SDMMC_INT_TXDR); /* if TXDR write again */
if (!remain) {
if (!sg_miter_next(sg_miter))
goto done;
sg_miter->consumed = 0;
}
sg_miter_stop(sg_miter);
return;
done:
sg_miter_stop(sg_miter);
host->sg = NULL;
smp_wmb(); /* drain writebuffer */
set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
}
static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
{
if (!host->cmd_status)
host->cmd_status = status;
smp_wmb(); /* drain writebuffer */
set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
tasklet_schedule(&host->tasklet);
}
#ifdef CONFIG_MMC_CQ_HCI
static irqreturn_t dw_mci_cmdq_irq(struct mmc_host *mmc, u32 intmask)
{
return cmdq_irq(mmc, intmask);
}
#else
static irqreturn_t dw_mci_cmdq_irq(struct mmc_host *mmc, u32 intmask)
{
pr_err("%s: rxd cmdq-irq when disabled !!!!\n", mmc_hostname(mmc));
return IRQ_NONE;
}
#endif
static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
{
struct dw_mci *host = dev_id;
const struct dw_mci_drv_data *drv_data = host->drv_data;
u32 status, pending;
int i;
status = mci_readl(host, RINTSTS);
pending = mci_readl(host, MINTSTS); /* read-only mask reg */
/*
* DTO fix - version 2.10a and below, and only if internal DMA
* is configured.
*/
if (host->quirks & DW_MCI_QUIRK_IDMAC_DTO) {
if (!pending &&
((mci_readl(host, STATUS) >> 17) & 0x1fff))
pending |= SDMMC_INT_DATA_OVER;
}
/* Incase of CMD Queuing */
if (host->cur_slot->mmc->card && mmc_card_cmdq(host->cur_slot->mmc->card) &&
!mmc_host_halt(host->cur_slot->mmc)) {
int err = 0;
u32 reg = mci_readl(host, MINTSTS) &
(DW_MCI_CMD_ERROR_FLAGS | DW_MCI_DATA_ERROR_FLAGS);
pr_debug("*** %s: cmdq intr: 0x%08x\n",
mmc_hostname(host->cur_slot->mmc),
pending);
if (reg)
err = (reg & SDMMC_INT_RTO) ? -ETIMEDOUT : -EIO;
dw_mci_cmdq_irq(host->cur_slot->mmc, err);
if (reg) {
mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
}
return IRQ_HANDLED;
}
if (pending) {
if (pending & SDMMC_INT_HLE) {
dev_err(host->dev, "hardware locked write error\n");
dw_mci_reg_dump(host);
mci_writel(host, RINTSTS, SDMMC_INT_HLE);
dw_mci_debug_cmd_log(host->cmd, host, false,
DW_MCI_FLAG_ERROR, status);
host->cmd_status = pending;
tasklet_schedule(&host->tasklet);
}
/* Check volt switch first, since it can look like an error */
if ((host->state == STATE_SENDING_CMD11) &&
(pending & SDMMC_INT_VOLT_SWITCH)) {
unsigned long irqflags;
mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
pending &= ~SDMMC_INT_VOLT_SWITCH;
/*
* Hold the lock; we know cmd11_timer can't be kicked
* off after the lock is released, so safe to delete.
*/
spin_lock_irqsave(&host->irq_lock, irqflags);
dw_mci_cmd_interrupt(host, pending);
spin_unlock_irqrestore(&host->irq_lock, irqflags);
}
if (pending & DW_MCI_CMD_ERROR_FLAGS) {
mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
host->cmd_status = pending;
dw_mci_debug_cmd_log(host->cmd, host, false,
DW_MCI_FLAG_ERROR, status);
smp_wmb();
set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
}
if (pending & DW_MCI_DATA_ERROR_FLAGS) {
if (mci_readl(host, RINTSTS) & SDMMC_INT_HTO)
dw_mci_reg_dump(host);
/* if there is an error report DATA_ERROR */
mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
dw_mci_debug_cmd_log(host->cmd, host, false,
DW_MCI_FLAG_ERROR, status);
host->data_status = pending;
smp_wmb(); /* drain writebuffer */
set_bit(EVENT_DATA_ERROR, &host->pending_events);
tasklet_schedule(&host->tasklet);
}
if (!(host->cur_slot->mmc->card && mmc_card_cmdq(host->cur_slot->mmc->card) &&
!mmc_host_halt(host->cur_slot->mmc))) {
if (pending & SDMMC_INT_DATA_OVER) {
if (host->quirks & DW_MCI_QUIRK_BROKEN_DTO)
del_timer(&host->dto_timer);
mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
dw_mci_debug_cmd_log(host->cmd, host, false,
DW_MCI_FLAG_DTO, 0);
if (!host->data_status)
host->data_status = pending;
smp_wmb(); /* drain writebuffer */
if (host->dir_status == DW_MCI_RECV_STATUS) {
if (host->sg != NULL)
dw_mci_read_data_pio(host, true);
}
set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
tasklet_schedule(&host->tasklet);
}
}
if (pending & SDMMC_INT_RXDR) {
mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
dw_mci_read_data_pio(host, false);
}
if (pending & SDMMC_INT_TXDR) {
mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
dw_mci_write_data_pio(host);
}
if (!(host->cur_slot->mmc->card && mmc_card_cmdq(host->cur_slot->mmc->card) &&
!mmc_host_halt(host->cur_slot->mmc))) {
if (pending & SDMMC_INT_CMD_DONE) {
mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
dw_mci_debug_cmd_log(host->cmd, host, false,
DW_MCI_FLAG_CD, 0);
if (host->quirks & DW_MCI_QUIRK_HWACG_CTRL) {
if (drv_data && drv_data->hwacg_control)
drv_data->hwacg_control(host, HWACG_Q_ACTIVE_EN, LEGACY_MODE);
}
dw_mci_cmd_interrupt(host, pending);
}
}
if (pending & SDMMC_INT_CD) {
mci_writel(host, RINTSTS, SDMMC_INT_CD);
queue_work(host->card_workqueue, &host->card_work);
}
/* Handle SDIO Interrupts */
for (i = 0; i < host->num_slots; i++) {
struct dw_mci_slot *slot = host->slot[i];
if (!slot)
continue;
if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
mci_writel(host, RINTSTS,
SDMMC_INT_SDIO(slot->sdio_id));
mmc_signal_sdio_irq(slot->mmc);
}
}
}
if (host->use_dma != TRANS_MODE_IDMAC)
return IRQ_HANDLED;
/* Handle IDMA interrupts */
if (host->dma_64bit_address == true) {
pending = mci_readl(host, IDSTS64);
if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
SDMMC_IDMAC_INT_RI);
mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
host->dma_ops->complete((void *)host);
}
} else {
pending = mci_readl(host, IDSTS);
if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
SDMMC_IDMAC_INT_RI);
mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
host->dma_ops->complete((void *)host);
}
}
return IRQ_HANDLED;
}
static void dw_mci_timeout_timer(unsigned long data)
{
struct dw_mci *host = (struct dw_mci *)data;
struct mmc_request *mrq;
unsigned int int_mask;
if (host && host->mrq) {
host->sw_timeout_chk = true;
mrq = host->mrq;
if (!(mrq->cmd->opcode == MMC_SEND_TUNING_BLOCK ||
mrq->cmd->opcode == MMC_SEND_TUNING_BLOCK_HS200)) {
dev_err(host->dev,
"Timeout waiting for hardware interrupt."
" state = %d\n", host->state);
dw_mci_reg_dump(host);
}
spin_lock(&host->lock);
host->sg = NULL;
host->data = NULL;
host->cmd = NULL;
switch (host->state) {
case STATE_IDLE:
case STATE_WAITING_CMD11_DONE:
break;
case STATE_SENDING_CMD11:
case STATE_SENDING_CMD:
mrq->cmd->error = -ENOMEDIUM;
if (!mrq->data)
break;
/* fall through */
case STATE_SENDING_DATA:
mrq->data->error = -ENOMEDIUM;
dw_mci_stop_dma(host);
break;
case STATE_DATA_BUSY:
case STATE_DATA_ERROR:
if (mrq->data->error == -EINPROGRESS)
mrq->data->error = -ENOMEDIUM;
/* fall through */
case STATE_SENDING_STOP:
if (mrq->stop)
mrq->stop->error = -ENOMEDIUM;
break;
}
spin_unlock(&host->lock);
dw_mci_ciu_reset(host->dev, host);
dw_mci_fifo_reset(host->dev, host);
int_mask = mci_readl(host, INTMASK);
if (~int_mask & (SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER | DW_MCI_ERROR_FLAGS)) {
if (host->use_dma)
int_mask |= (SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
DW_MCI_ERROR_FLAGS);
else
int_mask |= (SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
SDMMC_INT_TXDR | SDMMC_INT_RXDR |
DW_MCI_ERROR_FLAGS);
mci_writel(host, INTMASK, int_mask);
}
spin_lock(&host->lock);
dw_mci_request_end(host, mrq);
host->state = STATE_IDLE;
spin_unlock(&host->lock);
host->sw_timeout_chk = false;
}
}
static void dw_mci_work_routine_card(struct work_struct *work)
{
struct dw_mci *host = container_of(work, struct dw_mci, card_work);
int i;
for (i = 0; i < host->num_slots; i++) {
struct dw_mci_slot *slot = host->slot[i];
struct mmc_host *mmc = slot->mmc;
struct mmc_request *mrq;
int present;
present = dw_mci_get_cd(mmc);
while (present != slot->last_detect_state) {
dev_info(&slot->mmc->class_dev, "card %s\n",
present ? "inserted" : "removed");
spin_lock_bh(&host->lock);
/* Card change detected */
slot->last_detect_state = present;
/* Clean up queue if present */
mrq = slot->mrq;
if (mrq) {
if (mrq == host->mrq) {
host->data = NULL;
host->cmd = NULL;
switch (host->state) {
case STATE_IDLE:
case STATE_WAITING_CMD11_DONE:
break;
case STATE_SENDING_CMD11:
case STATE_SENDING_CMD:
mrq->cmd->error = -ENOMEDIUM;
if (!mrq->data)
break;
/* fall through */
case STATE_SENDING_DATA:
mrq->data->error = -ENOMEDIUM;
dw_mci_stop_dma(host);
break;
case STATE_DATA_BUSY:
case STATE_DATA_ERROR:
if (mrq->data->error == -EINPROGRESS)
mrq->data->error = -ENOMEDIUM;
/* fall through */
case STATE_SENDING_STOP:
if (mrq->stop)
mrq->stop->error = -ENOMEDIUM;
break;
}
dw_mci_request_end(host, mrq);
} else {
list_del(&slot->queue_node);
mrq->cmd->error = -ENOMEDIUM;
if (mrq->data)
mrq->data->error = -ENOMEDIUM;
if (mrq->stop)
mrq->stop->error = -ENOMEDIUM;
spin_unlock(&host->lock);
mmc_request_done(slot->mmc, mrq);
spin_lock(&host->lock);
}
}
/* Power down slot */
if (present == 0)
dw_mci_reset(host);
spin_unlock_bh(&host->lock);
}
if (present)
mmc_detect_change(slot->mmc,
msecs_to_jiffies(host->pdata->detect_delay_ms));
else {
mmc_detect_change(slot->mmc,
msecs_to_jiffies(host->pdata->detect_delay_ms));
if (host->pdata->only_once_tune)
host->pdata->tuned = false;
}
}
}
#ifdef CONFIG_OF
/* given a slot, find out the device node representing that slot */
static struct device_node *dw_mci_of_find_slot_node(struct dw_mci_slot *slot)
{
struct device *dev = slot->mmc->parent;
struct device_node *np;
const __be32 *addr;
int len;
if (!dev || !dev->of_node)
return NULL;
for_each_child_of_node(dev->of_node, np) {
addr = of_get_property(np, "reg", &len);
if (!addr || (len < sizeof(int)))
continue;
if (be32_to_cpup(addr) == slot->id)
return np;
}
return NULL;
}
static void dw_mci_slot_of_parse(struct dw_mci_slot *slot)
{
struct device_node *np = dw_mci_of_find_slot_node(slot);
if (!np)
return;
if (of_property_read_bool(np, "disable-wp")) {
slot->mmc->caps2 |= MMC_CAP2_NO_WRITE_PROTECT;
dev_warn(slot->mmc->parent,
"Slot quirk 'disable-wp' is deprecated\n");
}
}
#else /* CONFIG_OF */
static void dw_mci_slot_of_parse(struct dw_mci_slot *slot)
{
}
#endif /* CONFIG_OF */
static irqreturn_t dw_mci_detect_interrupt(int irq, void *dev_id)
{
struct dw_mci *host = dev_id;
if (host->card_detect_cnt < 0x7FFFFFF0)
host->card_detect_cnt++;
queue_work(host->card_workqueue, &host->card_work);
return IRQ_HANDLED;
}
#ifdef CONFIG_MMC_CQ_HCI
static int dw_mci_cmdq_core_reset(struct mmc_host *mmc)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
u32 temp;
bool ret;
/*
* in case of cq reset right after
* synopsis core reset
*/
if (host->using_dma) {
host->dma_ops->stop(host);
host->dma_ops->reset(host);
}
ret = dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS);
if (!ret)
return -1;
dw_mci_update_clock(slot);
/* Select IDMAC interface */
temp = mci_readl(host, CTRL);
temp |= SDMMC_CTRL_USE_IDMAC;
mci_writel(host, CTRL, temp);
/* drain writebuffer */
wmb();
/* Enable the IDMAC */
temp = mci_readl(host, BMOD);
temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
mci_writel(host, BMOD, temp);
/* Start it running */
mci_writel(host, PLDMND, 1);
return 0;
}
static void dw_mci_cmdq_interrupt_mask(struct mmc_host *mmc, bool enable)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
u32 int_mask, dma_mask;
int_mask = mci_readl(host, INTMASK);
dma_mask = mci_readl(host, IDINTEN64);
if (enable) {
int_mask |= SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER;
dma_mask |= SDMMC_IDMAC_INT_NI | SDMMC_IDMAC_INT_RI |
SDMMC_IDMAC_INT_TI;
} else {
int_mask &= ~(SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER);
dma_mask &= ~(SDMMC_IDMAC_INT_NI | SDMMC_IDMAC_INT_RI |
SDMMC_IDMAC_INT_TI);
}
mci_writel(host, INTMASK, int_mask);
mci_writel(host, IDINTEN64, dma_mask);
}
static void dw_mci_cmdq_dump_vendor_regs(struct mmc_host *mmc)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
dw_mci_reg_dump(host);
}
static void dw_mci_cmdq_set_block_size(struct mmc_host *mmc)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
mci_writel(host, BLKSIZ, 512);
}
static int dw_mci_cmdq_init(struct dw_mci *host, struct mmc_host *mmc,
bool dma64)
{
return cmdq_init(host->cq_host, mmc, dma64);
}
static int dw_mci_cmdq_crypto_engine_cfg(struct mmc_host *mmc, void *desc,
struct mmc_data *data, struct page *page,
int sector_offset, bool cmdq_enabled)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
const struct dw_mci_drv_data *drv_data = host->drv_data;
return drv_data->crypto_engine_cfg(host, desc, data, page, sector_offset, cmdq_enabled);
}
static int dw_mci_cmdq_crypto_engine_clear(struct mmc_host *mmc, void *desc,
bool cmdq_enabled)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
const struct dw_mci_drv_data *drv_data = host->drv_data;
return drv_data->crypto_engine_clear(host, desc, cmdq_enabled);
}
#if defined(CONFIG_MMC_DW_DEBUG)
static void dw_mci_cmdq_cmd_log(struct mmc_host *mmc, bool new_cmd,
struct cmdq_log_ctx *log_ctx)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
int cpu = raw_smp_processor_id();
u32 count;
struct dw_mci_cq_cmd_log *cmd_log;
u32 tag = log_ctx->x0;
u32 dbr = log_ctx->x1;
if (!host->debug_info || !(host->debug_info->en_logging & DW_MCI_DEBUG_ON_CMD))
return;
cmd_log = host->debug_info->cq_cmd_log;
if (!new_cmd) {
count = log_ctx->idx;
if (count < DWMCI_LOG_MAX) {
cmd_log[count].done_time = cpu_clock(cpu);
cmd_log[count].data2[0] = tag;
cmd_log[count].data2[1] = dbr;
} else {
WARN_ON(1);
}
} else {
count = atomic_inc_return(&host->debug_info->cq_cmd_log_count) &
(DWMCI_LOG_MAX - 1);
cmd_log[count].send_time = cpu_clock(cpu);
cmd_log[count].done_time = 0x0;
cmd_log[count].data1[0] = tag;
cmd_log[count].data1[1] = dbr;
cmd_log[count].data1[2] = log_ctx->x2;
cmd_log[count].data1[3] = log_ctx->x3;
cmd_log[count].data1[4] = log_ctx->x4;
log_ctx->idx = count;
}
}
#endif
static void dw_mci_cmdq_post_cqe_halt(struct mmc_host *mmc)
{
}
static bool dw_mci_cmdq_busy_waiting(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
return dw_mci_wait_data_busy(host, mrq);
}
static int dw_mci_cmdq_hwacg_control_direct(struct mmc_host *mmc, bool set)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
u32 reg;
if (host->prv_hwacg_state != set) {
if (set == true) {
reg = mci_readl(host, FORCE_CLK_STOP);
reg &= ~(MMC_HWACG_CONTROL);
host->qactive_check = HWACG_Q_ACTIVE_DIS;
mci_writel(host, FORCE_CLK_STOP, reg);
} else {
reg = mci_readl(host, FORCE_CLK_STOP);
reg |= MMC_HWACG_CONTROL;
host->qactive_check = HWACG_Q_ACTIVE_EN;
mci_writel(host, FORCE_CLK_STOP, reg);
}
host->prv_hwacg_state = set;
return 1;
}
return 0;
}
static void dw_mci_cmdq_hwacg_control(struct mmc_host *mmc, bool set)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
const struct dw_mci_drv_data *drv_data = host->drv_data;
if (host->prv_hwacg_state != set) {
if (set == true) {
if (host->quirks & DW_MCI_QUIRK_HWACG_CTRL)
if (drv_data && drv_data->hwacg_control)
drv_data->hwacg_control(host, HWACG_Q_ACTIVE_DIS, CMDQ_MODE);
} else {
if (host->quirks & DW_MCI_QUIRK_HWACG_CTRL)
if (drv_data && drv_data->hwacg_control)
drv_data->hwacg_control(host, HWACG_Q_ACTIVE_EN, CMDQ_MODE);
}
host->prv_hwacg_state = set;
}
}
static void dw_mci_cmdq_sicd_control(struct mmc_host *mmc, bool enable)
{
#ifdef CONFIG_CPU_IDLE
struct dw_mci_slot *slot = mmc_priv(mmc);
if (enable)
exynos_update_ip_idle_status(slot->host->idle_ip_index, 0);
else
exynos_update_ip_idle_status(slot->host->idle_ip_index, 1);
#endif
}
static void dw_mci_cmdq_pm_qos_lock(struct mmc_host *mmc, bool set)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
if (host->qos_cntrl == true) {
if(set)
dw_mci_qos_get(host);
else
dw_mci_qos_put(host);
}
}
static void dw_mci_cmdq_transferred_cnt(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
host->transferred_cnt += mrq->cmdq_req->data.blksz
* mrq->cmdq_req->data.blocks;
}
static void dw_mci_cmdq_resume_skip(struct mmc_host *mmc)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS);
}
#else
static int dw_mci_cmdq_core_reset(struct mmc_host *mmc)
{
return 0;
}
static void dw_mci_cmdq_interrupt_mask(struct mmc_host *mmc, bool enable)
{
}
static void dw_mci_cmdq_dump_vendor_regs(struct mmc_host *mmc)
{
}
static void dw_mci_cmdq_set_block_size(struct mmc_host *mmc)
{
}
static int dw_mci_cmdq_crypto_engine_cfg(struct mmc_host *mmc, void *desc,
struct mmc_data *data, struct page *page,
int sector_offset, bool cmdq_enabled)
{
return 0;
}
static int dw_mci_cmdq_crypto_engine_clear(struct mmc_host *mmc, void *desc)
{
return 0;
}
#if defined(CONFIG_MMC_DW_DEBUG)
static void dw_mci_cmdq_cmd_log(struct mmc_host *mmc, bool new_cmd, u32 tag, u32 doorbell)
{
}
#endif
static void dw_mci_cmdq_post_cqe_halt(struct mmc_host *mmc)
{
}
static bool dw_mci_cmdq_busy_waiting(struct mmc_host *mmc, struct mmc_request *mrq)
{
return true;
}
static void dw_mci_cmdq_hwacg_control(struct mmc_host *mmc, bool set)
{
}
static int dw_mci_cmdq_hwacg_control_direct(struct mmc_host *mmc, bool set)
{
}
static void dw_mci_cmdq_sicd_control(struct mmc_host *mmc, bool set)
{
}
static void dw_mci_cmdq_pm_qos_lock(struct mmc_host *mmc, bool set)
{
}
static void dw_mci_cmdq_transferred_cnt(struct mmc_host *mmc, struct mmc_request *mrq)
{
}
#endif
static const struct cmdq_host_ops dw_mci_cmdq_ops = {
.int_mask_set = dw_mci_cmdq_interrupt_mask,
.dump_vendor_regs = dw_mci_cmdq_dump_vendor_regs,
.set_block_size = dw_mci_cmdq_set_block_size,
.crypto_engine_cfg = dw_mci_cmdq_crypto_engine_cfg,
.crypto_engine_clear = dw_mci_cmdq_crypto_engine_clear,
.post_cqe_halt = dw_mci_cmdq_post_cqe_halt,
#ifdef CONFIG_MMC_DW_DEBUG
.cmdq_log = dw_mci_cmdq_cmd_log,
#endif
.busy_waiting = dw_mci_cmdq_busy_waiting,
.hwacg_control = dw_mci_cmdq_hwacg_control,
.hwacg_control_direct = dw_mci_cmdq_hwacg_control_direct,
.sicd_control = dw_mci_cmdq_sicd_control,
.pm_qos_lock = dw_mci_cmdq_pm_qos_lock,
.reset = dw_mci_cmdq_core_reset,
.transferred_cnt = dw_mci_cmdq_transferred_cnt,
.resume_skip = dw_mci_cmdq_resume_skip,
};
static int dw_mci_init_slot(struct dw_mci *host, unsigned int id, struct platform_device *pdev)
{
struct mmc_host *mmc;
struct dw_mci_slot *slot;
struct dw_mci_sfe_ram_dump *dump;
const struct dw_mci_drv_data *drv_data = host->drv_data;
int ctrl_id, ret;
u32 freq[2];
mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
if (!mmc)
return -ENOMEM;
dump = devm_kzalloc(host->dev, sizeof(*dump), GFP_KERNEL);
if (!dump) {
dev_err(host->dev,"sfr dump memory alloc faile!\n");
return -ENOMEM;
}
host->sfr_dump = dump;
slot = mmc_priv(mmc);
slot->id = id;
slot->sdio_id = host->sdio_id0 + id;
slot->mmc = mmc;
slot->host = host;
host->slot[id] = slot;
mmc->ops = &dw_mci_ops;
if (of_property_read_u32_array(host->dev->of_node,
"clock-freq-min-max", freq, 2)) {
mmc->f_min = DW_MCI_FREQ_MIN;
mmc->f_max = DW_MCI_FREQ_MAX;
} else {
mmc->f_min = freq[0];
mmc->f_max = freq[1];
}
/*if there are external regulators, get them*/
if (!(host->quirks & DW_MMC_QUIRK_FIXED_VOLTAGE)) {
ret = mmc_regulator_get_supply(mmc);
if (ret == -EPROBE_DEFER)
goto err_host_allocated;
}
if (!mmc->ocr_avail)
mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
if (host->pdata->caps)
mmc->caps = host->pdata->caps;
if (host->pdata->pm_caps)
mmc->pm_caps = host->pdata->pm_caps;
if (host->dev->of_node) {
ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
if (ctrl_id < 0)
ctrl_id = 0;
} else {
ctrl_id = to_platform_device(host->dev)->id;
}
if (drv_data && drv_data->caps)
mmc->caps |= drv_data->caps[ctrl_id];
if (host->pdata->caps2)
mmc->caps2 = host->pdata->caps2;
dw_mci_slot_of_parse(slot);
ret = mmc_of_parse(mmc);
if (ret)
goto err_host_allocated;
/* Useful defaults if platform data is unset. */
if (host->use_dma == TRANS_MODE_IDMAC) {
mmc->max_segs = host->ring_size;
mmc->max_blk_size = 65536;
mmc->max_seg_size = 0x1000;
mmc->max_req_size = mmc->max_seg_size * host->ring_size;
mmc->max_blk_count = mmc->max_req_size / 512;
} else if (host->use_dma == TRANS_MODE_EDMAC) {
mmc->max_segs = 64;
mmc->max_blk_size = 65536;
mmc->max_blk_count = 65535;
mmc->max_req_size =
mmc->max_blk_size * mmc->max_blk_count;
mmc->max_seg_size = mmc->max_req_size;
} else {
/* TRANS_MODE_PIO */
mmc->max_segs = 64;
mmc->max_blk_size = 65536; /* BLKSIZ is 16 bits */
mmc->max_blk_count = 512;
mmc->max_req_size = mmc->max_blk_size *
mmc->max_blk_count;
mmc->max_seg_size = mmc->max_req_size;
}
if (dw_mci_get_cd(mmc))
set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
else
clear_bit(DW_MMC_CARD_PRESENT, &slot->flags);
ret = mmc_add_host(mmc);
if (ret)
goto err_host_allocated;
#ifdef CONFIG_MMC_CQ_HCI
if (mmc->caps2 & MMC_CAP2_CMD_QUEUE) {
bool dma64 = true;
host->cq_host = cmdq_pltfm_init(pdev);
ret = dw_mci_cmdq_init(host, mmc, dma64);
if (ret) {
pr_err("%s: CMDQ init: failed (%d)\n",
mmc_hostname(host->cur_slot->mmc), ret);
cmdq_free(host->cq_host);
}
else {
host->cq_host->ops = &dw_mci_cmdq_ops;
host->cq_host->caps |= CMDQ_TASK_DESC_SZ_128;
dev_info(host->dev, "CMDQ host enabled!!!\n");
}
}
#endif
#if defined(CONFIG_DEBUG_FS)
dw_mci_init_debugfs(slot);
#endif
/* For argos */
dw_mci_transferred_cnt_init(host, mmc);
/* Card initially undetected */
slot->last_detect_state = 0;
return 0;
err_host_allocated:
mmc_free_host(mmc);
return ret;
}
static void dw_mci_cleanup_slot(struct dw_mci_slot *slot, unsigned int id)
{
/* Debugfs stuff is cleaned up by mmc core */
#ifdef CONFIG_MMC_CQ_HCI
if (slot->mmc->caps2 & MMC_CAP2_CMD_QUEUE)
cmdq_free(slot->host->cq_host);
#endif
mmc_remove_host(slot->mmc);
slot->host->slot[id] = NULL;
mmc_free_host(slot->mmc);
}
static void dw_mci_init_dma(struct dw_mci *host)
{
int addr_config;
struct device *dev = host->dev;
struct device_node *np = dev->of_node;
/*
* Check tansfer mode from HCON[17:16]
* Clear the ambiguous description of dw_mmc databook:
* 2b'00: No DMA Interface -> Actually means using Internal DMA block
* 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
* 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
* 2b'11: Non DW DMA Interface -> pio only
* Compared to DesignWare DMA Interface, Generic DMA Interface has a
* simpler request/acknowledge handshake mechanism and both of them
* are regarded as external dma master for dw_mmc.
*/
host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
if (host->use_dma == DMA_INTERFACE_IDMA) {
host->use_dma = TRANS_MODE_IDMAC;
} else if (host->use_dma == DMA_INTERFACE_DWDMA ||
host->use_dma == DMA_INTERFACE_GDMA) {
host->use_dma = TRANS_MODE_EDMAC;
} else {
goto no_dma;
}
/* Determine which DMA interface to use */
if (host->use_dma == TRANS_MODE_IDMAC) {
/*
* Check ADDR_CONFIG bit in HCON to find
* IDMAC address bus width
*/
addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
if (addr_config == 1) {
/* host supports IDMAC in 64-bit address mode */
host->dma_64bit_address = true;
dev_info(host->dev,
"IDMAC supports 64-bit address mode.\n");
if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
dma_set_coherent_mask(host->dev,
DMA_BIT_MASK(64));
} else {
/* host supports IDMAC in 32-bit address mode */
host->dma_64bit_address = false;
dev_info(host->dev,
"IDMAC supports 32-bit address mode.\n");
}
if (host->pdata->desc_sz)
host->desc_sz = host->pdata->desc_sz;
else
host->desc_sz = 1;
/* Alloc memory for sg translation */
host->sg_cpu = dmam_alloc_coherent(host->dev,
host->desc_sz * PAGE_SIZE * MMC_DW_IDMAC_MULTIPLIER,
&host->sg_dma, GFP_KERNEL);
if (!host->sg_cpu) {
dev_err(host->dev,
"%s: could not alloc DMA memory\n",
__func__);
goto no_dma;
}
host->dma_ops = &dw_mci_idmac_ops;
dev_info(host->dev, "Using internal DMA controller.\n");
} else {
/* TRANS_MODE_EDMAC: check dma bindings again */
if ((of_property_count_strings(np, "dma-names") < 0) ||
(!of_find_property(np, "dmas", NULL))) {
goto no_dma;
}
host->dma_ops = &dw_mci_edmac_ops;
dev_info(host->dev, "Using external DMA controller.\n");
}
if (host->dma_ops->init && host->dma_ops->start &&
host->dma_ops->stop && host->dma_ops->cleanup) {
if (host->dma_ops->init(host)) {
dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
__func__);
goto no_dma;
}
} else {
dev_err(host->dev, "DMA initialization not found.\n");
goto no_dma;
}
return;
no_dma:
dev_info(host->dev, "Using PIO mode.\n");
host->use_dma = TRANS_MODE_PIO;
}
static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
{
unsigned long timeout = jiffies + msecs_to_jiffies(500);
u32 ctrl;
unsigned int int_mask = 0;
u32 clksel_saved = 0x0;
bool ret = false;
/* Interrupt disable */
ctrl = dw_mci_disable_interrupt(host, &int_mask);
/* set Rx timing to 0 */
clksel_saved = mci_readl(host, CLKSEL);
mci_writel(host, CLKSEL, clksel_saved & ~(0x3 << 6 | 0x7));
/* Reset */
ctrl |= reset;
mci_writel(host, CTRL, ctrl);
/* All interrupt clear */
mci_writel(host, RINTSTS, 0xFFFFFFFF);
/* Interrupt enable */
dw_mci_enable_interrupt(host, int_mask);
/* wait till resets clear */
do {
if (!(mci_readl(host, CTRL) & reset)) {
ret = true;
break;
}
} while (time_before(jiffies, timeout));
if (!ret)
dev_err(host->dev, "Timeout resetting block (ctrl %#x)\n", ctrl);
/* restore Rx timing */
mci_writel(host, CLKSEL, clksel_saved);
return ret;
}
void dw_mci_ciu_reset(struct device *dev, struct dw_mci *host) {
struct dw_mci_slot *slot = host->cur_slot;
unsigned long timeout = jiffies + msecs_to_jiffies(10);
int retry = 10;
u32 status;
if (slot) {
dw_mci_ctrl_reset(host, SDMMC_CTRL_RESET);
/* Check For DATA busy */
do {
while (time_before(jiffies, timeout)) {
status = mci_readl(host, STATUS);
if (!(status & SDMMC_STATUS_BUSY))
goto out;
}
dw_mci_ctrl_reset(host, SDMMC_CTRL_RESET);
timeout = jiffies + msecs_to_jiffies(10);
} while (--retry);
out:
/* After a CTRL reset we need to have CIU set clock registers */
dw_mci_update_clock(slot);
}
}
bool dw_mci_fifo_reset(struct device *dev, struct dw_mci *host)
{
unsigned long timeout = jiffies + msecs_to_jiffies(1000);
unsigned int ctrl;
bool result;
do {
result = dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET);
if (!result)
break;
ctrl = mci_readl(host, STATUS);
if (!(ctrl & SDMMC_STATUS_DMA_REQ)) {
result = dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET);
if (result) {
/* clear exception raw interrupts can not be handled
ex) fifo full => RXDR interrupt rising */
ctrl = mci_readl(host, RINTSTS);
ctrl = ctrl & ~(mci_readl(host, MINTSTS));
if (ctrl)
mci_writel(host, RINTSTS, ctrl);
return true;
}
}
} while (time_before(jiffies, timeout));
dev_err(dev, "%s: Timeout while resetting host controller after err\n",
__func__);
return false;
}
static bool dw_mci_reset(struct dw_mci *host)
{
u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
bool ret = false;
/*
* Reseting generates a block interrupt, hence setting
* the scatter-gather pointer to NULL.
*/
if (host->sg) {
sg_miter_stop(&host->sg_miter);
host->sg = NULL;
}
if (host->use_dma)
flags |= SDMMC_CTRL_DMA_RESET;
if (dw_mci_ctrl_reset(host, flags)) {
/*
* In all cases we clear the RAWINTS register to clear any
* interrupts.
*/
mci_writel(host, RINTSTS, 0xFFFFFFFF);
/* if using dma we wait for dma_req to clear */
if (host->use_dma) {
unsigned long timeout = jiffies + msecs_to_jiffies(500);
u32 status;
do {
status = mci_readl(host, STATUS);
if (!(status & SDMMC_STATUS_DMA_REQ))
break;
cpu_relax();
} while (time_before(jiffies, timeout));
if (status & SDMMC_STATUS_DMA_REQ) {
dev_err(host->dev,
"%s: Timeout waiting for dma_req to clear during reset\n",
__func__);
goto ciu_out;
}
/* when using DMA next we reset the fifo again */
if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
goto ciu_out;
}
} else {
/* if the controller reset bit did clear, then set clock regs */
if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
dev_err(host->dev,
"%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
__func__);
goto ciu_out;
}
}
if (host->use_dma == TRANS_MODE_IDMAC)
/* It is also required that we reinit idmac */
dw_mci_idmac_init(host);
ret = true;
ciu_out:
/* After a CTRL reset we need to have CIU set clock registers */
if (host->cur_slot != NULL)
mci_send_cmd(host->cur_slot, SDMMC_CMD_UPD_CLK, 0);
return ret;
}
static void dw_mci_cmd11_timer(unsigned long arg)
{
struct dw_mci *host = (struct dw_mci *)arg;
if (host->state != STATE_SENDING_CMD11) {
dev_warn(host->dev, "Unexpected CMD11 timeout\n");
return;
}
}
static void dw_mci_dto_timer(unsigned long arg)
{
struct dw_mci *host = (struct dw_mci *)arg;
switch (host->state) {
case STATE_SENDING_DATA:
case STATE_DATA_BUSY:
/*
* If DTO interrupt does NOT come in sending data state,
* we should notify the driver to terminate current transfer
* and report a data timeout to the core.
*/
host->data_status = SDMMC_INT_DRTO;
set_bit(EVENT_DATA_ERROR, &host->pending_events);
set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
tasklet_schedule(&host->tasklet);
break;
default:
break;
}
}
#ifdef CONFIG_OF
static struct dw_mci_of_quirks {
char *quirk;
int id;
} of_quirks[] = {
{
.quirk = "broken-cd",
.id = DW_MCI_QUIRK_BROKEN_CARD_DETECTION,
}, {
.quirk = "disable-wp",
.id = DW_MCI_QUIRK_NO_WRITE_PROTECT,
}, {
.quirk = "fixed_voltage",
.id = DW_MMC_QUIRK_FIXED_VOLTAGE,
}, {
.quirk = "card-init-hwacg-ctrl",
.id = DW_MCI_QUIRK_HWACG_CTRL,
}, {
.quirk = "enable-ulp-mode",
.id = DW_MCI_QUIRK_ENABLE_ULP,
},
};
static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
{
struct dw_mci_board *pdata;
struct device *dev = host->dev;
struct device_node *np = dev->of_node;
const struct dw_mci_drv_data *drv_data = host->drv_data;
int idx, ret;
u32 clock_frequency;
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata) {
dev_err(dev, "could not allocate memory for pdata\n");
return ERR_PTR(-ENOMEM);
}
/* find out number of slots supported */
if (of_property_read_u32(dev->of_node, "num-slots",
&pdata->num_slots)) {
dev_info(dev,
"num-slots property not found, assuming 1 slot is available\n");
pdata->num_slots = 1;
}
/* get quirks */
for (idx = 0; idx < ARRAY_SIZE(of_quirks); idx++)
if (of_get_property(np, of_quirks[idx].quirk, NULL))
pdata->quirks |= of_quirks[idx].id;
if (of_property_read_u32(np, "fifo-depth", &pdata->fifo_depth))
dev_info(dev,
"fifo-depth property not found, using value of FIFOTH register as default\n");
of_property_read_u32(np, "card-detect-delay", &pdata->detect_delay_ms);
if (of_property_read_u32(np, "qos-dvfs-level", &pdata->qos_dvfs_level))
host->qos_cntrl = false;
else
host->qos_cntrl = true;
if (of_property_read_u32(np, "qos-sd3-dvfs-level", &pdata->qos_sd3_dvfs_level))
pdata->qos_sd3_dvfs_level = pdata->qos_dvfs_level;
of_property_read_u32(np, "data-timeout", &pdata->data_timeout);
of_property_read_u32(np, "hto-timeout", &pdata->hto_timeout);
of_property_read_u32(np, "desc-size", &pdata->desc_sz);
if (!of_property_read_u32(np, "clock-frequency", &clock_frequency))
pdata->bus_hz = clock_frequency;
if (of_find_property(np, "only_once_tune", NULL))
pdata->only_once_tune = true;
if (drv_data && drv_data->parse_dt) {
ret = drv_data->parse_dt(host);
if (ret)
return ERR_PTR(ret);
}
if (of_find_property(np, "supports-highspeed", NULL)) {
dev_info(dev, "supports-highspeed property is deprecated.\n");
pdata->caps |= MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED;
}
if (of_find_property(np, "clock-gate", NULL))
pdata->use_gate_clock = true;
if (of_find_property(np, "card-detect-invert", NULL))
pdata->use_gpio_invert = true;
/* caps */
if (of_find_property(np, "supports-8bit", NULL))
pdata->caps |= MMC_CAP_8_BIT_DATA;
if (of_find_property(np, "supports-4bit", NULL))
pdata->caps |= MMC_CAP_4_BIT_DATA;
if (of_find_property(np, "supports-cmd23", NULL))
pdata->caps |= MMC_CAP_CMD23;
if (of_find_property(np, "supports-erase", NULL))
pdata->caps |= MMC_CAP_ERASE;
if (of_find_property(np, "pm-skip-mmc-resume-init", NULL))
pdata->pm_caps |= MMC_PM_SKIP_MMC_RESUME_INIT;
if (of_find_property(np, "card-detect-invert-gpio", NULL))
pdata->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
if (of_find_property(np, "card-detect-gpio", NULL)) {
pdata->cd_type = DW_MCI_CD_GPIO;
pdata->caps2 |= MMC_CAP2_DETECT_ON_ERR;
}
if (of_find_property(np, "card-no-pre-powerup", NULL)) {
pdata->caps2 |= MMC_CAP2_NO_PRESCAN_POWERUP;
}
if (of_find_property(np, "support-cmdq", NULL))
pdata->caps2 |= MMC_CAP2_CMD_QUEUE;
return pdata;
}
#else /* CONFIG_OF */
static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
{
return ERR_PTR(-EINVAL);
}
#endif /* CONFIG_OF */
static void dw_mci_enable_cd(struct dw_mci *host)
{
struct dw_mci_board *brd = host->pdata;
unsigned long irqflags;
u32 temp;
int i;
/* No need for CD if broken card detection */
if (brd->quirks & DW_MCI_QUIRK_BROKEN_CARD_DETECTION)
return;
/* No need for CD if all slots have a non-error GPIO */
for (i = 0; i < host->num_slots; i++) {
struct dw_mci_slot *slot = host->slot[i];
if (IS_ERR_VALUE(mmc_gpio_get_cd(slot->mmc)))
break;
}
if (i == host->num_slots)
return;
spin_lock_irqsave(&host->irq_lock, irqflags);
temp = mci_readl(host, INTMASK);
temp |= SDMMC_INT_CD;
mci_writel(host, INTMASK, temp);
spin_unlock_irqrestore(&host->irq_lock, irqflags);
}
int dw_mci_probe(struct dw_mci *host, struct platform_device *pdev)
{
const struct dw_mci_drv_data *drv_data = host->drv_data;
int width, i, ret = 0;
u32 fifo_size, msize, tx_wmark, rx_wmark;
int init_slots = 0;
if (!host->pdata) {
host->pdata = dw_mci_parse_dt(host);
if (IS_ERR(host->pdata)) {
dev_err(host->dev, "platform data not available\n");
return -EINVAL;
}
}
host->pdata->tuned = false;
if (host->pdata->num_slots < 1) {
dev_err(host->dev,
"Platform data must supply num_slots.\n");
return -ENODEV;
}
host->biu_clk = devm_clk_get(host->dev, "biu");
if (IS_ERR(host->biu_clk)) {
dev_dbg(host->dev, "biu clock not available\n");
} else {
ret = clk_prepare_enable(host->biu_clk);
if (ret) {
dev_err(host->dev, "failed to enable biu clock\n");
return ret;
}
}
host->ciu_clk = devm_clk_get(host->dev, "ciu");
if (IS_ERR(host->ciu_clk)) {
dev_dbg(host->dev, "ciu clock not available\n");
host->bus_hz = host->pdata->bus_hz;
} else {
ret = clk_prepare_enable(host->ciu_clk);
if (ret) {
dev_err(host->dev, "failed to enable ciu clock\n");
goto err_clk_biu;
}
if (host->pdata->bus_hz) {
ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
if (ret)
dev_warn(host->dev,
"Unable to set bus rate to %uHz\n",
host->pdata->bus_hz);
}
host->bus_hz = clk_get_rate(host->ciu_clk);
}
if (!host->bus_hz) {
dev_err(host->dev,
"Platform data must supply bus speed\n");
ret = -ENODEV;
goto err_clk_ciu;
}
if (drv_data && drv_data->init) {
ret = drv_data->init(host);
if (ret) {
dev_err(host->dev,
"implementation specific init failed\n");
goto err_clk_ciu;
}
}
if (drv_data && drv_data->setup_clock) {
ret = drv_data->setup_clock(host);
if (ret) {
dev_err(host->dev,
"implementation specific clock setup failed\n");
goto err_clk_ciu;
}
}
host->cmu_debug_reg = ioremap(MMC_CLK_BASE, 0x8000);
if (!host->cmu_debug_reg)
dev_err(host->dev, "CMU debugg memory alloc faile!\n");
setup_timer(&host->cmd11_timer,
dw_mci_cmd11_timer, (unsigned long)host);
host->quirks = host->pdata->quirks;
#ifdef CONFIG_CPU_IDLE
host->idle_ip_index = exynos_get_idle_ip_index(dev_name(host->dev));
exynos_update_ip_idle_status(host->idle_ip_index, 0);
#endif
if (host->quirks & DW_MCI_QUIRK_HWACG_CTRL) {
if (drv_data && drv_data->hwacg_control)
drv_data->hwacg_control(host, HWACG_Q_ACTIVE_EN, LEGACY_MODE);
} else {
if (drv_data && drv_data->hwacg_control)
drv_data->hwacg_control(host, HWACG_Q_ACTIVE_DIS, LEGACY_MODE);
}
if (drv_data != NULL) {
ret = drv_data->access_control_get_dev(host);
if (ret == -EPROBE_DEFER)
dev_err(host->dev, "%s: Access control device not probed yet.(%d)\n",
__func__, ret);
else if (ret)
dev_err(host->dev, "%s, Fail to get Access control device.(%d)\n",
__func__, ret);
ret = drv_data->access_control_sec_cfg(host);
if (ret)
dev_err(host->dev, "%s: Fail to control security config.(%x)\n",
__func__, ret);
ret = drv_data->access_control_init(host);
if (ret)
dev_err(host->dev, "%s: Fail to initialize access control.(%d)\n",
__func__, ret);
}
if (host->quirks & DW_MCI_QUIRK_BROKEN_DTO)
setup_timer(&host->dto_timer,
dw_mci_dto_timer, (unsigned long)host);
spin_lock_init(&host->lock);
spin_lock_init(&host->irq_lock);
INIT_LIST_HEAD(&host->queue);
/*
* Get the host data width - this assumes that HCON has been set with
* the correct values.
*/
i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
if (!i) {
host->push_data = dw_mci_push_data16;
host->pull_data = dw_mci_pull_data16;
width = 16;
host->data_shift = 1;
} else if (i == 2) {
host->push_data = dw_mci_push_data64;
host->pull_data = dw_mci_pull_data64;
width = 64;
host->data_shift = 3;
} else {
/* Check for a reserved value, and warn if it is */
WARN((i != 1),
"HCON reports a reserved host data width!\n"
"Defaulting to 32-bit access.\n");
host->push_data = dw_mci_push_data32;
host->pull_data = dw_mci_pull_data32;
width = 32;
host->data_shift = 2;
}
/* Reset all blocks */
if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS))
return -ENODEV;
host->dma_ops = host->pdata->dma_ops;
dw_mci_init_dma(host);
/* Clear the interrupts for the host controller */
mci_writel(host, RINTSTS, 0xFFFFFFFF);
mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
/* Put in max timeout */
mci_writel(host, TMOUT, 0xFFFFFFFF);
/*
* FIFO threshold settings RxMark = fifo_size / 2 - 1,
* Tx Mark = fifo_size / 2 DMA Size = 8
*/
if (!host->pdata->fifo_depth) {
/*
* Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
* have been overwritten by the bootloader, just like we're
* about to do, so if you know the value for your hardware, you
* should put it in the platform data.
*/
fifo_size = mci_readl(host, FIFOTH);
fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
} else {
fifo_size = host->pdata->fifo_depth;
}
host->fifo_depth = fifo_size;
WARN_ON(fifo_size < 8);
/*
* HCON[9:7] -> H_DATA_WIDTH
* 000 16 bits
* 001 32 bits
* 010 64 bits
*
* FIFOTH[30:28] -> DW_DMA_Mutiple_Transaction_Size
* msize:
* 000 1 transfers
* 001 4
* 010 8
* 011 16
* 100 32
* 101 64
* 110 128
* 111 256
*
* AHB Master can support 1/4/8/16 burst in DMA.
* So, Max support burst spec is 16 burst.
*
* msize <= 011(16 burst)
* Transaction_Size = msize * H_DATA_WIDTH;
* rx_wmark = Transaction_Size - 1;
* tx_wmark = fifo_size - Transaction_Size;
*/
msize = host->data_shift;
msize &= 7;
rx_wmark = ((1 << (msize + 1)) - 1) & 0xfff;
tx_wmark = (fifo_size - (1 << (msize + 1))) & 0xfff;
host->fifoth_val = msize << SDMMC_FIFOTH_DMA_MULTI_TRANS_SIZE;
host->fifoth_val |= (rx_wmark << SDMMC_FIFOTH_RX_WMARK) | tx_wmark;
mci_writel(host, FIFOTH, host->fifoth_val);
dev_info(host->dev, "FIFOTH: 0x %08x", mci_readl(host, FIFOTH));
/* disable clock to CIU */
mci_writel(host, CLKENA, 0);
mci_writel(host, CLKSRC, 0);
/*
* In 2.40a spec, Data offset is changed.
* Need to check the version-id and set data-offset for DATA register.
*/
host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
dev_info(host->dev, "Version ID is %04x\n", host->verid);
if (host->verid < DW_MMC_240A)
host->fifo_reg = host->regs + DATA_OFFSET;
else
host->fifo_reg = host->regs + DATA_240A_OFFSET;
tasklet_init(&host->tasklet, dw_mci_tasklet_func, (unsigned long)host);
host->card_workqueue = alloc_workqueue("dw-mci-card",
WQ_MEM_RECLAIM, 1);
if (!host->card_workqueue) {
ret = -ENOMEM;
goto err_dmaunmap;
}
INIT_WORK(&host->card_work, dw_mci_work_routine_card);
/* INT min lock */
pm_workqueue = alloc_ordered_workqueue("kmmcd", 0);
if (!pm_workqueue)
return -ENOMEM;
/* HWACG Workqueue Init */
if (host->quirks & DW_MCI_QUIRK_HWACG_CTRL) {
if (drv_data && drv_data->hwacg_control)
drv_data->hwacg_control(host, W_INIT, HWACG_WORK_INIT);
}
INIT_DELAYED_WORK(&host->qos_work, dw_mci_qos_work);
pm_qos_add_request(&host->pm_qos_lock, PM_QOS_FSYS_THROUGHPUT, 0);
ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
host->irq_flags, "dw-mci", host);
setup_timer(&host->timer, dw_mci_timeout_timer, (unsigned long)host);
host->sw_timeout_chk = false;
if (ret)
goto err_workqueue;
if (host->pdata->num_slots)
host->num_slots = host->pdata->num_slots;
else
host->num_slots = SDMMC_GET_SLOT_NUM(mci_readl(host, HCON));
/*
* Enable interrupts for command done, data over, data empty,
* receive ready and error such as transmit, receive timeout, crc error
*/
mci_writel(host, RINTSTS, 0xFFFFFFFF);
if (host->use_dma)
mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
DW_MCI_ERROR_FLAGS);
else
mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
SDMMC_INT_TXDR | SDMMC_INT_RXDR |
DW_MCI_ERROR_FLAGS);
/* Enable mci interrupt */
mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
dev_info(host->dev,
"DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
host->irq, width, fifo_size);
/* We need at least one slot to succeed */
for (i = 0; i < host->num_slots; i++) {
ret = dw_mci_init_slot(host, i, pdev);
if (ret)
dev_dbg(host->dev, "slot %d init failed\n", i);
else
init_slots++;
}
dw_mci_debug_init(host);
if (init_slots) {
dev_info(host->dev, "%d slots initialized\n", init_slots);
} else {
dev_dbg(host->dev, "attempted to initialize %d slots, "
"but failed on all\n", host->num_slots);
goto err_workqueue;
}
if (drv_data && drv_data->misc_control) {
if (host->pdata->cd_type == DW_MCI_CD_GPIO)
drv_data->misc_control(host, CTRL_REQUEST_EXT_IRQ,
dw_mci_detect_interrupt);
}
if (drv_data && drv_data->misc_control)
drv_data->misc_control(host, CTRL_ADD_SYSFS, NULL);
if (host->pdata->cd_type == DW_MCI_CD_INTERNAL) {
/* Now that slots are all setup, we can enable card detect */
dw_mci_enable_cd(host);
}
if (host->quirks & DW_MCI_QUIRK_IDMAC_DTO)
dev_info(host->dev, "Internal DMAC interrupt fix enabled.\n");
host->card_detect_cnt = 0;
#ifdef CONFIG_CPU_IDLE
exynos_update_ip_idle_status(host->idle_ip_index, 1);
#endif
return 0;
err_workqueue:
destroy_workqueue(host->card_workqueue);
destroy_workqueue(pm_workqueue);
pm_qos_remove_request(&host->pm_qos_lock);
if (host->quirks & DW_MCI_QUIRK_HWACG_CTRL) {
if (drv_data && drv_data->hwacg_control)
drv_data->hwacg_control(host, W_FREE, HWACG_WORK_INIT);
}
err_dmaunmap:
if (host->use_dma && host->dma_ops->exit)
host->dma_ops->exit(host);
err_clk_ciu:
if (!IS_ERR(host->ciu_clk))
clk_disable_unprepare(host->ciu_clk);
err_clk_biu:
if (!IS_ERR(host->biu_clk))
clk_disable_unprepare(host->biu_clk);
#ifdef CONFIG_CPU_IDLE
exynos_update_ip_idle_status(host->idle_ip_index, 1);
#endif
return ret;
}
EXPORT_SYMBOL(dw_mci_probe);
void dw_mci_remove(struct dw_mci *host)
{
const struct dw_mci_drv_data *drv_data = host->drv_data;
int i;
for (i = 0; i < host->num_slots; i++) {
dev_dbg(host->dev, "remove slot %d\n", i);
if (host->slot[i])
dw_mci_cleanup_slot(host->slot[i], i);
}
mci_writel(host, RINTSTS, 0xFFFFFFFF);
mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
/* disable clock to CIU */
mci_writel(host, CLKENA, 0);
mci_writel(host, CLKSRC, 0);
del_timer_sync(&host->timer);
destroy_workqueue(host->card_workqueue);
destroy_workqueue(pm_workqueue);
if (host->quirks & DW_MCI_QUIRK_HWACG_CTRL) {
if (drv_data && drv_data->hwacg_control)
drv_data->hwacg_control(host, W_FREE, HWACG_WORK_INIT);
}
pm_qos_remove_request(&host->pm_qos_lock);
if (host->use_dma && host->dma_ops->exit)
host->dma_ops->exit(host);
if (!IS_ERR(host->ciu_clk))
clk_disable_unprepare(host->ciu_clk);
if (!IS_ERR(host->biu_clk))
clk_disable_unprepare(host->biu_clk);
}
EXPORT_SYMBOL(dw_mci_remove);
#ifdef CONFIG_PM_SLEEP
/*
* TODO: we should probably disable the clock to the card in the suspend path.
*/
int dw_mci_suspend(struct dw_mci *host)
{
if (host->use_dma && host->dma_ops->exit)
host->dma_ops->exit(host);
return 0;
}
EXPORT_SYMBOL(dw_mci_suspend);
int dw_mci_resume(struct dw_mci *host)
{
const struct dw_mci_drv_data *drv_data = host->drv_data;
int i, ret;
if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
ret = -ENODEV;
return ret;
}
if (host->use_dma && host->dma_ops->init)
host->dma_ops->init(host);
if (host->quirks & DW_MCI_QUIRK_HWACG_CTRL) {
if (drv_data && drv_data->hwacg_control)
drv_data->hwacg_control(host, HWACG_Q_ACTIVE_EN, LEGACY_MODE);
} else {
if (drv_data && drv_data->hwacg_control)
drv_data->hwacg_control(host, HWACG_Q_ACTIVE_DIS, LEGACY_MODE);
}
if (drv_data != NULL) {
ret = drv_data->access_control_sec_cfg(host);
if (ret)
dev_err(host->dev, "%s: Fail to control security config.(%x)\n",
__func__, ret);
ret = drv_data->access_control_resume(host);
if (ret)
dev_err(host->dev, "%s: Fail to resume access control.(%d)\n",
__func__, ret);
}
/*
* Restore the initial value at FIFOTH register
* And Invalidate the prev_blksz with zero
*/
mci_writel(host, FIFOTH, host->fifoth_val);
host->prev_blksz = 0;
/* Put in max timeout */
mci_writel(host, TMOUT, 0xFFFFFFFF);
mci_writel(host, RINTSTS, 0xFFFFFFFF);
if (host->use_dma)
mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
DW_MCI_ERROR_FLAGS);
else
mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
SDMMC_INT_TXDR | SDMMC_INT_RXDR |
DW_MCI_ERROR_FLAGS);
mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
for (i = 0; i < host->num_slots; i++) {
struct dw_mci_slot *slot = host->slot[i];
if (!slot)
continue;
if (slot->mmc->pm_flags & MMC_PM_KEEP_POWER
|| slot->mmc->pm_caps & MMC_PM_SKIP_MMC_RESUME_INIT) {
dw_mci_set_ios(slot->mmc, &slot->mmc->ios);
dw_mci_setup_bus(slot, true);
}
}
if (host->pdata->cd_type == DW_MCI_CD_INTERNAL) {
/* Now that slots are all setup, we can enable card detect */
dw_mci_enable_cd(host);
}
return 0;
}
EXPORT_SYMBOL(dw_mci_resume);
#endif /* CONFIG_PM_SLEEP */
static int __init dw_mci_init(void)
{
pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
return 0;
}
static void __exit dw_mci_exit(void)
{
}
module_init(dw_mci_init);
module_exit(dw_mci_exit);
MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
MODULE_AUTHOR("NXP Semiconductor VietNam");
MODULE_AUTHOR("Imagination Technologies Ltd");
MODULE_LICENSE("GPL v2");